
Framework of Systems for Creating Intelligent
Behaviors of Imaginary Creatures for Humans

Kei Ohnishi
Kyushu Institute of Technology

Iizuka, Japan
ohnishi@csn.kyutech.ac.jp

Yusuke Kumano
Kyushu Institute of Technology

Iizuka, Japan
kumano.yusuke521@mail.kyutech.jp

Abstract—The paper proposes a framework of systems for
creating intelligent behaviors of imaginary creatures for humans,
which is built upon a framework of swarm intelligence optimiza-
tion algorithms. The paper assumes and models an imaginary
slime mold, which is an amoeboid unicellular creature, as an
imaginary creature in the framework concretely. In addition,
the paper conducts basic evaluations of the framework. Various
swarm intelligence optimization algorithms have been proposed
so far, but there is a common feature among them. That is that a
set of search points in a search space, which are called individuals,
move around in the space according to algorithm specific rules
using fitness values of the individuals, and the differences among
algorithms are in algorithm specific rules. Therefore, under the
use of one swarm intelligence optimization algorithm, that is, one
particular set of rules, if a fitness function is varied, behaviors
of individuals are also varied. Based on this fact, the proposed
framework optimizes a parametric fitness function for individuals
to behave intelligently for a human. In the basic evaluation of
the concrete system, a fitness function of computer program
which returns a fitness value calculated with a distribution of
individuals is used instead of a human, and it is demonstrated
that optimization of a parametric fitness function indeed yields
desired behaviors of individuals.

Index Terms—imaginary creature, true slime molds, swarm
intelligence optimization, interactive evolutionary computation,
human subjective evaluation

I. INTRODUCTION

In the field of swarm intelligence optimization algorithms,
algorithms inspired by a variety of creatures have been
proposed [1] [2] [3]. Especially, there are many algorithms
inspired by social living things such as ants and bees of
social insects. Swarm intelligent optimization algorithms move
a swarm of individuals corresponding to search points in
a search space according to rules utilizing fitnesses of the
individuals in order to obtain better individuals. That is to
say, the problem-solving is equivalent to producing behaviors
of individuals in swarm intelligence optimization algorithms.

Since swarm intelligent optimization algorithms are based
on intelligence of swarms of individuals in nature, people
should feel intelligence for behaviors of the artificial swarms
of individuals. For example, in the ant colony optimization
algorithm based on ant colony in nature, the strengths of
pheromone trails on paths are increasing or decreasing accord-
ing to local behaviors of individuals corresponding to ants,
and the change in the strengths of pheromone trails on the

paths can be visualized dynamically. Humans would feel some
intelligence for the visualization.

Thus, swarm intelligent optimization algorithms move indi-
viduals (search points in a search space) according to given
rules using fitness values to find better solutions under a given
fitness function. However, if we change a fitness function,
movement of individuals under the use of given fixed rules is
changed. In this way, we might be able to produce intelligent
behaviors of individuals that we have never seen before. The
key point here is to produce behaviors by changing not rules
but a fitness function (environment).

Therefore, based on the idea that behaviors of individ-
uals can change by changing environments, we propose a
framework of systems for creating intelligent behaviors of
imaginary creatures for humans in the paper. In addition,
we assume imaginary slime molds as imaginary creatures
and model imaginary slime molds as dynamically changing
graphs. A true slime mold is an amoeboid unicellular creature.
Also, to confirm basic validity of the proposed framework,
we conduct simulations in which a human who evaluates
behaviors of imaginary creatures is replaced by a computer
program. Through the simulations, we demonstrate that our
expected behaviors of imaginary creatures, that is, imaginary
slime molds, can be obtained by optimizing a fitness function
that affects how to activate their behavior rules.

The remaining parts of the paper are organized as fol-
lows. Section II describes the related work. We propose the
framework of systems for creating intelligent behaviors of
imaginary creatures in Section III. Section IV shows a model
of imaginary slime molds. Section V presents simulation
results for validating the framework. Section V describes the
conclusions and future work.

