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Abstract—Hypervolume optimal µ-distribution is the distribu-
tion of µ solutions maximizing the hypervolume indicator of µ

solutions on a specific Pareto front. Most studies have focused on
simple Pareto fronts such as triangular and inverted triangular
Pareto fronts. There is almost no study which focuses on complex
Pareto fronts such as disconnected and partially degenerate
Pareto fronts. However, most real-world multi-objective optimiza-
tion problems have such a complex Pareto front. Thus, it is of
great practical significance to study the hypervolume optimal µ-
distribution on the complex Pareto fronts. In this paper, we study
this issue by empirically showing the hypervolume optimal µ-
distributions on the Pareto fronts of some representative artificial
and real-world test problems. Our results show that, in general,
maximizing the hypervolume indicator does not lead to uniformly
distributed solution sets on the complex Pareto fronts. We also
give some suggestions related to the use of the hypervolume
indicator for performance evaluation of evolutionary multi-
objective optimization algorithms.

Index Terms—Hypervolume, optimal µ-distribution, complex
Pareto front, multi-objective optimization

I. INTRODUCTION

The hypervolume indicator [1] is a well-known performance

indicator in evolutionary multi-objective optimization (EMO).

It has been widely-used for performance evaluation of EMO

algorithms since it can evaluate their convergence and diversity

performance simultaneously [2]. The ability to evaluate the

convergence performance is due to its Pareto compliance

property [3]. Better solution sets with respect to the Pareto

dominance relation always have larger hypervolume values.

The ability to evaluate the diversity performance is based

on the following commonly-believed implicit assumption: A

larger hypervolume value means a more diverse solution

set. However, this issue is under-investigated in the EMO

community.

To deeply understand the ability of the hypervolume indi-

cator for the diversity performance evaluation, many studies

have been conducted on the so-called hypervolume optimal
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µ-distribution. The hypervolume optimal µ-distribution re-

search involves investigating the distribution of µ solutions

maximizing the hypervolume indicator on a Pareto front.

The hypervolume optimal µ-distribution can directly indicate

whether optimizing the hypervolume indicator can lead to

a diverse solution set or not on a Pareto front, and further

provide guidance of using the hypervolume indicator for the

diversity performance evaluation.

Currently, most studies on the hypervolume optimal µ-

distribution have focused on the simple Pareto fronts. For

example, the two-objective linear Pareto front was considered

in [4], [5], [6]. The two-objective convex and concave Pareto

fronts were also investigated in [5]. In the three-objective case,

the linear triangular and inverted triangular Pareto fronts were

studied in [7]. The triangular and inverted triangular Pareto

fronts with convex and concave curvatures were also studied

in [8], [9]. Some simple line-based degenerate Pareto fronts

were investigated in [10], [11], [12]. All these Pareto fronts

have quite simple structures. Most studies suggest that if the

reference point is properly specified, a diverse solution set

on the entire Pareto front can be obtained for hypervolume

maximization.

However, most real-world problems have very complex

Pareto fronts such as disconnected and partially degenerate

Pareto fronts. Currently, there is almost no study which focuses

on investigating the hypervolume optimal µ-distributions on

the complex Pareto fronts. It is unclear whether a diverse

solution set can be obtained or not for hypervolume maxi-

mization. Thus, it is of great practical significance to study

the hypervolume optimal µ-distribution on the complex Pareto

fronts. In this paper, we choose some representative complex

Pareto fronts of artificial and real-world test problems, and

empirically study the hypervolume optimal µ-distributions. We

consider three-objective test problems in our study in order

to visually show the solution distributions for hypervolume

maximization on the complex Pareto fronts. Based on our

experimental results, we give some suggestions related to the

use of the hypervolume indicator for performance evaluation

of EMO algorithms.

The remainder of this paper is organized as follows. Section

II explains the foundations of the hypervolume optimal µ-

distribution. Section III shows the complex Pareto fronts

considered in our study. Section IV empirically investigates the
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hypervolume optimal µ- distributions on some representative

complex Pareto fronts. Section V further investigates the

obtained hypervolume optimal u-distributions. Finally, Section

VI concludes this paper.

