
Facilitating Investment Strategy Negotiations
through Logic

1st Benjamin Callewaert
KU Leuven, De Nayer Campus, Belgium,
Leuven.AI, Dept. of Computer Science,

Flanders Make – DTAI-FET
benjamin.callewaert@kuleuven.be

4rd Nuno Comenda
Intelli-Select

Belgium
nuno.comenda@intelli-select.com

2nd Nicholas Decleyre
Intelli-Select

Belgium
nicholas.decleyre@intelli-select.com

5th Bart Coppens
Intelli-Select

Belgium
bart.jan.coppens@intelli-select.com

3rd Simon Vandevelde
KU Leuven, De Nayer Campus, Belgium,
Leuven.AI, Dept. of Computer Science,

Flanders Make – DTAI-FET
s.vandevelde@kuleuven.be

6th Joost Vennekens
KU Leuven, De Nayer Campus, Belgium,
Leuven.AI, Dept. of Computer Science,

Flanders Make – DTAI-FET
joost.vennekens@kuleuven.be

Abstract—In the process of negotiating investment strategies
between a fund and investors, establishing trust, transparency,
traceability, and correctness among the involved parties is crucial
to ensure smooth and successful outcomes. The adoption of logic-
based AI, with its reliability, consistency, and explainability, can
serve as a crucial catalyst to assist parties during negotiations by
providing useful insights and explainable suggestions. This paper
showcases how various Knowledge Representation and Reasoning
(KRR) techniques can be leveraged to assist financial parties
during investment negotiations. It demonstrates the use of logical
definitions to represent complex financial investment strategies,
allowing parties to gain a comprehensive understanding of the
policies under discussion. Furthermore, automated reasoning
is used to generate useful insights and actionable information
enabling informed decision-making and enhancing the overall
negotiation process.

Index Terms—Fintech, Symbolic AI, KRR

I. INTRODUCTION

The models learned by data-based AI are often unintelligible
to humans. This poses a barrier to explainability and trans-
parency, which may hinder the adoption and implementation
of these models, particularly in highly regulated and risk-
averse industries like Finance. Explainable Artificial Intel-
ligence (XAI) methods aim to overcome these hurdles by
providing explanations that render the inner workings of AI
models interpretable and comprehensible.

Symbolic AI is a sub-field of AI that is explainable by
design since it focuses on the high-level symbolic, human-
readable representation of problems, logic, and search. The
use of symbolic AI and automated reasoning techniques has
proven throughout the years to be a great facilitator of trans-
parency and trust in several domains including finance [7], [8],
[12].

In this paper, we examine the use of logic for the financial
activity of negotiating the investment strategy between a fund
and an investor, a complex and time-consuming endeavor.
Often, the fund and the investors adhere to different investment

strategies, requiring them to engage in a series of negotiations
to establish a mutually acceptable approach. These discussions
involve careful consideration and analysis of each party’s
investment policies and objectives. In order to align their
interests and reach a consensus, both the fund manager and the
investors may need to make certain concessions by relaxing
some of their respective policies. Once agreed upon, the fund
receives a discretionary mandate to invest according to the
negotiated policies. This mandate empowers the fund to make
investment decisions, leveraging its expertise and insights to
optimize returns while adhering to the negotiated strategy.
Establishing trust, transparency, traceability, and correctness
among the involved parties is crucial to ensure smooth and
successful outcomes. To achieve this, symbolic AI, due to its
above-mentioned characteristics, can serve as the catalyst to
assist parties during negotiations by proving useful insights
and actionable suggestions.

In this paper, we showcase how several Knowledge Repre-
sentation and Reasoning (KRR) techniques can be leveraged to
assist financial parties during negotiations about their invest-
ment strategies. We start by establishing the KRR systems and
techniques used in this paper in Section II. Next, we showcase
how financial investment strategies can be represented in an
intuitive and understandable way using logical definitions in
Section III. In Section IV, we demonstrate how automated
reasoning techniques can be used to derive useful insights
and suggestions for the parties during negotiations. Finally,
we highlight potential areas for future research and conclude
in Section V.