II. RELATED WORK

In the paper, in order to create intelligent behaviors of
imaginary creatures, rules for behaviors are fixed, but a fit-
ness function returning fitness values that the rules utilize is
optimized. Meanwhile, to produce desired behaviors of soft
robots which can be regarded as imaginary creatures in some
sense, rules for behaviors of the soft robots, that is, controllers
of the robots, have been optimized [4]. Also, in the theoretical
biology field, behaviors of some real creatures have been

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1195

described by rules, and the rules have been optimized by an
optimization method [5].

Evolutionary art [6] is one type of art that generates better
digital objects by adjusting parameter values of the generative
system in an evolutionary manner. Humans usually become
evaluation mechanisms for generated digital objects, and then,
it can be said that the evolutionary art systems rely on
interactive evolutionary computation, which is one type of
evolutionary computation which uses a human as an evaluation
system. The purpose of the proposed framework in the paper
is not to generate artistic digital objects, but is similar to that
of evolutionary art in a sense that novel objects for humans
are created. In addition, systems for evolutionary art do not
optimize fitness functions.

Also, regarding slime molds which are targets to be modeled
in the paper, inspired by behaviors of true slime molds,
a method for finding the shortest paths of maze has been
proposed [7] [8]. In the method, an entire maze is represented
as a true slime mold in a from of graph. The mechanism
for finding the shortest path is represented by differential
equations regarding materials’ flow at nodes of its graph
structure. Calculations of virtual materials’ flow using the
differential equations at each node bring the shortest path
of the maze. However, this is not an swarm intelligence
optimization approach in which behaviors of individuals are
described by rules.

III. SYSTEM PROPOSAL

The overview of the proposed framework of systems is
shown in Figure 1. The components of the proposed frame-
work are (A) a model of imaginary creatures, (B) a fitness
function which returns a fitness value determining how to
activate behavior rules to each imaginary creature, and (C)
an optimization method which optimizes targets using human
subjective evaluations. A solution candidate for the optimiza-
tion method of (C) is a fitness function of (B), which is a
parametric functions that particular set of parameter values
are given to. A fitness value given to an imaginary creature
is assumed to be set from the position of the creature and the
positional relationship with other ones. In the system, humans
give higher evaluation to imaginary creatures which behave
more intelligently for them.

We do not need to use a specific method as the optimization
method of (C) using a human as an evaluation system, but one
of them is interactive evolutionary computation. Interactive
evolutionary computation is one type of evolutionary compu-
tation, in which a human or humans are used as its evaluation
system. Humans as an evaluation system here give higher
fitness to imaginary creatures which behave more intelligently
for them as mentioned above, and evolutionary computation
modifies parameter values of a fitness function, which is a
solution candidate, according to the human subjective eval-
uations. This interaction between humans and evolutionary
computation is expected to create intelligent behaviors of
imaginary creatures.

Human subjective evaluation value

Animation of a group of
imaginary creatures

State

Fitness
x1

x2

※

※

※ ※※

※

※

※
※

t

※

Optimization method

Model of imaginary creatures

Fitness function

Optimizing
parametersgraph representation

(A)

(C)

(B)

Fig. 1. Overview of the proposed system for creating intelligent behaviors
of imaginary creatures.

IV. MODEL OF IMAGINARY SLIME MOLDS

A. Representation and Behavior Rules

A true slime mold is an amoeboid unicellular creature
which moves, modifies itself, divides itself, and connects to
others. An imaginary slime mold here is modeled as a directed
graph whose nodes are placed in a two-dimensional Euclidian
distance space. Therefore, nodes of a graph has a coordinate
in the space. The number of nodes increases or decreases
according to the rule mentioned later. Meanwhile, the number
of directed edges is the same for every node and not changed.

Imaginary slime molds represented by graphs move in the
space as the result of changing positions of their nodes, and
modify themselves as the result of changing target nodes for
which their edges are generated and increasing or decreasing
their nodes. The rules for movement and modification of
imaginary slime molds use a fitness value of each node in a
graph or a fitness value of the entire graph. A fitness function
used here and ways to calculate fitness values are explained
in the next section. In the explanation of the algorithm below,
it is assumed that fitness values have been assigned to both
each node and the entire graph. However, the paper does not
consider rules for connecting multiple imaginary slime molds
and dividing an imaginary slime molds into multiple ones.

