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Abstract—This study develops a decision support system
for localized epidemiological modelling of infectious disease
spread. We propose a Bayesian network topology for perform-
ing inference supplementary to an epidemiological simulation
framework and a cohesive integration of this decision support
system with the framework. The Bayesian network topology
is structured with data defined as inputs, outputs, or derived
features within the simulation framework. All features are mo-
tivated by their clinical relevance and utility for administrative
policy guidance. Edges in the final network are quantitatively
assessed using structural equation modelling to ensure strong
causal connections. Various inference scenarios are demon-
strated to provide proof of concept for real-world application
and validation in future directions. The outcomes of this project
contribute to a larger body of work for infectious disease
risk mitigation and emergency management in generalized
environments.

Index Terms—Agent-based simulation, decision support, ma-
chine reasoning, risk, epidemiological model, COVID-19, causal
network, Bayesian network, structural equation model

I. INTRODUCTION

Infectious respiratory diseases, such as the SARS-CoV-
2 virus causing COVID-19, can spread rapidly, leading to
severe global outbreaks and millions of attributed deaths.
To combat such diseases, previous studies have shown the
efficacy of both non-pharmacological interventions (masking,
physical distancing, capacity reduction, sanitation) and phar-
macological interventions (vaccination) in mitigating spread
and associated public health risks [1].

In a previous study, a robust epidemiological simulation
framework which provides insights to facility administra-
tion and policy-makers was developed [2]. This simulation
framework uses agent-based modelling techniques in highly
localized environments such as long-term care facilities or
university campuses to deliver specialized insights in each
scenario. As illustrated in Figure 1, scenarios are broadly
configurable and designed with generalizability as a core
software engineering principle. This work expands on that
previous study to provide decision support capabilities to the
epidemiological simulation framework results.

Agent-based modelling techniques are broadly used and
highly effective in epidemiological contexts due to their
ability to explicitly model underlying mechanics of infectious
disease transmission [3]–[6]. Such techniques translate well
for modelling contact-driven and airborne disease spread,

such as COVID-19, as motivated in previous work [2]. Agent-
based techniques contrast against differential-equation-based
compartmental models or fractional mathematical models
used to represent broad populations [7]. Highly localized
modelling further benefits from an agent-based approach,
allowing for individual behaviour and interactions between
agents to reveal emergent properties in the system.

The study focuses on developing a decision support system
(DSS) that uses computational tools to aid human decision-
making by supplying pertinent information and contextual
analysis. The specific underlying model utilized for this work
is the Bayesian network (BN), chosen for its proficiency in
modelling various systems due to its probabilistic framework,
functionality with limited or missing data, and clear handling
of uncertainty [8]–[10]; through this model, the system is
able to estimate probabilities and associated risk of different
epidemiological outcomes.

This paper is structured as follows: the proposed method-
ology is described in Section II, experimental results, ob-
servations, and discussion are provided in Section III, and
Section IV summarizes our findings and future directions.

Fig. 1. Configurable parameters for the simulation in the published work [2].
Each labelled group of parameters is independently configurable; however,
certain parameters are closely related and influence each other (such as
temporal and agent information for scheduling).
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II. METHODOLOGY

This paper implements a novel approach for epidemiolog-
ical decision support in highly localized modelling contexts.
We extend a previously developed epidemiological simu-
lation framework by designing a causal network for risk
assessment on top of simulated results [2]. Decision support
capabilities are designed to provide facility administration
and policy-makers with the prospective insights required to
manage risk effectively in respective localized environments.
Simulation inputs and outputs are used along with derived
features to achieve this goal.

A. Summary of Previous Work

Full implementation methodology and open-source code
are available in the previous publication [2]. Specific details
are beneficial to the reader for contextualizing the work
proposed in this paper.

1) Agents and Agent Behaviour: The atomic unit of
information within the simulation is the agent. Agents rep-
resent individuals in a given environment and are assigned
behavioural patterns, schedules, demographic, and epidemi-
ological attributes. Figure 1 illustrates the components of
agent information contributing to their operation within the
simulation. Along with this data, agents also track their
epidemiological status for modelling disease spread as shown
in Figure 2. The current epidemiological status of an agent
influences their behaviour and susceptibility to infection.

Fig. 2. Possible epidemiological statuses for agents, as defined in the previ-
ously published work [2]. Solid arrows represent typical disease progression;
dotted arrows represent rare cases.