II. FO(.) & IDP

The IDP system [4] is a reasoning engine for FO(·), a
rich extension of First-Order Logic (FOL). It implements the
philosophy of the Knowledge Base Paradigm [5]: knowledge is
represented in a purely declarative manner, independent from
how it is used. This is done by storing the knowledge in a

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 103

Knowledge Base (KB), to which then various inference tasks
can be applied to put it to practical use. This approach has two
main advantages. Firstly, declaratively representing the knowl-
edge is often easier than developing algorithmic solutions to
specific tasks. Secondly, the split between knowledge and its
application facilitates the re-use of the knowledge for multiple
purposes. In this way, different problems in the same domain
can typically be solved using the same KB with different
inference tasks.

FO(·) extends FOL with types, aggregates, (inductive) def-
initions, arithmetic, partial functions, and intensional objects.
In this way, FO(·) is an expressive and versatile representa-
tion language, well-suited for modeling problems from many
domains.

Definitions are a very useful form of knowledge: they
specify a unique interpretation of a defined symbol, given
an interpretation of its parameters. Definitions are often for-
mulated in natural language as a set of “rules” specifying
necessary and sufficient conditions for the defined concept to
hold.

The KB itself consists of three types of blocks: vocabular-
ies, structures and theories, each representing the correspond-
ing concept from classical logic.

A vocabulary specifies a set of type, predicate, or function
symbols. A type is a domain of values, such as a list of
strings or the domain of real numbers R. A predicate symbol
expresses a relation on zero or more types. A proposition is a
0-ary predicate. Lastly, a function symbol expresses a function
from the Cartesian product of a number of types T1×· · ·×Tn

to a type Tn+1. A function is also called a constant if it is
0-ary, i.e., has no input arguments.

A structure provides an interpretation for the symbols in its
vocabulary. If it provides an interpretation for each symbol in
the vocabulary, it is called a full interpretation. Otherwise, it
is called a partial interpretation.

A theory contains a set of logical formulas, written in FO(·).
By itself, the KB is not executable: it merely represents the

knowledge of a domain. To put this knowledge to use, the
IDP system offers multiple inference tasks, like propagation
and model expansion.

We will briefly go over those tasks relevant to this work.
Model expansion will, given a partial interpretation I for the
vocabulary of a theory T , expand this interpretation to a full
interpretation I that satisfies the theory (I |= T). In order to
find a model expansion with the lowest/highest value for a
specific term, the optimization inference is used. Propagation
derives the consequences of a partial interpretation I given a
theory and its vocabulary. This results in a set of facts that
hold in all model expansions of I. Given a theory T and
partial interpretation I, the abstract model generation (AMG)
inference searches for a set C of simple constraints that imply
the theory, i.e., such that for all I that extend I, I |= C → T .
Lastly, the explanation inference is used to find a minimal
explanation for why a structure I does not satisfy the theory
T (I ̸|= T). Here, this explanation is a minimal subset of
symbol assignments that cause unsatisfiability.

In the past, the IDP system has already proven itself as a
suitable tool for several applications [1], [2], [9], [10], [11]. Its
approach works well to tackle complex configuration problems
in an interactive way. Such applications can be found in many
domains, such as manufacturing, finance, and logistics. The
latest version of the IDP system, and the one used in this
work, is IDP-Z3 [3].

III. INVESTMENT STRATEGY DESCRIPTION

Usually, during investment negotiations, involved parties
do not consider specific financial assets. Instead, they talk
about groups of assets that adhere to several complex criteria.
These criteria are captured in an investment strategy, which
can be seen as a list of rules the assets need to comply
with. Traditionally, financial experts are responsible for for-
malizing these strategies by translating various requirements
into lengthy, hard-to-understand programs that contain a lot
of enumerations, repetitions, complex nesting of conditional
clauses, and exceptions that need to be followed in the right
order. This approach lacks transparency, which is troublesome
because a full understanding of the discussed strategies is
crucial to achieving favorable results during negotiations.