II. HYPERVOLUME OPTIMAL µ-DISTRIBUTION

A. Basic Definitions

The hypervolume indicator is the fundamental concept in

our study. Formally, the hypervolume indicator is defined as

follows.

Definition 1 (Hypervolume [2]). Given a solution set S
and a reference point r ∈ R

m in the objective space, the

hypervolume of S is defined as

HV (S, r) = L

(

⋃

s∈S

{s′|s ≺ s
′ ≺ r}

)

, (1)

where L(.) is the Lebesgue measure of a set, and s ≺ s
′

denotes that s Pareto dominates s
′ (i.e., si ≤ s′i for all i =

1, ...,m and sj < s′j for at least one j = 1, ...,m in the

minimization case, where m is the number of objectives).

Based on the definition of the hypervolume indicator, we

can define the hypervolume optimal µ-distribution as follows.

Definition 2 (Hypervolume optimal µ-distribution [2]). Given

a Pareto front F ⊂ R
m and a reference point r ∈ R

m, the

hypervolume optimal µ-distribution is µ ∈ N points on the

Pareto front which maximize the hypervolume of µ points. The

set A containing the optimal µ points is

A = arg max
|A′|=µ, A′⊂F

HV (A′, r). (2)

B. Hypervolume Optimal µ-Distributions on Simple Pareto

Fronts

Existing studies mainly focus on investigating the hyper-

volume optimal µ-distributions on simple Pareto fronts. In this

subsection, we briefly review some existing results on the two-

objective and three-objective linear Pareto fronts.

Without loss of generality, we assume minimization prob-

lems, and the nadir point of the Pareto front F is denoted

as nadir. The nadir point is the point with the worst value

for each objective. For hypervolume calculation, the reference

point r is specified as

r = α× nadir, (3)

where α is a parameter. Usually α ≥ 1.

For the two-objective minimization case, it has been proved

that the µ solutions are equispaced on the linear Pareto

front for hypervolume maximization [5]. Fig. 1 illustrates

the hypervolume optimal µ-distributions on the two-objective

linear Pareto front with different reference point specifications.

If α ≥ 1 + 1

µ−1
, the two extreme points of the Pareto front

are included in the hypervolume optimal µ-distribution, and

the location of the reference point does not influence the

hypervolume optimal µ-distribution [6].

(a) α = 1 (b) α = 1.25 (c) α = 100

Fig. 1. Hypervolume optimal µ-distributions (µ = 5) with different reference
point specifications on the two-objective linear Pareto front.

For the three-objective minimization case, the hypervolume

optimal µ-distributions on the linear triangular and inverted

triangular Pareto fronts have been empirically investigated in

[7]. It has been shown that the µ solutions are uniformly

distributed on both types of Pareto fronts for hypervolume

maximization when the reference point is specified as

α = 1 +
1

H
, (4)

where H is an integer satisfying CH+m−1

m−1 ≤ µ < CH+m
m−1 ,

m is the number of objectives, and Ca
b is the total number

of combinations for choosing b elements from a set of a
elements. Furthermore, if α > 1 + 1

H
, the location of the

reference point does not influence the hypervolume optimal

µ-distribution on the triangular Pareto front whereas it signif-

icantly influences the hypervolume optimal µ-distribution on

the inverted triangular Pareto front. When the reference point

is sufficiently far, all solutions are distributed on the boundary

of the linear inverted triangular Pareto front. Fig. 2 illustrates

the empirical hypervolume optimal µ-distributions obtained by

SMS-EMOA [13] on the three-objective linear triangular and

inverted triangular Pareto fronts with different reference point

specifications.

(a) α = 1 (b) α = 1 +
1

H
(H =

4)
(c) α = 100

(d) α = 1 (e) α = 1 +
1

H
(H =

4)
(f) α = 100

Fig. 2. Empirical hypervolume optimal µ-distributions (µ = 15) with
different reference point specifications obtained by SMS-EMOA on the three-
objective linear triangular and inverted triangular Pareto fronts.
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III. COMPLEX PARETO FRONTS

In this section, we introduce the complex Pareto fronts

considered in our study. We choose two sets of complex Pareto

fronts: Pareto fronts of artificial test problems and Pareto fronts

of real-world test problems. These two sets of Pareto fronts

are explained in the following subsections.

