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Abstract—One-class classification refers to approaches of
learning using data from a single class only. In this paper,
we propose a deep learning one-class classification method
suitable for multimodal data, which relies on two convolutional
autoencoders jointly trained to reconstruct the positive input
data while obtaining the data representations in the latent space
as compact as possible. During inference, the distance of the
latent representation of an input to the origin can be used
as an anomaly score. Experimental results using a multimodal
macroinvertebrate image classification dataset show that the
proposed multimodal method yields better results as compared to
the unimodal approach. Furthermore, study the effect of different
input image sizes, and we investigate how recently proposed
feature diversity regularizers affect the performance of our
approach. We show that such regularizers improve performance.

Index Terms—Multimodal learning, one-class classification,
anomaly detection, computer vision

I. PROPOSED APPROACH

In this work, we consider the problem of one-class classi-
fication in the presence of multimodal data. We propose an
approach that requires multimodal data only from the positive
class in the training phase. Here, we describe the formulation
for two modalities, while extension to more modalities could
be easily obtained. During training, the main target of our
approach is to learn a compact mutual embedding of both
modalities. Let {(xi, x

′
i)}Ni=1 be the available training data

from the positive class, where xi and x′
i are the first and the

second modality of the ith sample, respectively. Our model
is composed of two autoencoders, one for each modality.
Let E1(xi) ∈ Rm1×p1×d1 be the convolutional output of the
encoder on the first modality xi and E2(x

′
i) ∈ Rm2×p2×d2 be

the encoder output of for the second modality. Based on these
two outputs, we construct the joint latent representation ϕi of
the sample (xi, x

′
i) as follows:

ϕi = ϕ(xi, x
′
i) = concat(Flat(E1(xi),Flat(E2(x

′
i))), (1)

where Flat(·) is the flattening operation, i.e, it flattens
E1(xi) ∈ Rm1×p1×d1 into a m1p1d1-dimensional vec-
tor. concat is the vector concatenation operation compiling
ϕ(xi, x

′
i) ∈ R(m1p1d1+m2p2d2) as the final representation of

the input.
Our main aim is to learn to map the input data from

the positive class into a compact space. This is an objective

commonly used by regression-based OCC models and it is
usually expressed by minimizing the distance of the latent
representations to a pre-defined point [3]–[5]. Using as the
target point the origin, the objective becomes to minimize their
L2-norm: 1

N

∑N
i=1 ||ϕi||2. By minimizing this loss, the model

learns to map the samples from the positive class into a hyper-
sphere centered at the origin. In the test phase, any sample that
falls close to the origin is assigned to the positive class, and
the rest are classified as anomalies.

Minimizing the aforementioned loss can lead to a degen-
erate solution, i.e., the model learns to map all inputs to
the origin and thus fails to distinguish between positive and
anomalous samples. To avoid obtaining such solutions, we
propose to augment our model using two decoders (one for
each modality), aiming to learn to reconstruct the inputs. The
outputs of the encoders E1(xi) and E2(x

′
i) are passed through

to the decoders D1 and D2. To incorporate the reconstruction
objective into the training, we propose to augment the loss in
(??) using the mean squared loss. The final loss used to train
the network can be expressed as follows:

L :=
1

N

N∑
i=1

(
||ϕi||2 + (||D1(E1(xi))− xi||2+

||D2(E2(x
′
i))− x′

i||2)
)
. (2)

The weights of E1 and E2 are shared as well as the weights
for D1 and D2, and they can be trained in an end-to-end
manner using gradient-based optimization by minimizing (2).
The first term of the loss forces the model to learn a compact
representation for both modalities of the same sample in the
bottleneck of the architecture, while the other terms regularize
the model to avoid degenerate and undesired solutions.