Therefore, we propose to represent an investment strategy
through logical definitions in FO(·). By establishing a common
strategy description method, we allow parties to get a full
understanding of each other’s policies and allow for automated
analysis of the strategies.

To represent investment strategies in IDP, we need a way to
describe their base elements: financial assets. We do this by
creating an IDP vocabulary with a general type Asset, which
enumerates the identifiers of the possible assets, and the types
(or domains) of each of the possible asset attributes, such as
security type, country, ... Additionally, a function is added for
each attribute, which maps each identifier to its corresponding
attribute value. To logically represent a financial asset, it now
suffices to assign a value to each of the functions. A simplified
example of such a vocabulary is given in Listing 1.

vocabulary V {
type Asset := {asset 0001, asset 0002, asset 0003}
type Security Type := {bond, equity, fund}
type Country := {belgium, france, luxembourg}
type Rating := {aaa, aa, a, bbb, bb, b}
type Industry := {automotive, banking, chemicals}
type Currency := {eur, usd, gbp, jpy}
asset security type: Asset→ Security Type
asset country: Asset→ Country
asset rating: Asset→ Rating
asset industry: Asset→ Industry
asset currency: Asset→ Currency
}

Listing 1: IDP vocabulary - financial assets

This representation of individual assets does not yet allow us
to describe investment strategies. Indeed, a strategy could be

104

seen as a specific subset of the asset space, more specifically
those assets that a party might want to invest in. In logical
terms, each strategy corresponds to the definition of a class of
acceptable assets. If we introduce a predicate Class(Asset)
to denote that Asset is a member of the Class, we can
include a definition of this predicate into our theory and
use this to check whether an asset is part of the investment
strategy or not (binary classification). Since different parties
have different strategies, we can also include multiple classes
Class1, Class2, . . ., each with its own definition, as shown in
Listing 2.

 ∀a in Asset : Class1(a)← ϕ1.
∀a in Asset : Class2(a)← ϕ2 ∧ ¬Class1(a).
∀a in Asset : Class3(a)← ϕ3 ∨ Class1(a).

Listing 2: Generalized example definition rules

In the definitions of Listing 2, ϕ1, ϕ2 and ϕ3 represent
combinations of the asset attributes, using the logical operators
∧ (and),∨ (or) and ¬ (not). In addition to attributes, it is
possible to use class predicates in the bodies of other definition
rules, as can be seen in the second and third rules. An
important scenario to take into account is when an asset does
not belong to any of the classes. To capture those assets, we
can add a “default”-definition that applies when none of the
other definitions do or collect them with a dedicated post-
processing step.

In the following sections, the “strategy membership” classi-
fication will be used to describe investment strategies. In this
setting, we define whether a financial asset is a member of
a strategy. To define this, we introduce a predicate Member
and a predicate NotMember. In this way, the investor or fund
gains the ability to explicitly determine whether an asset
definitely falls within its strategy or definitively does not.
To keep these subsets disjoint, not being a member of the
strategy takes priority over being a member, as can be seen in
the definition of Listing 3. Note that this setting implies that
some assets are not classified as either part or not part of the
strategy. By employing this approach, clients can express their
strategy in a more intuitive manner by specifying the assets
they would definitely invest in and those they would definitely
avoid. The assets that are not classified can then serve as a
means to suggest potential relaxations to the strategies during
negotiations.

 ∀a in Asset : Member(a)← ϕ1 ∧ ¬NotMember(a).
∀a in Asset : Member(a)← ϕ2 ∧ ¬NotMember(a).
∀a in Asset : NotMember(a)← ϕ3.

Listing 3: Generalized example strategy membership use case

To assist parties in creating these strategy definitions and to
overcome the syntactic hurdle of FO(·), a Natural Language
interface was implemented in earlier work [6]. This interface

allows parties to define their investment strategy by means
of controlled natural language (CNL), employing a step-by-
step selection of building blocks for sentence construction.
The resulting structured sentence is automatically translated
into FO(·). The interface also integrates a deep learning NLP
module that handles free-form English, suggesting three likely
CNL statements for the user to choose and adjust if necessary.

