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Abstract—The concept of stable matching is substantially
used in bipartite graphs with individual preferences of the
vertices. The existence of stability restricts the weight and
size of the matching to be satisfactory. We study the trade-
offs in stability, weight and cardinality in a one-to-many
capacitated weighted bipartite matching with an edge-weight-
oriented preference setting. We establish a stability relaxation
framework which is adaptive to the pairing suitability and
capacity of the vertices. The purpose of the relaxation is to
update the stable matching towards the balance of stability,
weight and cardinality in the result. The relaxation preserves
fairness by keeping the satisfaction degradation of the ver-
tices with the potential new partner in a desired range. We
propose an algorithm to produce a new matching using the
stability relaxation framework. Furthermore, we define a novel
popularity measurement model of matching based on the edge
weight with the multi-voting ability of one-sided vertices. We
show the resulting matching is also popular as stable matching.
The experimentation performed based on the use case of the
homeless placement system complements the claim of improving
the weight and cardinality in the matching with marginal and
fair relaxation of stability.

Index Terms—adaptive instability, balanced matching, popu-
larity, fairness

I. INTRODUCTION

Consider a bipartite graph G = (U, V,E), where U and
V are the two disjoint sets of vertices connected by the set
of edges E. A matching M is the subset of E where two
endpoints of all edges are distinct. Assume all the vertices
of G have preferences over the other set. A matching S is
stable if no vertex pair prefers each other over their current
placement in S. Such a pair preferring each other is called
blocking or unstable. Thus, a stable matching has no unstable
pair. The stable matching is first defined in the stable marriage
problem introduced by Gale and Shapley [1]. Later on, it was
extended for the one-to-many matching problem such as the
college admission problem [2]. In a one-to-many matching,
multiple edges can share an endpoint on one side. There may
have capacity on the number of edges incident on a vertex for
that side. Stable matching has been much used in applications
that require one-to-many matching of two-sided agents with
preferences. The factors fuelling the preferences are crucial
for those applications [3].

Let’s consider any edge e ∈ E has a numerical weight
and G is redefined as (U, V,E,W ) where W is the set
of weights of the edges. Assume a vertex preference over
the other set of vertices is determined using the decreasing

order of the weight of the edges incident on it. We call the
scenario the edge-weight-oriented preference (EWP) setting
of G. There exist real-world problems where the balancing
of the stability, weight, and cardinality is desired in a one-to-
many bipartite matching with (EWP) setting. The homeless
placement problem is a well-established example of such a
scenario. The weight of an edge between a homeless person
and a shelter represents the suitability between them. Here,
suitability refers to the likeliness of a favourable outcome
of the placement. The higher it is, the higher the quick
recovery chances of the homeless person. The stability in
the matching guarantees the preferences of the homeless
persons and the shelters admit them are preserved. The
total weight indicates the overall recovery capability of the
solution and the cardinality refers to the number of homeless
persons admits in the shelters. Optimizing all three factors
are paramount in the resulting placement and a balanced
matching is desired.

However, there exist trade-offs among these objectives in a
matching. A maximum weighted bipartite matching MWBM
is the matching of the maximum possible total weight. The
MWBM might be promising in terms of cardinality but
possibly have many unstable pairs. The weight of the stable
matching in (EWP) setting can be significantly less than
MWBM. A maximum cardinality bipartite matching MCBM
is matching with the maximum possible number of edges.
The number of edges in the stable matching can be 1

2 of
MCBM [4]. This is true in (EWP) setting as well. The total
weight of the MCBM is not satisfying either. We discuss the
trade-offs with proofs and examples in section III.

The strategy of generating an initial matching based on a
single objective and updating it to balance the others can be
implemented. One strategy can be sacrificing the weights to
reduce the unstable pairs in a MWBM. This might balance
stability up to an extent but is adversarial for the size of
the matching since two unstable pairs may be replaced by
one stable pair (shown in Fig. 1). Similarly, sacrificing the
cardinality in a MCBM can end up balancing either weight or
stability with adverse behaviour to the other. The strategy of
relaxing the stability to increase the weight of the matching
by replacing stable pairs with unstable ones is not adversarial
for the cardinality. Because one stable pair is always replaced
by at least one unstable pair, possibly two. Thus, we introduce
a stability relaxation framework to bring the desired balance
in stability, weight and cardinality in the matching. The
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framework determines the degree of instability one vertex
can consume based on the weight of the edges incident on
them and the capacity where applicable. Hence, it is both fair
for all vertices and adaptive to the application.

We consider an incomplete bipartite graph for the research
problem. No edge between u ∈ U and v ∈ V means
they are not compatible for pairing. In a stable matching,
some vertices from U can remain unmatched even when
some vertices from V have empty spots due to pairing
incompatibility and the limited capacity of other vertices in
V . This can be considered as the capacity waste in G, which
is keeping weight and cardinality down in the result. Our
proposed algorithm reduces the capacity waste by updating
the stable matching using the stability relaxation determined
by the defined framework. This eventually brings the desired
balance among the objectives.