Algorithm 1 shows the algorithm for movement of imag-
inary slime molds. Algorithm 2 shows the algorithm for
modification of nodes for which directed edges of imaginary
slime molds are generated, that is, modification of edges.
Algorithm 3 shows the algorithm of increasing or decreasing
nodes of imaginary slime molds.

First, in Algorithm 1, each node in a graph representing an
imaginary slime mold becomes a start node for random walk,
and a random walker produces new positions of nodes while
moving between nodes a fixed number of times. The algorithm
causes change in node positions, and the result of the change
is regarded as movement of imaginary slime mold.

Specifically, in the third line of Algorithm 1, the j-th node
of the i-th imaginary slime mold is obtained. In the fourth to

1196

x1

x2

Node
Directed edge
between nodes

Start node

Position of a new node
Path of random walk

Range for a new node

End node

Intermediate node

Fitness of position 2 is better
than the intermediate nodeʼs,
so the intermediate node moves
to position 2

Start node

Intermediate node

Pos. 1
Pos.2

Fitness of position 1 is better
than the start nodeʼs,
so the start node moves
to position 1

Fig. 2. Example of movement of imaginary slime mold.

the eleventh lines, a random walker moves between nodes HM

times and also produces HM new nodes. In the fifth line, the
destination node, enp, from the present node, snp, is chosen.
In the sixth line, although the details are not described there,
a line segment connecting the nodes snp and enp with the
length of ℓ is enlarged α times by adding α/2 times length of
the line segment connecting the nodes snp and enp to those
nodes, and then a tentative node, nnp, is randomly generated
on the α times enlarged line segment. This α is a parameter
of the algorithm. In the seventh to the ninth lines, if a fitness
value of the generated node, nnp, is better than the node snp’s,
the node snp is replaced by the node nnp. In the tenth line,
the next start node for movement between nodes is set to be
the node enp. The example of movement of imaginary slime
mold is shown in Figure 2.

Algorithm 1 Move nodes of imaginary slime molds.
Require: P : population of imaginary slime molds, S: size of P , N(i): # of nodes, HM :

of allowed hops
Ensure: P : population
1: for i = 1 to S do
2: for j = 1 to N(i) do
3: snp ← GetNode(i, j)
4: for k = 1 to HM do
5: enp ← RandomChooseNextNode(snp)
6: nnp ← GenerateNewNode(snp, enp)
7: if Fitness(nnp) is better than Fitness(snp) then
8: ReplaceNode(i, j, nnp)
9: end if

10: snp ← enp
11: end for
12: end for
13: end for

Next, in Algorithm 2, if nodes in a graph representing an
imaginary slime mold meet some condition mentioned later,
they become a start node for random walk, and a random
walker moves between nodes a fixed number of times. Then,
one node meeting another condition is obtained from among
nodes that the random walker reached. Finally, the start node
changes its directed edge’s destination node to the obtained
one. The algorithm causes change in node positions, and the
result of the change is regarded as modification of imaginary
slime mold. Change in destination nodes of directed edges
causes change in a topology of the graph.

Specifically, in the second to the fourth lines of Algorithm
2, a cycle time of natural number, which is called an edge
modification cycle, is given to each node. The maximum value

of an edge modification cycle is C. If the fitness value of a
node of focus, f , is better than the average fitness value over
all nodes’, fa, the cycle time of the node is randomly chosen
from [1, C/2], where C is an even number and more than
or equal to 2. If it is worse than or equal to the average, the
cycle time of the node is randomly chosen from [C/2 + 1, C].
In the fifth line, the time t proceeds by one from 1 to T (C ≦
T). In the sixth and the seventh lines, at each time t, every
node whose modification cycle time c meets t mod c ≡ 0 is
selected as target one that changes its edge. In the eighth to the
sixteenth lines, while a walker is randomly moving between
nodes the given HL times from every target node to modify
its edge, it finds a node with the best fitness value among all
nodes at which it arrived. In the twenty-first to the twenty-fifth
lines, the target node finds a node with the worst fitness value
among nodes to which it has made directed edges, and then
compares that best fitness value among the arrived nodes’ and
the worst one among the connected nodes’, and the if that best
fitness value is better than that worst one, it deletes the edge to
the node with that worst fitness value and makes a new edge
to the node with that best one. However, if the target node has
already made Ae or larger edges to the taken one (the best
one), it does nothing. Modification of imaginary slime molds
occurs through the edge modification. An example of the edge
modification of a node is shown in Figure 3.