A. Pareto Fronts of Artificial Test Problems

The first set of complex Pareto fronts are from artificial

test problems. We choose three-objective DTLZ7 [14], three-

objective WFG3 [15], and IMOP5-8 [16] in our study. Thus,

we have six artificial test problems in total. All these test

problems are available in PlatEMO1 [17]. Their Pareto fronts

are also provided in PlatEMO. Fig. 3 shows the Pareto fronts

of these artificial test problems.

It should be noted that the Pareto front of WFG3 provided

in PlatEMO is not correct. WFG3 was intended to have a

degenerate Pareto front and this degenerate Pareto front is

provided in PlatEMO. However, WFG3 actually has a mixed

Pareto front with a degenerate part and a non-degenerate part

[18]. We use the method in [18] to generate an approximated

Pareto front for WFG3 in our study.

The characteristics of each Pareto front in Fig. 3 is described

as follows. The Pareto front of DTLZ7 has four disconnected

parts. The Pareto front of WFG3 is the combination of a

degenerate part and a non-degenerate part [18]. The Pareto

front of IMOP5 consists of eight circles. The Pareto front of

IMOP6 has nine square holes in the square Pareto front. The

Pareto front of IMOP7 is a part of a unit sphere in the first

octant. The Pareto front of IMOP8 contains 100 disconnected

subregions and each subregion contains infinite points [16].

(a) DTLZ7 (b) WFG3 (c) IMOP5

(d) IMOP6 (e) IMOP7 (f) IMOP8

Fig. 3. Pareto fronts of artificial test problems.

B. Pareto Fronts of Real-world Test Problems

The second set of complex Pareto fronts are from real-world

test problems. In our study, we choose six problems from the

RE test suite2 [19]: two bar truss design (RE3-3-1), welded

1https://github.com/BIMK/PlatEMO
2https://github.com/ryojitanabe/reproblems

beam design (RE3-4-2), disc brake design (RE3-4-3), vehicle

crashworthiness design (RE3-5-4), speed reducer design (RE3-

7-5), and rocket injector design (RE3-4-7). Different from

the artificial test problems, the true Pareto fronts of these

real-world test problems are usually unknown. The authors

of the RE test suite have provided the approximated Pareto

fronts of these real-world test problems. We have also verified

the provided approximated Pareto fronts by running different

EMO algorithms on these problems. We directly use the

provided approximated Pareto fronts in our study. Fig. 4

shows the approximated Pareto fronts of these real-world test

problems.

The characteristics of each Pareto front in Fig. 4 is described

as follows. The Pareto front of RE3-3-1 has two parts: one part

is almost parallel to the f1 − f3 plane, and the other part is

almost parallel to the f2−f3 plane. The Pareto front of RE3-4-

2 is a degenerate Pareto front with two parts: one part is almost

parallel to the f1 axis, and the other part is almost parallel to

the f2 − f3 plane. The Pareto front of RE3-4-3 is a mixed

Pareto front with a degenerate part and a non-degenerate part:

the degenerate part is almost parallel to the f3 axis, and the

non-degenerate part is almost parallel to the f1 − f2 plane.

The Pareto front of RE3-5-4 has four disconnected parts. The

Pareto front of RE3-7-5 has three parts: the first part is almost

parallel to the f1 axis, the second part is almost parallel to

the f1 − f2 plane, and the third part is almost parallel to the

f2−f3 plane. The Pareto front of RE3-4-7 has a complex and

irregular shape.

(a) RE3-3-1 (b) RE3-4-2 (c) RE3-4-3

(d) RE3-5-4 (e) RE3-7-5 (f) RE3-4-7

Fig. 4. Pareto fronts of real-world problems [19].