2) Infection Portrait: The infection portrait defines all
aspects of the infectious disease required for effective simula-
tion. This includes disease transmission mechanisms, popula-
tion infection statistics, airborne viral particle mechanics, and
disease progression. Disease lifecycle modelling and trans-
mission are based on the Susceptible-Infected-Recovered
(SIR) scheme defined in Equation (1) [11].
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Parameters S, I , and R denote the susceptible, infected,
and recovered populations. Parameter N represents the total
population count. Coefficients β and γ are epidemiological
parameters representing infection and recovery characteristics
with the ratio R0 = β/γ defining the basic reproduction
number. We extend this model to include an additional
“Quarantined” state where the agent is temporarily removed
from the model and a more general “Removed” state for
agents who do not interact epidemiologically. “Removed”
agents include recovered, hospitalized, and deceased agents.

Simulated disease progression is stochastic. State tran-
sitions are based on data observed in the literature and
modelled by sampling log-normal distributions, defined for
variable X in Equation (2) [4], [12]–[14].

X = eµ+σZ (2)

Parameter Z is a standard normal variable, and µ, σ are
the respective mean and standard deviation of the natural
logarithm of X instead of X itself. As a probability density
function, fX(x) is rewritten as

fX(x) =
1

xσ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
. (3)

State transitions are considered for asymptomatic cases,
long-COVID cases, severe cases and hospitalizations, case
fatalities, presymptomatic windows, and recovery windows.

B. Decision Support Features
The data for performing decision support in this study is

constrained to the data provided by the previously devel-
oped simulation framework [2]. This limitation results from
structuring our decision support system (DSS) to rely only
on simulation data without needing real-world observations
beyond configuring the simulation scenarios. Such a design
allows for greater generalizability in arbitrary downstream
applications and greatly simplified deployment. Furthermore,
epidemiologically relevant information can be introduced to
the simulation framework before use in decision support for
benefit across both systems.

Features available for decision support can be categorized
into three groups: simulation inputs, outputs, and derived
features. Simulation inputs include parameters described in
Figure 1, particularly elements of agent, disease, and policy
information. Simulation outputs include infection statistics,
hospitalizations, fatalities, and other reported epidemiological
outcomes. Prominent factors in the simulation for deter-
mining epidemiological outcomes are itemized in Table I.
Derived features are described in further detail.

1) Prevention Index: In previous work, the “Prevention
Index” was defined. This derived feature is a compound
measure quantifying how well an agent is protected against
infectious disease transmission. A value of 0.0 corresponds
to zero additional protection against infection, while a value
of 1.0 corresponds to complete immunity. Factors such
as agent masking habits, vaccination type, and vaccination
doses contribute to the prevention index. The efficacy of the
reported pharmacological and non-pharmacological interven-
tion is described in Table II [2]. In this work, we expand the
prevention index to include factors such as agent age, sex,
and immunocompromisation [14].

2) Excess Risk of Infection: In previous work, the excess
risk of infection was reported as a clinically relevant con-
textual reframing of the infection prevalence rate (IPR) for
decision support. This quantity allows for a more accurate
relative comparison of risk mitigation strategies simulated
by the framework. Such relative comparison is important for
decision support as it better isolates local policy effects from
population statistics.
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TABLE I
AVAILABLE SIMULATION FEATURES USED FOR DECISION SUPPORT. THE ALIAS COLUMN REPRESENTS FEATURE NAMES DEFINED IN PYTHON.

ALIASES MARKED AS - DENOTE LATENT VARIABLES.

Category Feature Alias Type Description

Inputs Immunocompromised immunocompromised Boolean Agent immunocompromisation status
Inputs Sex sex Categorical Agent sex
Inputs Age age Numeric Agent age
Inputs Organizational Role role Categorical Agent role within organization
Inputs Masking mask Categorical Masking policy enforcement
Inputs Vaccination vax Categorical Vaccination policy enforcement
Inputs Distancing distancing Numeric Distancing policy enforcement
Inputs Capacity capacity Numeric Capacity policy enforcement

Outputs Total Infections - Numeric Total infections at scenario end
Outputs Total Long-COVID cases - Numeric Total long-COVID cases at scenario end
Outputs Agent Long-COVID long_covid Boolean Agent experiencing long-covid case
Outputs Total Hospitalizations - Numeric Total hospitalizations at scenario end
Outputs Agent Hospitalized hospitalized Boolean Agent hospitalized during infection
Outputs Total Fatalities - Numeric Total fatalities at scenario end
Outputs Agent Deceased deceased Boolean Agent deceased during infection
Derived Prevention Index prevention_index Numeric Agent composite prevention index
Derived Excess Risk of Infection infected Boolean Agent risk of infection in excess of population IPR

TABLE II
PREVENTION INDEX VALUES FOR MASKING AND VACCINATION.