Algorithm 2 Change edges of imaginary slime molds.
Require: P : population of imaginary slime molds, S: size of P , N(i): # of nodes, HL:

of allowed hops
Ensure: P : population
1: for i = 1 to S do
2: for j = 1 to N(i) do
3: c(j) ← AssignCycle(j)
4: end for
5: for t = 1 to T do
6: for j = 1 to N(i) do
7: if t mod c(j) ≡ 0 then
8: snp ← GetNode(i, j)
9: for k = 1 to HL do

10: enp ← RandomChooseNextNode(snp)
11: if k = 1 then
12: bn ← enp
13: bf ← Fitness(enp)
14: else k > 1 & Fitness(enp) is better than bf
15: bn ← enp
16: bf ← Fitness(enp)
17: end if
18: snp ← enp
19: end for
20: end if
21: if WorstNodeFitness(j) is worse than bf then
22: wn ← GetWorstLinkedNode(j)
23: DeleteWorstLink(j, wn)
24: MakeLink(j, bn)
25: end if
26: end for
27: end for
28: end for

Also, in Algorithm 3, a graph of imaginary slime mold
which has better fitness value than others increases nodes and
one which has worse fitness value decreases nodes. The total
number of edges of all imaginary slime molds is a constant
and not changed.

Specifically, in the second and the third lines of Algorithm
3, two graphs (imaginary slime molds) are randomly selected

1197

Start node

End node

Intermediate
node

Nodes of better fitness can
frequently be a start node

Path of random walk

1. The worst fitness among fitness of nodes to which the start node is
connected by directed edges is set to be f1

2. The best fitness among fitness of nodes to which random walk
reached is set to be f2

3. If f2 is better than f1, the directed edge to the node with f1 from the
start node is removed and a directed edge to the node with f2 from
the start node is newly generated

f1

f2

Start node

End node

x1

x2

Intermediate
node

Fig. 3. Modification of an edge of graph representing an imaginary slime
mold.

from all. In the fourth to the ninth lines, two selected graphs
are compared in terms of fitness value, and then, better one
increases nodes by one and worse one decreases nodes by
one. However, in the case that the number of nodes of a graph
becomes more than Nmax by this procedure or in the case
that the number becomes less than Nmin by this procedure,
the node increase or decrease does not occur on the graph. In
order to increase nodes of graph by one, first, a new node first
randomly decides a position in the two dimensional Euclidean
space, and then, the new node at the position makes E directed
edges to randomly chosen nodes in the graph. Meanwhile, in
order to decrease nodes of graph by one, the node with the
worst fitness value in the graph and the edges that the node
makes to others are deleted. Every node which had made edges
to the deleted node removes those edges and randomly selects
nodes equal to the number of removed edges and makes edges
to the selected nodes.

Algorithm 3 Increase or decrease nodes of imaginary slime
molds.
Require: P : population of imaginary slime molds, S: size of P
Ensure: P : population
1: for i = 1 to S do
2: n1 ← RandomChooseGraph(P)
3: n2 ← RandomChooseGraph(P)
4: if GFitness(n1) is better than GFitness(n2) then
5: IncreaseNode(n1)
6: DecreaseNode(n2)
7: else GFitness(n2) is better than GFitness(n1)
8: IncreaseNode(n2)
9: DecreaseNode(n1)

10: end if
11: end for

B. Fitness Function as Optimization Target

Although a fitness function is not directly related to the
model of imaginary slime molds, a fitness function as the
optimization target is explained here because the a fitness
value used by behavior rules of imaginary slime molds is
given by this fitness function. The fitness function gives a
fitness value to each node of a graph placed in the two
dimensional Euclidian space, and is a real valued function
on that space, F (x, y). When the coordinate of a node in the
space is (x∗, y∗), the fitness value of the node is F (x∗, y∗).
Larger fitness values are better.