Furthermore, a significant property of stable matching is
its popularity. A matching M is popular if the number
of vertices prefers M over any matching M ′ is not less
than the number of vertices prefers M ′ over M . A vertex
prefers M over M ′ if it is not matched in M ′, or prefers
the partner of M than the partner of M ′ otherwise. The
popular matching is first defined in [19]. There exists no
matching popular than the stable matching [4]. However,
multiple popular matching may exist. The relaxation of the
stability allows generating another popular matching with a
larger size if it exists [20]. This motivates us to relax the
stability with the aim of improving both the cardinality and
weight of the matching. The popularity of any matching
is justified using the popularity measurement model. We
introduce a novel popularity measurement model for the
(EWP) setting. The model allows multiple voting of the
vertices of V based on the weight of the edges incident on
them. Our proposed algorithm is designed in a way such that
the resulting matching is popular which can be justified by
integrating the popularity measurement model.

The contribution summary of the research: we study the
relationship between objectives in a one-to-many capacitated
weighted bipartite matching. We show the trade-offs in
optimizing stability, weight, and cardinality when the edge-
weight is the only preference factor for agents. We propose a
novel stability relaxation framework which is adaptive to the
edge-weight and the capacity of the vertices. We propose an
algorithm to update the stable matching using the fair degree
of instability determined for each vertex using the stability
relaxation framework. This brings the desired balance in
stability, weight and cardinality in the resulting matching.
We experiment with a use case of the homeless placement
system. The results support the stability relaxation frame-
work concept with the expected improvement of weight and
cardinality over the stable matching. We also define a new
popularity measurement model with the multi-voting ability
of vertices based on the weight of the edges. We verify the
resulting matching with the popularity measurement model
and show it is also popular as stable matching.

We present the relevant research in the section II. We
show the objectives trade-offs in the section III. The stability

relaxation framework is presented in section IV. We present
our algorithm in the section V. The popularity measurement
model and the corresponding proof are shown in section VI.
We show the experimental results in section VII. We conclude
with the summary and future direction in section VIII.

II. RELATED WORK

There is an increased concern for the problems of matching
under preferences due to the rapid growth of such appli-
cations. The research on the algorithmic perspective of the
matching under preferences also hiked in the recent past [5].
The utilization of the stable matching concept for the bipartite
graph with two-sided preferences has long been established
after its introduction in the stable marriage problem by Gale
and Shapley [1]. One important aspect of the existing works
on stable matching is the consideration the preference list
variability such as incomplete preference list, preference list
with ties etc [6]. We particularly reviewed the previous works
with incomplete and strict preference lists for this research.

There exist conflicts between stability and the optimality
of other criteria. The stable matching might not admit a fair
matching [7]. The relaxation of stability gained attraction for
modern applications that need to balance multiple objectives.
The authors in [8] introduce a nearly stable matching notion
using the mathematical programming for the dynamic ride-
sharing system with preferences from both riders and drivers.
They consider the weight optimization in the matching and
adopted a strategy for a ride-sharing matching based on
the cost and reducing the stability with a relaxed blocking
pair condition afterwards. In [9], the authors introduced an
approach of imposing a cost on the blocking edge for a
weighted bipartite graph. They restricted the stability relax-
ation in terms of the cost of the blocking edges and showed
a computationally tractable approach.

The concept of envy-free matching is introduced as a
fairness condition [10]. A matching is envy-free if no agent
wants to exchange the outcome with another. The authors in
[11] showed an envy-free matching exists with both upper
and lower quotas for the agents with relaxed stability. They
set a limit of matched and unmatched edges to participate in
the blocking pair as the stability relaxation. They showed
no stable matching instance exists with the lower quota
for agents and hence stability is always relaxed. A critical
bipartite graph contains critical vertices. A vertex is critical
if removing it constitutes a perfect matching [12]. The notion
of relaxed stability restricting the edges to participate in the
blocking pair [11] is also used in [13] to show a critical
matching always exists in such a setting. Critical matching
focuses on including edges incident on the critical vertices.
The authors in [13] showed that stability and criticality can
not co-exist and thus relaxed stability is used to compute a
critical matching.