IV. EMPIRICAL HYPERVOLUME OPTIMAL

µ-DISTRIBUTIONS

Theoretic analysis of the hypervolume optimal µ-

distributions on the complex Pareto fronts is not an easy task

[20]. Instead, we conduct empirical investigations as in [7],

[9] in our study. An approximated optimal µ-distribution is

obtained by running a search algorithm on each problem.

In this section, the search algorithm, the settings, and the

obtained distributions are presented. We use a large amount
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of computation time to optimize the distribution as much

as possible. In the next section, we show that the obtained

distribution is actually very close to the hypervolume optimal

µ-distributions whereas some of them are counterintuitive.

A. Search Algorithm

To search for the hypervolume optimal µ-distributions on

the complex Pareto fronts, we use the combination of NSGA-

II [21] and SMS-EMOA [13] as the search algorithm. The

basic idea of the search algorithm is to use NSGA-II for the

first-half of the function evaluations and SMS-EMOA for the

second-half of the function evaluations. NSGA-II is used for

the first-half of the function evaluations since NSGA-II can

quickly push the population to the Pareto front and maintain a

diversified solution set on the Pareto front. Then SMS-EMOA

is used for the second-half of the function evaluations since

SMS-EMOA is able to refine the distribution of solutions on

the Pareto front for hypervolume maximization.

In SMS-EMOA, we fix the reference point based on the

nadir point of the true Pareto front (the approximated Pareto

front in the case of real-world problems) in order to search for

the hypervolume optimal µ-distribution on the entire Pareto

front. The reference point is specified as in Eq. (3).

B. Settings

To make sure that the obtained solution set by the search

algorithm is optimal or close-to-optimal for hypervolume max-

imization, we set the maximum number of function evaluations

as 100,000. The population size (i.e., µ) is set as 100. For

each test problem, the search algorithm is run 100 times

independently and the best solution set among 100 solution

sets (i.e., the one with the maximum hypervolume value) is

presented as the empirical hypervolume optimal µ-distribution.

For the reference point specification in SMS-EMOA, we

examine two settings: α = 1 + 1

H
(H = 12 for µ = 100)

and α = 100. We examine α = 1 + 1

H
since it is the

suggested reference point specification in [22], which can lead

to uniformly distributed solution sets on the linear triangular

and inverted triangular Pareto fronts as shown in Section II-B.

In addition, we examine α = 100 to check whether the

location of the reference point influences the hypervolume

optimal µ-distributions or not on the complex Pareto fronts.

C. Results

Figs. 5-8 show the obtained empirical hypervolume optimal

µ-distributions on the complex Pareto fronts of the considered

artificial and real-world problems.

For the Pareto fronts of the artificial test problems, when

α = 1 + 1

H
in Fig. 5, uniform solution sets cannot always

be obtained. Only for IMOP6 and IMOP8, relatively uniform

solution sets are obtained. For other problems, non-uniform

solution sets are obtained. For example, for DTLZ7, many

solutions are densely distributed on the top three parts of the

Pareto front. For WFG3, solutions are more densely distributed

on the degenerate part of the Pareto front. For IMOP5, most

solutions are distributed on the boundaries of the eight circles.

For IMOP7, most solutions are distributed on the boundaries

of the Pareto front.

(a) DTLZ7 (b) WFG3 (c) IMOP5

(d) IMOP6 (e) IMOP7 (f) IMOP8

Fig. 5. Empirical hypervolume optimal µ-distributions (µ = 100) on the
Pareto fronts of artificial test problems with α = 1 +

1

H
(H = 12).

(a) DTLZ7 (b) WFG3 (c) IMOP5

(d) IMOP6 (e) IMOP7 (f) IMOP8

Fig. 6. Empirical hypervolume optimal µ-distributions (µ = 100) on the
Pareto fronts of artificial test problems with α = 100.

When α = 100 in Fig. 6, most distributions change

dramatically. Only for IMOP7, the solution distribution has

almost no change. This is because the Pareto front shape

of IMOP7 is generally triangular. After the three extreme

solutions (0, 0, 1), (0, 1, 0), and (1, 0, 0) are obtained, the

hypervolume contributions of all other solutions cannot be

affected by the location of the reference point. For other

problems, most solutions tend to distribute on some specific

boundaries of the Pareto front. For DTLZ7, IMOP6, and

IMOP8, most solutions are distributed on the lower boundaries

of the Pareto fronts, which have an inverted triangular shape.