To showcase how our approach can facilitate negotiations,
we will employ a running example involving an investor and
a fund with different investment strategies. Suppose the fund
adopts the following investment strategy:

”Our fund focuses on investments in bonds with a
top-tier AAA rating. Our fund also invests in equity
in the banking sector. Notably, our fund does not
invest in assets denominated in either the euro or
the British pound.”

And the investor pursues the following strategy:
”We invest in bonds with a rating of AAA or AA.
We also invest in equity denominated in dollars. Im-
portantly, our investment approach excludes assets
originating from Belgium or France.”

These strategies can then be translated using the NL interface
into the FO(·), as shown in Listing 4 and Listing 5, respec-
tively.

∀a in Asset : Member(a)← Type(a) = bond ∧
Rating(a) = aaa ∧ NotMember(a).

∀a in Asset : Member(a)← Type(a) = equity ∧
Industry(a) = banking ∧
¬NotMember(a).

∀a in Asset : NotMember(a)←
Currency(a) in {eur, gbp}.

Listing 4: Strategy of fund in FO(·) (Strategy1)

∀a in Asset : Member(a)← Type(a) = bond ∧
Rating(a) in {aaa, aa} ∧
¬NotMember(a).

∀a in Asset : Member(a)← Type(a) = equity ∧
Currency(a) = usd ∧ ¬NotMember(a).

∀a in Asset : Member(a)← Type(a) = fund ∧
¬NotMember(a).

∀a in Asset : NotMember(a)← Country(a)
in {belgium, france}.

Listing 5: Strategy of investor in FO(·) (Strategy2)

IV. GENERATING INSIGHTS

With logical representations of both financial assets and
strategies in place, these can now be used to generate practical
insights. In this work, we consider three types of insights: strat-
egy membership validation, strategy gap analysis, and strategy
alignment suggestions. For the first insight, the system checks
if a financial asset falls under a given strategy. The second

105

insight focuses on comparing two strategies and identifying
logical gaps between them. Finally, in the third insight type,
the system proposes which policies each party could relax in
order to align the strategies more closely.

While it is possible to use more complex logical combina-
tions in the FO(·) representation of a strategy, for the current
use case, it is assumed that the bodies of the definition rules
are conjunctions of (negated) predicates.

Note that, it is possible to convert any formula in first-order
logic to Disjunctive Normal Form (DNF). Since every rule
with a disjunction as a body can be written as individual rules,
you can thus convert every rule to a set of rules with only
conjunctions in the body. Therefore it is always possible to
achieve the required disjunct definition form.

{∀a in Asset : Class(a)← ϕ1 ∨ ϕ2 ∨ ϕ3.}
↕ ∀a in Asset : Class(a)← ϕ1.

∀a in Asset : Class(a)← ϕ2.
∀a in Asset : Class(a)← ϕ3.

Listing 6: DNF to separate rules

A. Strategy membership validation
If the fund or investor already possesses financial assets,

one may want to identify which of these assets align with
the strategy of the other. This can be done by constructing a
structure for the vocabulary shown in Listing 1, that represents
the given set of assets. If we then run the model propagation
inference task, the system derives all those facts that are
certainly true or certainly false for these assets. The result
shows whether the asset is definitely a member of the defined
strategy or not.

In the strategy of the fund described in section III, AAA
bonds and equities active in banking are part of the strategy,
as long as their currency is not euro or pound sterling. If the
asset is not identified as either a member or not a member,
then its status is set to “unknown” in a post-processing step.

After classifying the asset as (not) being a member of
the strategy, the next step is to find out why this is the
case, i.e. what attribute combinations make the Member- or
NotMember-predicate true. This can be done in a straight-
forward manner by replacing the “general” class predicates
in the definition with rule-specific ones and introducing an
auxiliary rule combining the rule-specific predicates to define
the general Member and NotMember class. Listing 7 shows
this for the fund’s strategy description in Listing 4.