The authors in [14] showed that cardinality improves
with the relaxation of the preference rule in a one-to-many
stable matching for the taxi-sharing service. They introduced
both fixed and variable discount strategies and guarantee the
matching size improvement for the former one. The notion
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of popularity is introduced to balance the cardinality in a
stable matching [4]. The relaxation of stability towards other
popular matching possibly increases the size of the matching.
However, popular matching does not necessarily be optimal
in size. The authors in [15] proposed a strategy to compute a
maximum cardinality popular matching in the stable marriage
setting. However, they have not considered edge weight. The
authors in [16] consider computing a maximum cardinality
popular matching in a weighted capacitated house allocation
problem. They utilize the weight of the agents as an incentive
for priority in the preference list. The total weight of such
maximum cardinality popular matching is not promising in
most cases. There exists no work considering the relaxation
of stability with the combined goal of balancing stability,
weight and cardinality. We thus introduce a stability relax-
ation framework equally prioritizing all three criteria and
propose an algorithm to produce a balanced matching.

Furthermore, the authors in [21]–[23] introduced the pop-
ularity measurement model for one-to-many matching. How-
ever, they have not considered the weight of the edges in the
voting model. Instead, their model counts the votes based
on the differences in the number of edges incident on the
vertices of V in two matchings [21]. Hence, we integrate a
novel popularity measurement model that provides a multi-
voting ability of the vertices of V based on edge weight with
our proposed algorithm for the justification of the output.

III. OBJECTIVES TRADE-OFFS

A vertex have a strict preference list in the problem we
considered in the research. No two vertex have the same
preference in a strict preference list. The preference list of
a vertex may be incomplete that is excluding some vertices
from the list. Usually, an explicit ranking of the agents is
maintained in a placement process such as the shelter ranking
in the homeless placement system. We assume such ranking
is used to break the tie in the preference list when more than
one edge has the same weight. A vertex u ∈ U has a strict
preference list over the vertices of V based on the decreasing
order of the weight of the edges incident on u. Similarly, a
strict preference list for a vertex v ∈ V is constructed.

The authors in [4] showed that the size of the stable
matching can be half of MCBM. This clarifies the stability-
cardinality trade-off. We show that the total weight of a stable
matching can be half of the total weight of MWBM.

Theorem 1: The total weight of stable matching is 1
2

approximation of the maximum weighted bipartite matching.
Proof: Let’s assume Ms is the stable matching with size
|M |. The total weight of Ms is not the maximum possible.
Consider Mw as the MWBM. There is no edge in Mw which
connects two unmatched vertices with respect to Ms. Because
such an edge would have been added in Ms. A vertex is
unmatched with respect to a matching if no edge from the
matching is incident to it. That indicates any edge of Mw

either belongs from Ms or shares an endpoint with any one
or two edges of Ms. Let’s consider the set of edges of Mw

from the latter case as N . The weight of any edge of N must
not be higher than at least one of the edges from Ms with

whom it shares the endpoint, otherwise, such an edge would
have constructed an unstable pair. On the other hand, there
may exist two edges of N from the two endpoints of an edge
of e ∈ Ms and they both can have the same weight as e. Thus,
the weight of the edges in N can be twice the weight of the
edges of Ms with whom they share an endpoint. If there is
no common edge between Mw and Ms, then the total weight
of Mw can be twice the total weight of Ms, which proves
the bound.

There might exist unstable pairs in MWBM. In worst case,
MWBM of size n may have (n−1) unstable pairs as shown in
Fig. 1. The capacity of every right-hand side vertices is 1 as
shown with each vertex in Fig. 1 (a). The stable matching for
(a) is shown in (b). The pairs (h1, s1), (h3, s3) are unstable
with respect to MWBM shown in (c).

h1 s1

h2 s2

6

h3 s3
6

5

5

5

(a) Incomplete bipartite graph

h1 s1

h2 s2

6

h3 s3
6

(b) Stable matching

h1 s1

h2 s2

h3 s3

5

5

5

(c) Maximum weighted matching

2

(1)

(1)

(1)

Vertex Preference
List

h1 [s1,s3,s2]

h2 [s1]

h3 [s3,s2]

s1 [h1,h2]

s2 [h3,h1]

s3 [h3,h1]

Fig. 1: Instability in Maximum Weighted Matching

On the other hand, the transformation of the MWBM to the
MCBM is subject to the loss of weights [18]. However, the
preferences of agents are not being considered in MWBM.
Hence, there exists adversariality for the weight and stability
in MCBM. A matching balancing stability, weight, and car-
dinality up to an extent are necessary. In the next section, we
present our stability relaxation technique which improves the
weight and cardinality with fair instability for every vertex
without decreasing the popularity of the stable matching.

IV. STABILITY RELAXATION FRAMEWORK

The partner (or partners) of a matched vertex in a one-
to-many stable matching is the most preferred possible in
the matching. Stability relaxation is the natural dilution of
the preference of the partner (or partners) of a vertex over
to stable matching. This allows reducing the capacity waste
whenever possible by pairing the vertices with the less
preferred partners which eventually improves the cardinality
and weight over to the stable matching. However, arbitrary
relaxation can make the matching unfair for some vertices.
We thus need to use the information associated with the
vertices to make the strategy adaptive and fair.