Mask Vaccine

- 1 Dose 2 Dose

Cloth Surgical N95 Any AstraZeneca Pfizer / Moderna
0.3 0.5 0.85 0.31 0.67 0.88

C. Generating Data

The dataset used for modelling is generated using the epi-
demiological simulation framework. The simulated scenarios
all use the research lab environment established for proof
of concept in the previous work [2]. Agent behaviour is
designed to replicate lab researchers’ schedules and patterns.
Scenarios were run for ∼210 hours of contact (5-second
simulated temporal resolution for 150,000 time-steps), or
equivalently 2.5 weeks simulating 12-hour days between
7am-7pm. Full environmental disinfection occurs after 7pm
each day while agents are absent from the environment.
These scenario run parameters reflect those in previous work
and are used as a basis for future comparison.

A total of 128 unique scenarios were simulated, represent-
ing a combinatorial product of the following parameters:

• Masking:
– No masking (“nomask”),
– Cloth masks (“cloth”),
– Surgical masks (“surgical”),
– N95 respirators (“n95”).

• Vaccination:
– No vaccination (“novax”),
– One dose any vaccine (“1dose”),
– Two doses Oxford AstraZeneca (“astra”),
– Two doses Pfizer / Moderna MRNA (“mrna”).

• Capacity Reduction: 2, 4, 6, and 8 agents
• Physical Distancing:

– Enforced distancing (“True”)

– No distancing (“False”)
The 128 unique scenarios were each simulated over an
ensemble of 2,500 runs to generate meaningful statistics,
resulting in 320,000 samples as input evidence for our BN
model.

1) Feature Pre-Processing: Data processing is a necessary
component of many modelling workflows. The nature of data
processing will change depending on the specific algorithm(s)
being used for modelling. This decision support application
implements a BN, which requires data to be discretized to
compute the underlying conditional probabilities effectively.
We apply dynamic discretization techniques to iteratively
optimize the discretized binning for each individual feature
based on the underlying distribution [15]. This approach has
been shown to produce data discretizations with significantly
reduced relative entropy error E (discrete analog to Kull-
back–Leibler divergence), defined in Equation (4) [16].

Ej =

[
fmax − f̄

fmax − fmin
fmin log

fmin

f̄

+
f̄ − fmin

fmax − fmin
fmax log

fmax

f̄

]
|wj |

(4)

Here |wj | denotes the length of the discretized interval j, and
fmin, fmax, f̄ denote the value of the underlying distribution
f(x) at the interval endpoints and midpoint, respectively.

D. Bayesian Network Modelling

An initial expert-knowledge-driven BN topology was de-
veloped based on fundamental epidemiology concepts and
the construction of the simulation framework. This initial
topology was then iteratively refined using quantitative val-
idation techniques. The final network topology is structured
to retain the known underlying flow of information in the
simulation, from inputs to derived features, and lastly to
outputs. The input nodes of Sex, Masking, Vaccination,
Age, and Immunocompromised are connected directly to the
Prevention Index. The Prevention index and input features of
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Organizational Role, Distancing, and Capacity are connected
to the Excess Risk of Infection. The Excess Risk of Infection
ultimately connects to the output features of Infections, Long-
COVID Cases, Hospitalizations, and Fatalities. This topology
is illustrated in Figure 3.

Various inference tasks can be performed using the final
BN with computed conditional probabilities. These inference
tasks represent the decision support capabilities of the model,
and they provide end-users with epidemiological insights to
guide policy choices.

Fig. 3. Bayesian network topology for providing decision support to the
epidemiological simulation framework. Blue nodes denote input features,
green nodes denote derived features, and orange nodes denote output
features.

E. Bayesian Network Topology Validation

Structural equation modelling (SEM) validates and mo-
tivates the network topology defined for decision support
[17]–[19]. Causal relationships in an underlying system are
modelled by relationships structured in a BN if and only
if the BN structure of the system is equivalent to a valid
SEM structure of the same underlying system [20]. SEM
broadly describes techniques and approaches for estimating
causal relationships between variables, combining elements
from regression, path analysis, and factor analysis [19].
SEM techniques can be used as a means to evaluate causal
relationships quantitatively. As with BNs, variables in SEM
can be either latent or explicit, providing greater flexibility
in modelling. Latent variables in SEM can be expressed as a
combination of one or more explicit variables. In conjunction
with our expert-knowledge-driven initial topology, the causal
connections are iteratively updated using SEM.