When the model propagation inference task is executed
using this augmented theory, the system will still specify if
the asset is a member of the defined strategy. In addition, it
will show which rule-specific predicates are also certainly true
and thus which rule and combination(s) of attributes made the
asset (not) a part of the overall strategy

Fig. 1 shows an example of how the system gives feedback
about the asset membership to the user. Membership itself is

∀a in Asset : Memberrule1(a)← Type(a) = bond ∧
Rating(a) = aaa ∧ ¬NotMember(a).

∀a in Asset : Memberrule2(a)← Type(a) = equity ∧
Industry(a) = banking ∧
¬NotMember(a).

∀a in Asset : NotMemberrule3(a)←
Currency(a)in {eur, gbp}.

∀a in Asset : Member(a)← Memberrule1(a) ∨
Memberrule2(a).

∀a in Asset : NotMember(a)← NotMemberrule3(a).

Listing 7: Strategy membership validation - Explanations

Fig. 1: Feedback to the user

indicated by a green tick or a red cross and an explanation is
provided for why the asset is (not) a member of the strategy.

B. Strategy comparison

To gain a deeper insight into the other party’s strategy,
it can be helpful to compare it with your own strategy. By
highlighting where the strategies differ or overlap, parties can
improve their decision-making during the negotiation process.
In section III, we stated that the body of a definition rule is a
logical combination of asset attributes and class predicates.
When the body of the definition is limited exclusively to
class predicates, it is possible to define classes of assets
that represent the outcomes of logical set operations. Some
simple examples are shown below in Listing 8 and visually
represented in Fig. 2.

∀a in Asset : Intersection12(a)← Class1(a) ∧
Class2(a).

∀a in Asset : Union12(a)← Class1(a) ∨ Class2(a).
∀a in Asset : Difference1−2(a)← Class1(a) ∧

¬Class2(a).
∀a in Asset : Difference2−1(a)← Class2(a)∧

¬Class1(a).

Listing 8: Example of combined definitions

By applying these different set operations to the strategy
definitions of the investors and the fund, we can logically
compare their strategies and provide useful insights. In this
work, the focus lies on finding the differences and common-
alities between strategies. Therefore only the difference and
intersection operations are considered. The definition rules
defining the resulting classes are respectively called difference
rules and overlap rules.

106

Fig. 2: Visualization of set operations on two strategies

To describe these newly defined classes in terms of asset
attributes instead of terms of other classes, an algorithm that
makes use of IDP’s abstract model generation inference task
was developed. The algorithm produces a collection of disjoint
definition rules, which serve as an abstract representation
encompassing all assets that are a member of the newly defined
class. This approach is especially interesting when we compare
corresponding classes from different strategies. In practice, this
means that we will look at what assets are a member of both
strategies (overlap) or a member of only one strategy, but not
of the other (difference). To illustrate this, Listing 10 shows the
result of finding the difference between the fund’s Strategy1

and the investor’s Strategy2. Note that the Member-predicates
get an index corresponding to the strategy they originate from.

{
∀a in Asset : Difference2−1(a)← Member2(a)∧

¬Member1(a)

}
↕

∀a in Asset : Difference2−1(a)← Type(a) = bond ∧
Rating(a) = aa ∧
Country(a) not in {belgium, france}∧
Currency(a) not in {eur, gbp}.

∀a in Asset : Difference2−1(a)← Type(a) = equity ∧
Industry(a) ̸= banking ∧
Currency(a) = usd ∧
Country(a) not in {belgium, france}.

∀a in Asset : Difference2−1(a)← Type(a) = fund ∧
Country(a) not in {belgium, france}∧
Currency(a) not in {eur, gbp}.

Listing 10: Difference between 2 strategies

More concretely, finding the differences or overlaps between
two classes comes down to comparing their definition rules
in a pair-wise manner. Sometimes, although there exists an
overlap between two rules, it might be preferred not to take it
into account. This is usually driven by contextual knowledge

∀a in Asset : Member1(a)← Type(a) = fund ∧
RuleGroup(a) = group1 ∧
¬NotMember1(a).

∀a in Asset : Member2(a)← Industry(a) =
banking ∧ RuleGroup(a) =
group2 ∧ ¬NotMember2(a).