The suitability value of a pair of vertices (u ∈ U, v ∈ V )
is denoted by the weight of the edge between them. Recall
that some pair of vertices (u ∈ U, v ∈ V ) may not be
connected, hence they are not suitable for pairing. In a
real scenario, some vertices might be suitable with few
vertices.The suitability value of such vertices with their peer
is most likely to be higher. On the other hand, some vertices
are suitable to make pair with many vertices with a similar
suitability value. We define a compatibility level for the
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vertices of U based on the number of vertices they can be
paired with and their suitability value with them. First, we
determine a compatibility value of a vertex u ∈ U , which
is the summation of the number of vertices from V with
whom u is suitable and the average suitability value of u.
The number of vertex u is suitable with is defined by nu and
the average suitability su is the mean suitability value of u
over nu vertices. The compatibility value of u is defined as
cu and its equation is shown in 1.

cu = nu + su (1)

A list of vertices sorted in the increasing order of compat-
ibility values is constructed. The vertices are then classified
into different compatibility levels using the sorted list. The
number of compatibility levels is assumed to be predefined
for the application. Let’s assume there are n compatibility
levels. The vertices are then divided into n groups based on
their position in the sorted list. The number of vertices that
falls in each group may not be the same. In the first (n− 1)

group, it is ⌊ (|U |)
n +0.5⌋. The vertices in the first ⌊ (|U |)

n +0.5⌋
position in the sorted list are added to the first group. The
vertices in the next ⌊ (|U |)

n + 0.5⌋ position are added in the
second group and so on. The remaining vertices after the first
(n− 1) group formation falls into the nth group.

The compatibility level of the vertices falls into the first
group is defined as 1. In general, the compatibility level of
the vertices belonging to nth group is n. The compatibility
level is the indicator of maximum instability permitted for a
vertex to keep the solution fair for the vertex. The larger the
compatibility level is, the more relaxation is possible for a
vertex. The vertices are able to pair with many vertices con-
sidered to have more compatibility. Thus, nu is considered
as a primary factor to calculate cu as shown in equation 1
to force the vertices with more possible pairs to fall into the
higher compatibility level. The vertices highly suitable with
fewer vertices would have fallen into the higher compatibility
level if only su would have been used to calculate cu. This
approach works particularly well for settings where the range
of suitability values is not so large.

Similarly, the compatibility level for the vertices of V is
determined. However, the average suitability value sv of v ∈
V is determined by the mean over the capacity cav of v. The
minimum value between cav and nv , the number of vertices v
is suitable with is used as one of the primary factors in this
case as shown in equation 2. Note that, we assume every
vertex in the graph can pair with at least one vertex, thus the
compatibility value of any vertex is at least 1.

cv = min(cav, nv) + sv (2)

We define a vertex u ∈ U as first-degree unstable in a
matching S′ if u’s partner is S′ is the next preferred than
u’s partner in the stable matching S. Thus, a vertex u is
called α-degree unstable in S′ when the preference of its
partner in S′ is α behind its partner in S. The vertex v ∈ V
is called α-degree unstable in S′ when the preference of its
least-preferred partner in S′ is α behind its least-preferred
partner in S.

The stability relaxation framework calculates the degree
of instability for vertices based on their compatibility level.
A predefined degree of instability for the first compatibility
level vertices is considered. This value represents the best
case. For example, the first degree of instability for the
vertices with the compatibility level 1 means their partner
or least-preferred partner in the resulting matching is the
next-preferred than their partner or least-preferred partner
in the stable matching. We can use the value as a seed to
determine the degree of instability for the vertices of other
compatibility levels. Let’s assume the degree of instability
for the vertices with the compatibility level 1 is d1. Then
the relation dn > dn−1 > .... > d2 > d1 holds where the
degree of instability increases by a constant In for each level
as shown in equation 3.

dn = dn−1 + In (3)

The degree of instability is highly adaptive to the pairing
suitability of the vertices and their capacity when applica-
ble. It also reduces the chances of degrading the stability
unfairly for any vertex. Our proposed algorithm is presented
in the next section which utilizes the degree of instability
determined for each vertex in G.

h1 s1

h2

h3

s2

4

5

5

6

s36

5

(1)

(1)

(3)

Vertex Compatibility 
Value

h1 15/3 + 3 = 8
h2 5+1 = 6
h3 11/2 + 2 = 7.5
h4 6+1 = 7
s1 22 + 1 = 23
s2 10 + 1 = 11
s3 5+1 = 6

Vertex Degree of 
Instability

h1 2

h2 0
h3 2
h4 1
s1 2
s2 1
s3 0

h4
6

Fig. 2: Example of Degree of Instability Calculation

One example instance of calculating the degree of insta-
bility is shown in Fig. 2. Here, the number of compatibility
levels is defined as 3, and in is 1 for any level. The capacity of
the right-hand side vertices is shown with the vertices. Here,
h2 is the only vertex with compatibility level 1 since ch2

= 6,
and this is the minimum of all. The degree of instability for
the compatibility level 1 is set as 0 here. Consequently, h4

falls into the compatibility level 2 and the degree of instability
for h4 is 1, h3 and h1 falls into the compatibility level 2
and the degree of instability for them is 2. The compatibility
levels and the degree of instability of the right-hand side
vertices can be verified similarly.