This observation is consistent with the reported results that

the location of the reference point has a large effect on the

solutions distributed on the inverted triangular boundaries of

the Pareto front as shown in Section II-B. For WFG3 and

IMOP5, solutions tend to distribute on the outside boundaries

of the Pareto front.
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For the Pareto fronts of real-world problems, when α =
1+ 1

H
in Fig. 7, uniform solution sets cannot be obtained for

any problem. For RE3-3-1, RE3-4-2, and RE3-4-3, solutions

only distribute on a small part of the Pareto front. This is

because for these test problems, the Pareto fronts contain many

dominance resistant solutions (DRS) [23], [24], which have

very small (almost zero) hypervolume contributions. Thus,

these DRSs are not included in the hypervolume optimal µ-

distributions. For RE3-5-4, RE3-7-5, and RE3-4-7, although a

wider solution set is obtained on the Pareto front, some part

of the Pareto front are not covered by the obtained solution

set.

When α = 100 in Fig. 8, most distributions have no

dramatic change from Fig. 7 except for RE3-5-4 and RE3-4-7.

For example, for RE3-3-1, RE3-4-2, RE3-4-3, and RE3-7-5,

the visual difference between Fig. 7 and Fig. 8 is minor. This

is because all these Pareto fronts contain many DRSs. DRSs

usually have small hypervolume contributions even when the

reference point is very far. Thus, the hypervolume optimal

µ-distributions on these Pareto fronts are insensitive to the

location of the reference point. For RE3-5-4 and RE3-4-7,

most solutions tend to distribute on the outside boundaries of

the Pareto fronts. This shows that the hypervolume optimal µ-

distributions on these Pareto fronts are sensitive to the location

of the reference point.

(a) RE3-3-1 (b) RE3-4-2 (c) RE3-4-3

(d) RE3-5-4 (e) RE3-7-5 (f) RE3-4-7

Fig. 7. Empirical hypervolume optimal µ-distributions (µ = 100) on the
Pareto fronts of real-world problems with α = 1 +

1

H
(H = 12).

V. FURTHER INVESTIGATIONS

A. Compare with Other Algorithms

In Section IV, we run our search algorithm on each problem

many times to obtain the empirical hypervolume optimal µ-

distribution. To further examine the reliability of the obtained

solution set (i.e., its optimality), we compare each solution set

obtained in Section IV with the solution sets obtained by a

greedy hypervolume subset selection (GHSS) algorithm [25]

and a distance-based subset selection (DSS) algorithm [26].

Both GHSS and DSS are greedy subset selection algorithms.

GHSS selects a subset with the objective of maximizing the

(a) RE3-3-1 (b) RE3-4-2 (c) RE3-4-3

(d) RE3-5-4 (e) RE3-7-5 (f) RE3-4-7

Fig. 8. Empirical hypervolume optimal µ-distributions (µ = 100) on the
Pareto fronts of real-world problems with α = 100.

hypervolume value of the selected subset. It has been theo-

retically proved that the subset selected by GHSS has at least

(1− 1/e) times the hypervolume value of the optimal subset

[27]. DSS selects a subset with the objective of maximizing

the uniformity level3 of the selected subset [29]. DSS aims to

select a uniform solution set on the entire Pareto front.

We use GHSS and DSS algorithms to select µ solutions

from a candidate solution set on the Pareto front. For the Pareto

fronts of the artificial test problems, we generate the candidate

solution sets by uniformly sampling solutions on the Pareto

fronts. This can be done directly in PlatEMO. The number of

solutions in each candidate solution set is about 2000. For the

Pareto fronts of the real-world problems, we directly use the

approximated Pareto fronts as the candidate solution sets. We

set α = 1+ 1

H
, then we compare the normalized hypervolume

values of the solution sets obtained by the three algorithms.