In the literature, SEM provides a robust framework for
quantifying and testing theoretical graphical models such
as BN topologies. More directly, causal relationships are
evaluated when observation data is available by comparing
the observed covariance matrix to the expected covariance

matrix from the hypothesized model. This null hypothesis
H0 is expressed mathematically by Equation (5) [18].

H0 : Σ = Σ(θ) (5)

Here Σ denotes the observed covariance matrix computed
from data, Σ(θ) represents the expected covariance matrix
from the hypothesized model, and θ is a vector containing
the model parameters. By comparing the covariance matrices
in Equation (5) and failing to reject the null hypothesis, the
observed data would support the theorized model and imply
causality in the structure. Accepting the null hypothesis is
the objective of applying SEM.

SEM mathematically operates by optimizing the model
parameters such that the null hypothesis can be accepted.
The model parameters are estimated using techniques such
as maximum likelihood or least squares to minimize the
error between the observed covariance matrix and the model-
estimated covariance matrix. The estimated parameters for
each edge in the SEM graph can be inspected along with
their corresponding p-value, representing the probability of
rejecting the null hypothesis [19].

III. RESULTS

Results from this study include the formulation and op-
timization of a novel BN topology for providing decision
support with epidemiological simulation outputs and the
quantitative assessment of causal connections within this
theorized model. We also demonstrate the utility of inference
with such a network and how decision support is achieved
in practical deployments.

A. Bayesian Network Inference

Figure 4 illustrates the final BN topology and calculated
conditional probabilities at each node in the graph. These
conditional probability tables (CPTs) include numeric vari-
ables age and prevention_index, which have been dy-
namically discretized for modelling. By construction, many
of the CPTs, such as mask, vax, and distancing, are
balanced as a result of simulation and scenario configuration.
The capacity and role CPTs are also distributed based
on the scenario configuration. CPTs including age, sex,
and immunocompromised are based on census data and
distributions described in the literature [14]. Before simu-
lating any scenarios, all CPTs corresponding to these input
features are known. CPTs for simulation outputs and derived
features cannot be calculated before running the simulations,
and thus are more variable in nature. Notably missing from
the network are the “total” variables (infections, long-covid
cases, hospitalizations, and fatalities), which we treat as latent
variables due to the formulation of our data as agent-based,
with each sample representing an individual.

From Figure 4, we can derive the excess risk of infection
by observing the proportion of agents infected during simu-
lation runtime. The overall probability of infection is 0.18%.
Compared to the simulated population infection prevalence
rate of 2.10%, the 0.18% probability of infection translates
into a relative excess infection risk of infection of 8.57%.
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When considering long-covid cases, we see that the overall
proportion of positive results is 0.40%, higher than the overall
probability of infection. This result is a consequence of the
infected field exclusively tracking new infections which
occur within the simulation runtime. Agents infected outside
the simulation can still experience long-covid, however, they
are intentionally omitted from the infected statistics. The
same outcomes are true for hospitalizations, at 0.30% positive
results, and fatalities, at 0.04% positive results. Each of these
results represents the average prevalence across 128 distinct
simulation scenarios, and while informative, these raw values
are less useful for decision support than BN inference with
provided evidence.

Fig. 4. Bayesian network conditional probability tables calculated from the
simulated scenario data. Observations for parameter learning are aggregated
from 320,000 scenario samples across 128 distinct scenario configurations.

Simulation outputs and derived features provide objectives
for decision support, such as minimizing the excess risk
of infection or minimizing hospitalizations and fatalities.
Operational considerations such as facility capacity can pro-
vide challenging and contradictory objectives for mitigating
epidemiological risk. These challenging objectives provide
great value to administrators and extend the potential utility
provided by the proposed DSS.