V. PROPOSED ALGORITHM

We propose an iterative algorithm to improve the weight
and cardinality over the stable matching. The stable matching
is first generated using the deferred-acceptance algorithm by
Gale and Shapley [1] on the input graph. Then the algorithm
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which we define as the ’Balanced-Matching’ algorithm re-
places the stable pairs with the unstable pairs within the limit
of the degree of instability determined for each vertex by the
stability relaxation framework. We first define some notions
and concepts used in the algorithm below.

• δ(M): The set of matched vertices with respect to the
matching M .

• I(u), I(v): The set of edges incident on a vertex u ∈ U ,
v ∈ V .

• T (u): The proper subset of edges of I(u) traversed by
the algorithm at any point.

• Alternating path: An alternating path with respect to M
is a set of edges where two consecutive edges, one is
from M and another is from (E−M) share an endpoint

• Augmenting path: An augmenting path is an alternating
path that starts and ends with an edge from (E −M).

• Balanced augmenting path (BAP): An augmenting path
always has an odd number of edges and the minimum
length is 3. A (BAP) with respect to M is the augment-
ing path of minimum length where the combined weight
of the first and third edge exceeds the weight of the
second edge. We define ma as the second or matched
edge of BAP and na as the set of two unmatched edges
of BAP. The replacement of ma by the edges of na in
M ensures the degree of instability determined for the
vertices incident on them is not violated when the vertex
v ∈ V incident on the third edge has an empty spot.

• N : The set of starting edges of any A newly added in
M as per the updates.

• w(e): The weight of the edge e.
The steps of the Balanced-Matching algorithm (BMA) is

shown in Algorithm 1. The stable matching S generated using
the deferred-acceptance algorithm is the input of BMA. We
first initialize a new matching M same as S and mark all
the vertices from U not in δ(M) as unchecked. The BMA
starts iterating the edges incident on the unchecked vertices
which have not been traversed and checks the existences of a
BAP. It updates M by replacing ma with the edges of na if
there exists any BAP. The BMA then adds the first edge e of
BAP in both N and T (u) and marks u as checked and stops
traversing further edges incidents on u as per line (4− 8).

It is possible that an edge replaces the first edge of a BAP
and still constructs a BAP with the rest of the two edges
with a better total weight. The BMA updates the list N by
adding the first edge of any BAP found. The purpose is to
keep track of the first edges such that they can be replaced
by any other edge. The edge e replaces any such first edge
e′ must be incident on a different vertex of U , otherwise e
would have been added in a BAP earlier. The BMA checks
whether the current edge e for which the iteration is going
on can replace an edge e′ if there is no BAP exists starting
from e in line 9. If e can replace such e′, BMA replaces e′

with e in M , removes e′ from N and the endpoint of e′

from U as unchecked again. It also adds e to N and T (u)
and marks u where e ∈ I(u) as checked before stopping
checking further edges incident on u as per line (10 − 14).
One such replacement example can be observed in Fig. 2. A

BAP (h2, s1), (s1, h1), (h1, s2) exists starting from the edge
(h2, s1) and the matching is updated accordingly. The edge
(h4, s1) can replace the edge (h2, s1) since a BAP could be
constructed using the edges (h4, s1), (s1, h1), (h1, s2) with
better total weight. Thus, the matching is updated again by
replacing the edge (h2, s1) with (h4, s1) in this scenario.

Algorithm 1 Balanced-Matching
Input A stable matching S in G = (U, V,E).

Output An updated balanced matching M in
G = (U, V.E).1: initialize a new matching M = S.

2: Mark all u ∈ δ(M) as checked and mark all u /∈ δ(M)
as unchecked.