Experimental results are summarized in Table I. To calculate

the normalized hypervolume value of a solution set, we first

normalize the solution set based on the ideal and nadir points

of the Pareto front so that these two points are (0, 0, 0) and

(1, 1, 1) respectively, then we set the reference point for the

hypervolume indicator as (α, α, α).
From Table I, we can see that the solution sets obtained

by the search algorithm always have the highest hypervolume

values compared with GHSS and DSS. This shows the reli-

ability of the solution sets obtained by the search algorithm

as the empirical hypervolume optimal µ-distributions (in the

sense that they are always better than the solution sets obtained

by the greedy algorithm). The solution sets obtained by DSS

always have the lowest hypervolume values. This means that

uniform solution sets on these complex Pareto fronts cannot

be evaluated as good solution sets based on the hypervolume

indicator.

We further compare the solution sets obtained by the three

algorithms on the six real-world Pareto fronts in Fig. 9. We

3The uniformity level of a set is the minimum distance value between any
two solutions in this set [28].

437



TABLE I
THE NORMALIZED HYPERVOLUME VALUES OF THE SOLUTION SETS

OBTAINED BY THE SEARCH ALGORITHM, GHSS, AND DSS WITH

α = 1 +
1

H
(H = 12). THE HIGHEST HYPERVOLUME VALUE IN EACH

ROW IS HIGHLIGHTED IN BOLD.

Problems Search Algorithm GHSS DSS

DTLZ7 0.3413844 0.3406833 0.3369402
WFG3 0.6831202 0.6823060 0.6651156
IMOP5 0.6209844 0.6177635 0.6079791
IMOP6 0.6624239 0.6600987 0.6560942
IMOP7 0.6541685 0.6519038 0.6451827
IMOP8 0.6772725 0.6725810 0.6557023

RE3-3-1 1.2714108 1.2714106 1.2695393
RE3-4-2 1.2706937 1.2706881 1.2704836
RE3-4-3 1.1096155 1.1084568 1.1068151
RE3-5-4 0.0415125 0.0414740 0.0412420
RE3-7-5 0.5390541 0.5390317 0.5382311
RE3-4-7 0.8296859 0.8277044 0.8164381

can see that the solution sets obtained by the search algorithm

and GHSS are similar since both of them aim to maximize

the hypervolume of the selected solution set. The solution

sets obtained by DSS are more uniformly distributed over

the entire Pareto fronts. However, as indicated in Table I,

these solution sets have the lowest hypervolume values. The

visual comparison results in Fig. 9 clearly show that uniform

solution sets on the complex Pareto fronts can be evaluated

as worse solution sets than nonuniform solution sets based on

the hypervolume indicator.

B. Examine the Uncovered Solutions of the Pareto Front

As shown in Section IV, for most real-world test problems,

the hypervolume optimal µ-distributions do not cover the

entire complex Pareto fronts. Even when the reference point

is very far (i.e., α = 100), some boundary regions are not

included in the optimal distributions (whereas their inside

regions are included), which is quite different from the simple

Pareto fronts (e.g., the linear inverted triangular Pareto front

in Section II-B).

For example, for RE3-4-7 in Fig. 8, no solutions in some

boundary regions are included in the obtained solution set

whereas many solutions inside those regions are obtained as

clearly shown in Fig. 10 (a). There are two possible reasons:

1) The search algorithm cannot find these boundary solu-

tions. That is, these boundary solutions are very difficult

to find.

2) The search algorithm can find these boundary solutions.

However, these boundary solutions have very small hy-

pervolume contributions. Thus, they are always removed

by the environmental selection of SMS-EMOA.