Listing 11: Artificial removal overlap

of the use case or user preferences. For example, since funds
do not have a designated industry, rules talking about funds
should not be compared to those specifying an industry. To
accomplish this, different rules are grouped in such a way
that they are only compared to rules within their own group.
This can be done by adding an artificial attribute to the
rule, specifying the group it belongs to. If the value of this
attribute is different for two rules, any existing overlap is
nullified. Listing 11 shows such a case, where there would
be overlap between both strategies if the RuleGroup-attribute
would not be present. Using these newly defined classes and
their definitions, one can reason about assets being part of the
fund strategy, the investor strategy, or any logical combination
of them. We could for example extend our first insight type to
check whether a given asset is part of the difference between
the two strategies.

C. Strategy alignment suggestions

Aligning the different investment strategies of the investor
and the fund can be a complex and time-consuming process.
In order to reach a common investment strategy, both the
fund manager and the investors may need to make certain
concessions by relaxing some of their respective policies. Once
the differences between the two strategies have been identified,
we can propose several logical relaxations that can be made
to their respective strategy to align them more closely. Five
different relaxations are considered to assist the parties during
negotiations:

1) Adding a value to a specified attribute in a Member-rule
2) Removing an attribute from a Member-rule
3) Adding a difference rule as a Member-rule
4) Removing a value from a specified attribute in a Not-

Member-rule
5) Removing a NotMember-rule that (partly) overlaps with

a difference rule
In the following explanation, we propose how the fund’s

Strategy1 (Listing 4) can be relaxed to reduce the assets that
are a member of the investor’s Strategy2 (Listing 5) but not
of Strategy1. These relaxations are based on the result of the
corresponding set operation: Difference2−1 (Listing 10).

The first three relaxations try to extend the Member
definition of Strategy1. The first relaxation is the result of
an additional comparison between the Difference2−1 and
Strategy1. By identifying the differing values for the same
attribute, one could add those values to the specified attribute
to relax Strategy2. In this case, we suggest that the fund relaxes

107

the first definition rule of their Strategy1 by also allowing
bonds with rating aa.

Next, the second relaxation is a generalization of the first
one. Indeed, removing an attribute altogether logically comes
down to accepting all values of the domain of that attribute.
In this scenario, our proposal suggests removing the Rating
attribute from the first rule of the definition.

As a third option, one can consider adding one or multiple
difference rules directly to the definition of Strategy2. This
is the most straightforward way of covering more assets by
adding those that are not covered. We could thus propose to
add the first difference rule to Strategy1.

In addition to extending the definition of Member, we
can also narrow the definition of Strategy1’s NotMember
to relax policies. To accomplish this, we propose to remove
certain values from the attribute assignments in the rules of
the NotMember definition. In our example, we propose to
remove eur or gbp from the assignment of attribute Currency
in the NotMember definition.

Finally, we could also do an “overlap”-comparison be-
tween each of the NotMember-rules of Strategy1 and
Difference2−1 and find out which rules overlap with the
difference between Strategy2 and Strategy1. We can then pro-
pose to revise or remove these rules altogether. Our proposal in
this situation is to eliminate the NotMember definition rule
from the strategy. Note that we do not propose to introduce
new attributes in the body of any NotMember definition rule
to narrow the definition since this does not make any sense.

Using these useful insights and logical relaxations, parties
can greatly reduce the time needed to achieve a consensus on
the investment strategy.

V. CONCLUSION & FUTURE WORK

In conclusion, this paper demonstrates the potential of lever-
aging logical AI techniques to facilitate investment strategy
negotiations in the financial domain. By using logical defini-
tions in FO(·), the paper showcases how investment strategies
can be represented in an intuitive and understandable manner.
By establishing a common strategy description method, parties
get a better understanding of each other investment policies.
The application of automated reasoning techniques enables the
derivation of valuable insights and actionable suggestions for
the parties involved in negotiations. The three types of insights
presented, including strategy membership validation, strategy
comparison, and strategy alignment suggestions, contribute to
establishing trust, transparency, and correctness among the
parties.