Performing BN inference by providing evidence allows
for more targeted insights and stronger decision support.
In this example, we provided evidence to the BN for
the following features: mask="nomask", vax="novax",
age="(24;38]", and capacity="8". The masking,
vaccination, and capacity evidence represent an epidemi-
ological worst-case scenario for infectious disease spread.
While maintaining the largest occupancy, no preventative
measures are enforced, resulting in a probability of infection
of 1.20%. This probability corresponds to a relative excess
risk of infection of 57.14%, dramatically higher than the
overall average. With the higher risk of infection, downstream
nodes such as long-covid cases, hospitalizations, and fatalities
also increase in prevalence to 0.56%, 0.38%, and 0.04%,

respectively. Facility administrators can directly apply this
information to determine an appropriate risk exposure and
compromise between policy enforcement and implementation
difficulty or resource cost.

Numerous exercises can be performed similarly. Clear
choices include varying the preventative measures and track-
ing the infected proportion, observing the effect of capacity
and age on hospitalizations, and investigating the effect of
organizational roles on epidemiological outcomes. Sensitivity
analysis can be performed on such results to quantify the
relationships between given parent and child nodes, further
contributing to decision support capabilities.

B. Causality

Table III details the results of SEM analysis using the
final BN topology as our hypothesized model. For each
edge in the graph, the strength of the causal connection
between the parent and child node is estimated by the SEM
model, and this value is reported in the “Estimate” column.
Causal relations with the highest strength include vax →
prevention index at 0.69, mask → prevention index
at 0.58, and age → prevention index at -0.31. Here,
negative values represent an inverse relation; zero represents
a complete lack of relation, and a magnitude of 1.0 represents
a perfect correlation. Certain relations showed very low esti-
mates below 0.01; however, only role → infected exhibited
a correspondingly poor p-value.

The probability of rejecting the null hypothesis is also
provided under the “P-Value” column. P-values lower than
0.05 are generally considered to be statistically significant
[19]. Of the 13 causal relations in our topology, nine have
a p-value smaller than 0.01, meaning that a majority of the
causal connections in our network have a > 99% probability
of accepting the null hypothesis. Only one causal connection,
role → infected, has a p-value larger than 0.05. Based on
domain expertise and the known behaviour of the simulation
framework, this connection remained part of the network
topology despite not returning a statistically significant p-
value.

TABLE III
SEMOPY MODEL INSPECTION OUTPUT.

Parent Node Child Node Estimate P-Value

age prevention index -0.31 <0.01
vax prevention index 0.69 <0.01
mask prevention index 0.58 <0.01
sex prevention index <0.01 <0.01
immunocompromised prevention index <0.01 0.02
prevention index infected -0.05 <0.01
role infected <0.01 0.09
capacity infected 0.03 <0.01
distancing infected -0.02 0.03
infected hospitalized 0.14 <0.01
age hospitalized 0.02 <0.01
infected long covid 0.10 <0.01
hospitalized deceased -0.01 0.05
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IV. CONCLUSION AND FUTURE WORK

In this paper, we extended an existing epidemiologi-
cal simulation framework to provide a layer of decision
support for facility administrators and policy-makers. The
implemented DSS comprised a BN with SEM techniques
applied to validate the network topology quantitatively. The
final validated topology with learned CPTs provides general
insights into the underlying distributions of data in the model.
Performing inference with the BN by providing evidence
extends these insights and allows for comprehensive decision
support at the policy level. This decision support can be
performed across varied simulation scenarios to generate
diverse insights, as demonstrated in our inference examples.
Our causality validation using SEM found that all but one of
the causal relations in our final network have a statistically
significant p-value lower than 0.05. This work proposes a
novel BN topology to extend the localized epidemiological
simulation of COVID-19 with decision support capabilities
validated using SEM techniques.

Real-world validation is a critical component required for
further development of this technology. We work closely
with the Brenda Strafford Foundation (BSF), a non-profit
organization specializing in long-term care services. The BSF
operates multiple long-term care facilities and has ongoing
research relationships with our institution. The aim for real-
world validation is to partner with the BSF and collect the
required information to perform localized simulations using
the framework. These simulations would use the day-to-day
operation of long-term care centres as the base scenarios,
with facility policies and epidemiological outcomes tracked
over time. Simulation results and decision support would be
reviewed by researchers and BSF facility administrators, and
the results would be published as part of a larger collabo-
rative investigation. Data for this validation component has
been collected, and ethics approval for the study has been
granted. Our validation strategy includes benchmarking the
simulation results against observed statistics for aggregate
epidemiological measures such as the localized excess risk
of infection and case counts. Temporal characteristics are
also being investigated to evaluate the validity of outbreak
incidence and progression.

From the generalizability of our simulation framework
and DSS, studying infectious diseases beyond COVID-19 in
arbitrary environments is planned following validation.
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