Specifically, the fitness function is represented by Equa-
tion (1). The function is a superposition of Nf Gaussian

Algorithm 4 Behaviors of imaginary slime molds.
Require: P : population of imaginary slime molds, MaxGEN: maximum generations
Ensure: P : population
1: P ← Initialization()
2: for generation = 1 to MaxGEN do
3: P ← FitnessAssignment(P)
4: P ←Movement(P)
5: P ← Reformation(P)
6: P ← NodeIncreaseDecrease(P)
7: end for

functions. The value of Nf is fixed, and the values of
Ai, µxi, µyi, σxi, andσyi (i = 1, 2, . . . , Nf) are the optimiza-
tion targets. However, if there are other ND nodes within a
small distance of Dth from a node of focus no matter which
graphs the ND nodes are included in, the fitness value of the
node of focus is obtained by dividing the value of Equation
(1) by ND. This mechanism reduces fitness values of nodes
which are close to each other and makes the nodes easier
to be deleted, so that congestion of nodes is expected to be
avoided. A fitness value of node is calculated by the function
of Fitness() in Algorithms 1 and 2.

F (x, y) =

Nf∑
i=1

Ai exp

(
− (x− µxi)

2 + (y − µyi)
2

σ2
xi + σ2

yi

)
(1)

Meanwhile, a fitness value of graph itself is given as the
average fitness values over all nodes’. A fitness value of graph
is calculated by GFitness() in Algorithm 3.

C. Algorithm for Behaviors of Imaginary Slime Molds

The algorithm for behaviors of imaginary slime molds is
shown in Algorithm 4. This algorithm consists of initialization
of imaginary slime molds (Initialization), fitness calculation
for imaginary slime molds mentioned above (FitnessAssign-
ment in Section IV-B), movement of imaginary slime molds
(Movement in Algorithm 1), graph topology modification
(Reformation in Algorithm 2), and increase or decrease of
nodes in graphs (NodeIncreaseDecrease in Algorithm 3).

In the first line of Algorithm 4, a population of imaginary
slime molds, P , are initialized. The population size is S. All
imaginary slime molds represented by graphs have the same
number of nodes, Nsm, initially, and all nodes of each imagi-
nary slime mold are randomly placed in the two dimensional
Euclidian space. The number of nodes can increase or decrease
during the algorithm run. The number of directed edges that
every node makes is E and this is not changed during the
algorithm run. The procedures after that are as mentioned
above. This algorithm is executed until MaxGEN generation
in the second line. One generation is equal to one execution
of the fitness calculation, the movement, the graph topology
modification, and the node increase or decrease.

V. SIMULATIONS OF BEHAVIORS OF IMAGINARY SLIME
MOLDS

A. Purpose

The framework of systems proposed in Section III uses
an optimization method using a human as an evaluation

1198

mechanism such as interactive evolutionary computation to
produce intelligent behaviors of imaginary creatures. A human
as the evaluation mechanism is assumed to watch an anima-
tion of behaviors of imaginary slime molds and give higher
fitness values to behaviors to which the human feels more
intelligence.

However, in the paper, as basic validation of the proposed
framework, we just confirm if desired behaviors of imaginary
creatures are obtained through optimization of a fitness func-
tion that provides fitness values for the rules of behaviors. For
this purpose, we use not a human but a computer program as
an evaluation mechanism for behaviors of imaginary creatures.
The computer program extracts features from distributions of
a population of imaginary slime molds (graphs) in the two
dimensional Euclidean space and uses them as the evaluation
values.

B. Configurations

The evaluation mechanisms for behaviors of imaginary
slime molds are described in the following section. Here the
other configurations, that is, the parameter values of the algo-
rithm for behaviors of imaginary slime molds, the parameter
ranges of the fitness function, the settings of the optimization
algorithm used for optimizing the fitness function. A genetic
algorithm is used as this optimization algorithm.