In the test phase, we discard the decoder part. Given a test
sample (y, y′), we compile its feature output ϕ, as expressed in
(1). The distance of the latent representation of the data point
from the origin can be used as an anomaly score. Based on
this distance, we can assign the sample to the corresponding
class (positive class or negative class). To this end, we need
to determine a threshold τ , which is used to define the hyper-
sphere enclosing the positive class. The value of τ can be
obtained using the training data. As all the training data is
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TABLE I
THE RECALL, THE PRECISION AT RANK N (P@N), AND THE AREA UNDER THE CURVE (ROC) OF THE THREE DIFFERENT MODELS TESTED ON THE FOUR

ONE-CLASS TASKS. WE ALSO REPORT THE AVERAGE PERFORMANCE OVER THE FOUR TASKS FOR EACH MODEL.

Normal Class unimodal (left) unimodal (right) ours (multimodal)
Recall P@n ROC Recall P@n ROC Recall P@n ROC

Leptophlebia sp. 0.963 0.921 0.806 0.888 0.897 0.535 0.938 0.921 0.742
Baetis rhodani 0.961 0.893 0.428 0.882 0.892 0.330 0.961 0.907 0.582

Elmis aenea larva 0.844 0.900 0.367 0.896 0.900 0.456 0.935 0.899 0.427
Oulimnius tuberculatus larva 0.896 0.897 0.444 0.909 0.919 0.646 0.896 0.897 0.560

Average 0.916 0.903 0.511 0.894 0.902 0.49 0.932 0.906 0.578

from the positive class, τ can be set to 95th percentile of the
feature norms of the training data {ϕi}Ni=1. Then, given the
test sample (y, y′), if ϕ(y, y′) ≤ τ , it is considered to be from
the target class. Otherwise, it is considered an anomaly.

It should also be noted that, although in this work, we
use shared weights for E1 and E2, it is possible to use
a different model for every modality. However, one-class
classification tasks usually have scarce data [1], [6]. Using
shared weights reduces the total number of parameters and
acts as a regularization, which makes our model suitable for
learning from a limited amount of data.

II. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
multimodal one-class classification method.

We used a subset of the multimodal image classification
dataset of benthic macroinvertebrates, FIN-Benthic [2]. In
particular, we used data from 4 classes. Each sample point
is presented with two RGB images (which act as the two
modalities) from two perpendicular viewpoints. Using this
dataset, we constructed four different one-class classification
tasks. In each task, data from a single class (out of the four) is
considered the normal class, and the remaining three classes
are combined to form the anomaly class. In each of the four
experiments, we used 66% of normal class data as training
data, and we held the rest along with the anomaly data (the
remaining three classes) as our test data. All the images were
resized to 32× 32 pixels.

Our implementation is based on [7]. To train our models,
we use Adam optimizer with a learning rate of 0.001 and
weight decay of 10−3. The training is conducted with 4
epochs and a batch size of 32. The input image size is
32 × 32 pixels. For the encoders E1 and E2, we used a
fully convolutional model which consists of three blocks of
convolution, batch normalization, maxpooling, and dropout
layers. All the convolution filters have a size of 3 × 3 and
were selected to be 64, 32, and 16 in the first, second, and
third layers, respectively. For the decoder part, i.e., D1 and
D2, we used the corresponding symmetric layers.

To test the hypothesis that multimodal learning helps in the
context of one-class classification, we also experimented with
the unimodal variant of the method, i.e., using only one branch
of the model and using images from one modality. This yields
two competing methods, namely unimodal (left) and unimodal
(right), for the left and right modalities, respectively.

In Table I, we report the results for the multimodal model
along with the two unimodal models on the four one-class
classification tasks. We also report the average results over
the four tasks. For each method, we report the Recall scores,
the Precision at rank n (P@n), and the Area Under the Curve
(ROC) [7].

As shown in Table I, multimodal learning, indeed, yields
better performance compared to both unimodal cases in all
three metrics. For instance, in the average performance, the
proposed multimodal model yields 0.067 and 0.088 improve-
ment in ROC compared to the unimodal models using the left
right images, respectively. We also note that on the four tasks,
the worst ROC achieved by unimodal (left) and unimodal
(right) models are 0.367 and 0.330, respectively, whereas for
the multimodal model, the lowest ROC corresponds to Elmis
aenea larva and is equal to 0.427.
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