3: while there exist an unchecked u do
4: for all (e ∈ I(u) and e /∈ T (u)) do
5: if a BAP exist with respect to M starts by e then
6: remove edge ma from M , add edges in na in M
7: add e in N , add e in T (u), mark u as checked.
8: break
9: else if w(e) > w(e′) where e, e′ ∈ (N ∧ I(v)) for

any v ∈ V then
10: replace e′ by e in M , remove e′ from N .
11: add e in N , remove e′ from N , add e in T (u).
12: mark u as checked.
13: mark u′ ∈ U where e′ ∈ I(u′) as unchecked.
14: break
15: else
16: add e in T (u)
17: end if
18: end for
19: if len(T (u)) = len(I(u)) then
20: mark u as checked
21: end if
22: end while

In the case when neither a BAP starts from e nor it can
replace any e′ from N , BMA only adds e into T (u) as per
line (15− 16). The purpose of constructing T (u) for each u
is to keep track of the traversed edges from I(u). The BMA
marks u as checked whenever the length of T (u) reaches the
length of I(u), which indicates the completion of traversal
for u ∈ U and no updates were done for u as shown in
line (19− 20). The iteration continues until there exists any
unchecked vertex from U as per the loop defined in line 3.

The existence of a BAP guarantees the improvement of
cardinality and weight in the resulting matching. This is due
to the fact that one matched edge is being replaced by two
unmatched edges with more total weight. It might be possible
to update the matching in a similar fashion with an alternating
path or augmenting path of any length. However, the former
case can not improve the cardinality as the length is even or
the path starts with an matched edge when the alternating
path is not an augmenting path. The augmenting path of any
length can improve the cardinality by 1 same as any BAP,
but can make the iteration highly complex. Thus, we design
BMA with the consideration of finding the augmenting path
of minimum length to improve both weight and cardinality
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together for proper balancing of the matching. A BAP also
ensures the degree of instability restriction for all the vertices
is not violated. Thus, the BMA is capable of bringing fair
balance of stability, weight and cardinality in the resulting
matching by finding the BAP whenever exists.

VI. POPULARITY MEASUREMENT MODEL

The popularity of a matching is determined based on the
choices of the vertices among all possible matching. The
BMA is designed in a way such that the matching becomes
more balanced with marginal instability and without losing
popularity. For a one-to-many matching, the choice of the
vertices of U can be determined by comparing the single
partner from any two matchings, but the choice of the vertices
of V needs the consideration of all the partners. Thus,
we define a novel edge-weight-based multi-voting (EWMV)
popularity measurement model where vertices of V can vote
for each of the edges they are incident on.

The EWMV model compares the total number of votes
between any two matching to determine their popularity over
each other. It counts the votes for each edge incident on
any vertex based on its weight. Thus the vertices from V
can cast multiple votes up to their capacity. Let’s consider
two matchings M and M ′ to be compared using the EWMV
model. The model first determines the number of edges
incident on both M and M ′ for any vertex. It then equalizes
the number of edges incident on a vertex in both matching by
adding dummy edges with weight 0 in the matching where
any vertex has fewer edges incident on it and put the edge in
the last preference. It then follows the rules shown in table
I below to count the votes for the vertices of U .

TABLE I: Rules for vertices of U in EWMV model

M M ′ Reasoning
1 0 P (M) > P (M ′)
0 1 P (M) < P (M ′)
1 1 P (M) = P (M ′)

TABLE II: Rules for vertices of V in EWMV model

M M ′ Reasoning
1 1 for the edges in (M ∧M ′)

1 0
If the edge is not in (M ∧M ′) and
there exist at least one edge in M ′

with less preference

0 1
If the edge is not in (M ∧M ′) and
there exist at least one edge in M

with less preference

Here, P (M) indicates the preference of the partner paired
with u in matching M . The vertex u votes for matching M
if it gets a more preferred partner in M than M ′ and vice
versa. The vertex u votes for both if it is paired with the
same partner in both matching. We consider counting a vote
for the same edge in both matchings to keep the vote count
consistent with the number of edges.

Similar rules for the vertices of V are shown in the table
II. The rules for the vertices of V apply to every single edge
incident on any v ∈ V . The vertices of V vote for each

edge incident on them in the matching. They vote for both
matchings for the common edges as shown in the table II.
They vote for M for the edge e, if e is not in M ′ and there
exists a less preferred edge than e in M ′. Similarly, they
vote for M ′ for the edge e′ if there exists a less preferred
edge than e′ in M . The EWMV model discards the edge with
weight 0 after it contributes 1 votes to the other matching to
avoid casting multiple votes for the same dummy edge. In
this way, the EWMV model considers every edge of both
matchings and cast votes for each of them. One instance of
the popularity measurement using the EWMV model is shown
in Fig. 3.

s1(2)
[h3,h1]

s2(1)
[h1,h2,h3]

h1
[s2,s1] 4 6

h2
[s2] 5

h3
[s1,s2]