First, the parameter values of the algorithm for behaviors
of imaginary slime molds are shown in Table I. Here the
ranges of the two dimensional Euclidean search space in which
imaginary slime molds can exist are −100 ≦ x ≦ 100 and
−100 ≦ y ≦ 100.

TABLE I
PARAMETER VALUES OF THE ALGORITHM.

Parameter Brief explanation Value
S population size 4

Nsm initial # of nodes 30
Nmax max # of nodes 45
Nmin min # of nodes 15
E # of edges 2
Ae # of overlapped edges 1
α expansion rate of edge 0.2

HM # of hops for movement 2
C max edge modification cycle 10
T time duration for edge modification 20
HL # of hops for edge modification 2
Dth crowded distance 10
ND size of crowded individuals 1

MaxGEN max generations 10

Also, the parameter ranges of the fitness function are as
follows. The number of Gaussian functions, Nf , is 20, which
is fixed. Ai, µxi, µyi, σxi, and σyi are all in [−100, 100],
which are the parameters of Gaussian function.

The genetic algorithm (GA) used for optimizing the fitness
function takes real-valued representation of solutions, uses
Minimal Generation Gap (MGG) [9] as a generation gap
model, uses BLX-α (α=0.36) [10] as a crossover operator, and
uses uniform random number based mutation as a mutation
operator. The crossover and the mutation rates are 1.0 and
0.1, respectively. The population size of the GA is 200 and

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Fig. 4. Initial distribution of imaginary slime molds for every GA individual
in every simulation scenario.

the stop condition of algorithm run is to reach 2×104 function
evaluations.

C. Simulation Scenarios

As mentioned above, the purpose of the evaluations here
is to confirm that optimization of the fitness function using a
computer program as the evaluation mechanism for desired
behaviors of imaginary slime molds indeed yields desired
ones. However, the fitness function used here can be much
different from a human as a fitness function. Therefore, the
validation here can be positioned as the basic validation.

Two kinds of simulation scenarios are used, which have
different fitness functions. Considering an unit of movements,
topology modification, increase or decrease of nodes, and
fitness calculation to be a generation, a generation is iterated
MaxGEN times to produce behaviors of imaginary slime
molds. The two types of fitness functions use features obtained
from the final distribution of imaginary slime molds right
after the MaxGEN-th generation. The obtained feature is the
average distance between nodes in all imaginary slime molds.

Then, the first scenario is that the evaluation function for
imaginary slime molds considers larger average distances to
be better. The second scenario is that the evaluation function
considers smaller average distances to be better. For every
GA individual (every set of parameter values of the fitness
function) in every simulation scenario, the identical initial
distribution of imaginary slime molds is used. The distribution
is shown in Figure 4.

The expected behaviors of imaginary slime molds in the
two scenarios are as follows.

In the first scenario, it should occur that nodes are finally
located as much apart as possible in the two dimensional
square space to maximize the average distance between nodes.
Since the maximum distance direction in a square area is
diagonal direction, regions of good fitness values are expected
to be produced around both ends of two diagonal segments in
the square area, and as a result, nodes of four imaginary slime
molds are expected to be located around the ends of the two
diagonal segments.

In the second scenario, it should occur that nodes are finally
located as much close as possible in the two dimensional
square space to minimize the average distance between nodes.
Therefore, regions of good fitness values are expected to be
produced around one point in the square area, and as a result,

1199

-100
-50

 0
 50

 100
X

-100

-50

 0

 50

 100

Y

-400
-350
-300
-250
-200
-150
-100

-50

(a) Scenario 1: Best fitness
function.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

(b) Scenario 1: Final distribu-
tion.

-100
-50

 0
 50

 100
X

-100

-50

 0

 50

 100

Y

 100
 150
 200
 250
 300
 350
 400
 450
 500

(c) Scenario 2: Best fitness
function.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

(d) Scenario 2: Final distribu-
tion.

Fig. 5. Best fitness function obtained by one run of GA and final distribution
of imaginary slime molds under the use of the best fitness function.

nodes of four imaginary slime molds are expected to be located
around the point.

If behaviors of imaginary slime molds became as expected
above, although it is basic demonstration, we consider that our
desired behaviors could be obtained through the optimization
of the fitness function.