To verify the above two possible reasons, we simulate

the environmental selection in SMS-EMOA by adding one

uncovered solution (i.e., the black point in Fig. 10 (a)) to

the red point set (i.e., the hypervolume optimal µ-distribution

obtained by the search algorithm). If the uncovered solution

is always removed by SMS-EMOA, this means that the red

point set is optimal or local optimal for the (µ+ 1)-selection

(a) Search Algorithm (b) GHSS (c) DSS

(d) Search Algorithm (e) GHSS (f) DSS

(g) Search Algorithm (h) GHSS (i) DSS

(j) Search Algorithm (k) GHSS (l) DSS

(m) Search Algorithm (n) GHSS (o) DSS

(p) Search Algorithm (q) GHSS (r) DSS

Fig. 9. Solution sets obtained by the search algorithm, GHSS, and DSS with
α = 1+

1

H
(H = 12) on the Pareto fronts of six real-world problems. Their

corresponding hypervolume values are shown in Table I.
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(a) The uncovered regions (b) Simulation result of SMS-
EMOA

Fig. 10. (a) Empirical optimal µ-distribution (red point set) and other solutions
(black points) on the Pareto front of RE3-4-7 with α = 100. Each blue ellipse
indicates an uncovered boundary region. (b) Further examination results of
each point using SMS-EMOA with α = 100. Each black point is added to
the red point set. If the black point is removed by SMS-EMOA, this point is
also removed from the figure.

strategy in SMS-EMOA (i.e., the second possible reason is

valid).

Fig. 10 (b) shows the simulation result. If one uncovered

solution is added to the red point set and removed by SMS-

EMOA, this solution is also removed in Fig. 10 (b). We can

see from Fig. 10 (a) that all the uncovered solutions (i.e.,

black points in Fig. 10 (a)) are removed by SMS-EMOA. This

verifies the second possible reason, and further shows the high

reliability of the obtained hypervolume optimal µ-distribution

(i.e., its high optimality).

The reason for the uncovered boundaries in Fig. 10 (a) is

that these solutions are DRSs. So these solutions have very

small (almost zero) hypervolume contributions even when the

reference point is very far. Therefore, they are not included in

the hypervolume optimal µ-distribution.

VI. CONCLUSIONS

In this paper, we empirically investigated the hypervolume

optimal µ-distributions on some complex Pareto fronts of

artificial and real-world test problems. The main observation

is that, in general, maximizing the hypervolume indicator does

not lead to a uniform solution set on a complex Pareto front.

Thus, it is very likely that a uniform solution set on a complex

Pareto front is evaluated as a bad solution set based on the

hypervolume indicator. Currently, many EMO algorithms are

designed to obtain a uniform solution set on the entire Pareto

front. Thus, we have the following three suggestions about the

use of the hypervolume indicator for performance evaluation

of EMO algorithms.

1) It is suggested to use the hypervolume indicator for

performance evaluation if the algorithms to be evaluated

are designed for hypervolume maximization (e.g., SMS-

EMOA [13], HypE [30], FV-MOEA [31], and R2HCA-

EMOA [32]). Since these algorithms aim to maximize

the hypervolume value of the population, using the

hypervolume indicator to evaluate their performance is

the most suitable choice.

2) It is not suggested to use the hypervolume indicator for

performance evaluation if the algorithms to be evaluated

are designed for obtaining a uniform solution set on the

Pareto front, especially for real-world problems. This

is because real-world problems usually have complex

Pareto fronts. Using the hypervolume indicator for per-

formance evaluation may give us misleading conclu-

sions. Instead, other indicators such as IGD [33] and

uniformity level [28] are better choices.

3) When different algorithms are compared, it is advisable

to use multiple indicators including the hypervolume and

IGD (or uniformity level) indicators. If clearly different

evaluation results are obtained from a test problem, those

results suggest that uniform distributions are not good

for the hypervolume indicator. That is, the Pareto front

shape of the test problem can be complicated. In this

case, comparison of different algorithms may depend on

the preference of the decision maker about the solution

distribution.

In the future, we will consider more real-world test prob-

lems and examine the corresponding hypervolume optimal

µ-distributions. We will also consider problems with more

than three objectives. It is not easy to visually examine the

solution distributions in a high-dimensional objective space

with more than three objectives. Thus, some other methods

may be needed to analyze the solution distributions, which

is an interesting future research direction. Our experimental

results show the difficulty of solution set evaluations. For

example, in Fig. 9, well-distributed solution sets over the entire

Pareto fronts have the smallest hypervolume values. We may

need decision maker’s preference about the distribution of

solutions to further compare different solution sets. This is

also an interesting future research direction.
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