5 3

Matching Edges Votes

M (h1,s2)(h3,s1)
h1 = 1, h2 = 0, h3 = 1

s1 = 1, s2 = 1

M' (h1,s1)(h2,s2)(h3,s1)
h1 = 0, h2 = 1, h3 = 1

s1 = 2, s2 = 0

Fig. 3: Example of EWMV model implementation

In Fig. 3, the vertices from U and V are shown in the
first column and first row of the left table respectively. The
preferences and the capacity where applicable for each vertex
are provided in the same cell. The corresponding weights of
the edges are shown in the designated cell of the left table. No
value in a cell means the associated vertices are not suitable
for pairing, (h2, s1) in Fig. 3. In the right table, the edges
of the two matching M and M ′ are shown in the second
column. The votes counted for each of the edges for both M
and M ′ using the rules of the EWMV model shown in the last
column. We can see vertex s1 cast two votes for each of the
edges of matching M ′ since the edge (h3, s1) is common
with M and the edge (h1, s1) has better weight than the
dummy edges with weight 0 added in M . The other votes can
be verified similarly. Next, we show the resulting matching
produced by the algorithm 1 is also popular according to the
EWMV model.

Theorem 2: The matching produced by BMA is popular.
Proof: The BMA updates the stable matching M only when
there exists a BAP or an edge with better weight than the
first edge of a BAP found earlier. In the case of updating
with a new BAP, the BMA replaces the matched edge with
two unmatched edges of BAP in M . The updated matching
M ′ gets behind by two votes which count for M since both
vertices of the matched edge prefer this over the new edges.
Otherwise, this edge would not have been added in M . On
the other hand, M ′ gains two votes, one for the first edge
and another for the third edge of the BAP. This is because
the first edge of BAP is the incident on an unmatched vertex
from U and the third edge of BAP fills up an empty space
of a vertex from V . In the scenario, when the BMA found an
edge that can replace the first edge of a BAP found earlier,
the vote count for M ′ does not change. Hence, the updated
matching M ′ gets the same number of votes as M , and it is
popular.
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The EWMV model is designed to verify the popularity
of any matching in the EWMP setting considered in the
research. Although the BMA is designed in a way such
that it retains the popularity of the stable matching, we
integrated the EWMV popularity measurement model in our
experimentation to justify the correctness of the algorithm.
We discuss our experimental results in the next section.

VII. USE CASE AND EXPERIMENTAL RESULTS

The United Nation’s 2030 agenda for sustainable devel-
opment aims to build partnerships among developed and de-
veloping countries to integrate economic, social and environ-
mental evolution. The development of sustainable cities with
adequate shelters and improved human settlement systems is
a major goal for all nations [24]. We consider the problem of
placing homeless individuals into shelters under the broader
domain of UN goals as a use case for the research.

Consider a bipartite graph G = (H,S,E,W ), where H is
the set of homeless individuals, S is the set of shelters, E is
the set of edges and W is the set of weights of the edges.
Recall that the weight of an edge (h ∈ H, s ∈ S) indicates
the pairing suitability between h and s. No edge between such
h and s means they are not suitable for pairing. The pairing
suitability depends on multiple factors such as the shelter’s
location and type, the homeless individual’s background etc.
We are not discussing these factors in detail as this is not in
the scope of the research. The homeless individuals and the
shelters both have preferences over the other parties. Such
as some homeless individuals want to stay in a particular
city, some shelters might look for homeless individuals from
a similar background to run a particular support service etc.
The objective of the problem is to generate a one-to-many
matching of homeless-to-shelter such that the total suitability
or likelihood of the placement and the number of homeless
individuals placed can be maximized while prioritizing the
preferences of both sides. The trade-off shown in section III
applies to the problem. Thus, we apply the stability relaxation
framework and BMA on the random instances prepared for
the problem to find the desired balance in the outcome. Next,
we discuss the background for the data preparation.

Every year, employment and social development Canada
published a report about the current homelessness situation
in Canada and the capacity of the shelters [25], [26]. We
closely followed the reports to reflect the real shortage
scenario as much as possible on the random instances. We
consider the scenario where homeless individuals have a
singular bed demand. A suitability matrix for the homeless-
shelter pairs is generated first where the suitability value
ranges between 0 − 6 as per [27]. Each pair is assigned a
random suitability value. The suitability value 0 indicates
incompatibility between the pair. The capacity of the shelters
varies significantly depending on demands. It starts from 1
considering the fact that many small private organizations
may have very few beds. Some shelters are most preferred
and they usually have extremely low capacity with respect to
demand. We thus consider a few shelters preferred by most
homeless individuals and set their capacity to be a random

value ranging between 1 and 10 percent of the total number of
homeless individuals. The other shelters have higher capacity
and thus assigned a random value ranging between 11 to 50
percent of the total number of homeless individuals. However,
there are scenarios where some shelters with higher capacity
are not preferred by many homeless individuals. Hence, we
increase the incompatibility of the homeless individuals to
some of the higher capacity shelters by converting their
suitability value into 0. We then apply the stability relaxation
framework discussed in section IV to determine the degree
of instability for each agent.