D. Results and Discussions

Figures 5 (a)(c) show the best fitness functions obtained
by one run of GA. Also, Figures 5 (b)(d) show the final
distributions of imaginary slime molds under the use of the
best fitness functions.

It can be observed from Figure 5(a) that the fitness function
in which good fitness regions exist around the four corners of
the square area and bad region exits around the center was
obtained for the scenario 1. In addition, it can be observed
from Figure 5(b) that nodes of the four imaginary slime molds
were finally distributed around the four corners of good fitness
regions. Therefore, we can conclude that the result was as
expected.

It can be observed from Figure 5(b) that the fitness function
in which a good fitness region exits around the center of the
square area was obtained for the scenario 2. If the four imagi-
nary slime molds can gather around any one point, the average
distance between nodes can be smaller. However, the center
of the square area would be the smallest moving distance on
average over all nodes, so that around the center would become
a good fitness region. In addition, it can be observed from
Figure 5(d) that nodes of the four imaginary slime molds were
finally distributed around the center. Although the gathering
point was not able to be predicted, we can conclude that the
result was as expected in Section IV-C.

Thus, although it is basic demonstration, we conclude that
our desired behaviors could be obtained through the optimiza-
tion of the fitness function.

VI. CONCLUDING REMARKS AND FUTURE WORK

In the paper, we proposed the framework of systems for cre-
ating intelligent behaviors of imaginary creatures for humans,
and developed the concrete system within the framework, and
conducted the basic validation for the system. The proposed
framework regards swarm intelligent optimization algorithms
conceptually as a framework of systems that produce behaviors
of imaginary creatures under a given fitness function, and
added an optimization method using a human as an evalu-
ation mechanism to the framework of the swarm intelligent
optimization algorithms. The optimization method optimizes a
fitness function for imaginary creatures. In the basic validation,
we assumed and modeled imaginary slime molds as imaginary
creatures, and used not a human but a computer program as an
evaluation mechanism for behaviors of imaginary slime molds.
The results demonstrated that desired behaviors of imaginary
slime molds could be produced through optimization of the
fitness function.

In the future work, we will develop a web application for
creating intelligent behaviors of imaginary slime molds for
humans and observe and analyze what behaviors of imaginary
slime mold many humans feel intelligence to.

ACKNOWLEDGEMENT

This work is supported by the Japan Society for the Pro-
motion of Science through a Grant-in-Aid for Transformative
Research Areas (A) (Publicly Offered Research) (21A402).

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, 1995,
pp. 1942–1948.

[2] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization
by a colony of cooperating agents,” IEEE Trans. on System, Man, and
Cybernetics-Part B, vol. 26, no. 2, pp. 29–41, 1996.

[3] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” in Technical Report-TR06, 2006, pp. 1–10.

[4] J. S. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik, “Evolution
gym: A large-scale benchmark for evolving soft robots,” 2022.

[5] T. Krink and F. Vollrath, “Analysing spider web-building behaviour with
rule-based simulations and genetic algorithms,” Journal of Theoretical
Biology, vol. 185, no. 3, pp. 321–331, 1997.

[6] J. Romero and P. Machado, Eds., The Art of Artificial Evolution: A
Handbook on Evolutionary Art and Music, ser. Natural Computing
Series. Springer Berlin Heidelberg, November 2007.

[7] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid
organism,” Nature, vol. 407, no. 6803, p. 470, 2000.

[8] A. Tero, R. Kobayashi, and T. Nakagaki, “A mathematical model for
adaptive transport network in path finding by true slime mold,” Journal
of Theoretical Biology, vol. 244, no. 4, pp. 553–564, 2007.

[9] H. Satoh, M. Yamamura, and S. Kobayashi, “Minimal generation
gap model for GAs considering both exploration and expolation,” in
Proceedings of the International Conference on Fuzzy Systems, Neural
Networks and Soft Computing (Iizuka’96), 1996, pp. 494–497.

[10] L. J. Eshelman and J. D. Schaffer, “Real coded genetic algorithms and
interval-schemata,” in Foundations of Genetic Algorithms 2. Morgan
Kaufmann, 1993, pp. 187–202.

1200