For future research, we will explore different ways to trans-
late other investment strategy description methods into our
proposed form. Furthermore, by incorporating user preferences
into the approach, it becomes possible to prioritize specific
investments within the strategy, thus introducing a mechanism
for assigning greater importance to certain assets over others.
Furthermore, scoring the alignment of two strategies would
enable investors to search for funds with the most compatible

investment strategies. These potential areas of future investiga-
tion aim to further enhance the overall success of negotiating
investment strategies.

Ultimately the utilization of automated reasoning and
knowledge representation and reasoning (KRR) techniques in
facilitating investment strategy negotiations presents a promis-
ing avenue for further exploration. This approach has the
potential to be extended to various other applications within
the financial domain, including financial planning for private
and wealth management, debt restructuring, valuations, and,
to a certain extent, quantitative trading strategies.

VI. ACKNOWLEDGMENT

This research received funding from the Flemish Gov-
ernment, through Flanders Innovation & Entrepreneurship
(VLAIO, project HBC.2022.0477).

REFERENCES

[1] B. Aerts, M. Deryck, and J. Vennekens, “Knowledge-based decision
support for machine component design: A case study,” Expert Systems
with Applications, vol. 187, p. 115869, Jan. 2022.

[2] P. Carbonnelle, B. Bogaerts, J. Vennekens, and M. Denecker, “Interactive
Configuration Problems in Observable Environments,” p. 8, 2022.

[3] P. Carbonnelle, S. Vandevelde, J. Vennekens, and M. Denecker, “Inter-
active configurator with fo(.) and idp-z3,” 2023.

[4] B. De Cat, B. Bogaerts, M. Bruynooghe, G. Janssens, and M. Denecker,
“Predicate logic as a modeling language: the IDP system,” in Declarative
Logic Programming: Theory, Systems, and Applications, M. Kifer and
Y. A. Liu, Eds. ACM, Sep. 2018, pp. 279–323. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3191321

[5] M. Denecker and J. Vennekens, “Building a Knowledge Base System
for an Integration of Logic Programming and Classical Logic,” in Logic
Programming, M. Garcia de la Banda and E. Pontelli, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, vol. 5366, pp. 71–76,
series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-89982-2-12

[6] M. Deryck, N. Comenda, B. Coppens, and J. Vennekens, “Combining
logic and natural language processing to support investment manage-
ment,” in Proceedings of the international conference on principles of
knowledge representation and reasoning, vol. 18, 2021, pp. 666–670.

[7] P. E. Hart, A. Barzilay, and R. O. Duda, “Qualitative reasoning for
financial assessments: A prospectus,” AI magazine, vol. 7, no. 1, pp.
62–62, 1986.

[8] L. R. Talluru and V. Akgiray, “Knowledge representation for investment
strategy selection,” in [1988] Proceedings of the Twenty-First Annual
Hawaii International Conference on System Sciences. Volume III: Deci-
sion Support and Knowledge Based Systems Track, vol. 3. IEEE, 1988,
pp. 189–196.

[9] P. Van Hertum, I. Dasseville, G. Janssens, and M. Denecker, “The KB
paradigm and its application to interactive configuration,” Theory and
Practice of Logic Programming, vol. 17, no. 1, pp. 91–117, 2017.

[10] S. Vandevelde, B. Callewaert, and J. Vennekens, “Interactive feature
modeling with background knowledge for validation and configuration,”
in Proceedings of the 26th ACM International Systems and Software
Product Line Conference-Volume B, 2022, pp. 209–216.

[11] H. Vlaeminck, J. Vennekens, and M. Denecker, “A logical framework
for configuration software,” in Proceedings of the 11th ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming, ser. PPDP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 141–148. [Online]. Available:
https://doi.org/10.1145/1599410.1599428

[12] P. Weber, K. V. Carl, and O. Hinz, “Applications of explainable artificial
intelligence in finance—a systematic review of finance, information sys-
tems, and computer science literature,” Management Review Quarterly,
pp. 1–41, 2023.

108