In the stability relaxation framework, we define three
compatibility levels, namely low, moderate and high. We
prepare the list of adaptive compatibility values for home-
less individuals and shelters. We then classified them into
compatibility levels. We set the degree of instability for both
the homeless individuals and shelters in the low compatibility
level as 1. The degree of instability increment constant In is
set differently for homeless individuals and shelters based on
the number of agents on the other side. Let’s assume there
are N homeless individuals and M shelters. For the homeless
individuals and shelters, In is set as M

10 and N
10 respectively.

Thus, the homeless individuals in the moderate and high
compatibility levels have (1 + M

10 ) and (1 + 2M
10 ) degree of

instability respectively which is (1 + N
10 ) and (1 + 2N

10 ) for
the shelters in the same levels.

TABLE III: Comparison of Total Suitability

No. of
Homeless

No. of
Shelter

Integer
Program

Stable
Matching BMA

100 3 253.35 232.65 249.7
200 6 627 575.4 603.1
300 9 1074.3 970.6 1010
400 12 1635.3 1502.3 1560.4
500 15 2428 2170.1 2265.4
600 18 3093.65 2711.15 2809.5
700 21 3901.25 3375.9 3496

TABLE IV: Comparison of Number of Placement

No. of
Homeless

No. of
Shelter

Integer
Program

Stable
Matching BMA

100 3 57.3 52.2 56
200 6 128 111.2 119.1
300 9 196.7 174.9 184
400 12 287.5 260.1 273.4
500 15 422 371.3 392.6
600 18 537.8 461.8 481.6
700 21 675.2 569.6 594

We first implemented the deferred-acceptance algorithm
[1] using the preference list generated for homeless individ-
uals and shelters based on the suitability matrix prepared. The
deferred-acceptance algorithm produces optimal matching
for the proposing side. Thus, we consider the homeless
individuals as the proposing side to prioritize the survivors to
get the best possible partner in the initial matching. We then
implemented BMA with the degree of instability calculated
for each agent.

We perform the coding in Python using Google Colab.
We compare the total suitability and size of the match-
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ing produced by BMA with the stable matching. We also
implemented the integer program of maximum weighted
matching and maximum cardinality matching using the same
data instances in IBM ILOG CPLEX Optimization Studio
22.1.0. We evaluated the performance of the resulting bal-
anced matching with the output of the integer program. The
comparison of the total suitability is shown in table III. Each
instance is executed 10 times and the average is taken as
the final value to cover the real-world variability. The results
shown in table III indicate the total suitability improves
significantly in the balanced matching produced by BMA.
The total suitability of the stable matching remains far behind
optimal. The BMA is able to reduce the gap to a large extent.
For the instance of 500 homeless individuals and 15 shelters,
the balanced matching has almost 100 unit more suitability
than the stable matching. The stable matching is known to
produce better results in terms of weight when the data size
increases [28]. A notable weight or suitability increment in
the matching of BMA even for the larger instances is evident
as shown in table III.

Similarly, we compare the number of homeless individuals
placed in the balanced matching. The balanced matching
is able to reduce the capacity waste of the shelters by
placing more homeless individuals as shown in table IV. The
cardinality of the balanced matching is higher than the stable
matching in all instances experimented. We also implemented
the popularity measurement model discussed in section VI to
justify the claim of retaining stable matching’s popularity in
the balanced matching. The results support the justification as
the number of votes for the balanced matching is always the
same as the stable matching in the experimentation. Thus,
BMA is able to place more homeless individuals into the
shelters with a better likelihood of the expected outcome
utilizing adaptive and fair stability relaxation for every agent.

VIII. CONCLUSION AND FUTURE WORK

Stable matching is a widely used technique for bipartite
graphs with two-sided preferences. We study the limitation
and perspectives of optimizing stability, weight and cardinal-
ity in a matching where the preferences are generated based
on the weight of the edges. We introduce a stability relaxation
framework which is adaptive to the characteristic of the
vertices and fair with an independent degree of instability for
them. Our proposed algorithm updates the stable matching
using the degree of instabilities and produces a matching
with the balance of stability, weight and cardinality. We
define a new edge-weighted-multi-voting (EWMV) popularity
measurement model to consider every edge in the voting
process. We show the resulting matching is also popular as
stable matching. The experimentation results based on the
homeless placement system support the claim of the proposed
combination of the stability relaxation framework and the
algorithm to bring the desired balance in the matching. The
proposed solution can be examined for similar applications
with two-sided preferences. The investigation of the per-
formance ratio of the resulting matching in terms of the
optimal weight and cardinality can be a valuable extension of

the research. The effect of the variable degree of instability
among vertices can be analyzed for further improvement of
the approach.
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