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Instituto Politécnico Nacional
Mexico City, Mexico

https://orcid.org/0000-0003-2836-2102
hcalvo@cic.ipn.mx

Abstract—This article proposes an Ant Colony Optimization
(ACO) algorithm, an optimization method to find paths in graphs,
adapted to solve strategic games. The games of study are Tic-
Tac-Toe (also known as noughts and crosses, three in a row,
or Xs and Os), and Chess. The algorithms’ performance is
contrasted by contending ACO against the Minimax algorithm,
in different setups of Tic-Tac-Toe and Chess. The performance
is explained in terms of average time response, correctness of
the move choice, and memory used when executing the function.
Results reveal a slightly better average performance by the ACO
algorithm compared to Minimax. These findings highlight the
ability of ACO in decision-making algorithms without requiring
knowledge of previous games. Furthermore, the results suggest
that the ACO-based path optimization approach can be an
effective alternative to improve the efficiency of decisions made by
intelligent systems in environments that require rapid response.

Keywords—Strategic games, Ant Colony Optimization, Intelli-
gent Agents.

I. INTRODUCTION

One of the characteristics that define intelligence is the
ability to adapt to various environments. [1]. It implies the
capacity to solve problems, reason logically, and make effec-
tive decisions [2]. Moreover, artificial intelligence (AI) refers
to the system’s property of adapting its behavior in order to
achieve a goal by analyzing how its previous actions affect the
environment [3]. Decision-making algorithms have the aim to
learn and improve, in terms of objectivity, the decision-making
of a human. The accuracy of the intelligent systems’ decisions
can be tested through their performance in strategic games.

In [4] the authors define strategic play as the understanding
and evaluation of the available options and their application
within the context of the game. In this way, there are algo-
rithms based on neural networks or in reinforcement learning
to play strategy games, yielding favorable outcomes. However,
these techniques require knowledge from previous games from

expert systems (such as humans or other AI systems) or
compete against themselves until specializing in a specific
game [5]–[7]. On the other hand, there are algorithms for
decision-making, that do not require previous knowledge, such
as Minimax (widely employed to teach AI agents how to play
turn-based strategy games) and the Ant Colony Optimization
Algorithm (ACO).

The ideal in a decision-making algorithm is to find the
optimal value, however, as the eligible options increase, the
search space increases exponentially along with the complex-
ity, increasing the resources needed to find the optimal value.
When there are limited resources (such as memory, storage,
response time, etc.), it is advantageous to have alternative
options that provide solutions, even if they are suboptimal,
as long as they have a response within the requirements of
the context. Examples of this type of scenario are time trial
games, online games, or real-time strategy (RTS) games [8],
where a quick response is needed; In the case of physically
constructed AI agents, such as exploration robots, the hardware
could determine the limitations of the algorithms that can be
implemented.

The Minimax algorithm is complete, which means it will
certainly find a solution (if one exists) in the finite search tree.
Alternatively, ACO uses ant agents to traverse a search tree, in-
crementally constructing solutions guided by pheromone levels
and problem-specific information to find optimal or suboptimal
solutions in complex combinatorial optimization problems. In
this paper, the initial conditions for both algorithms are the
only knowledge of the state of the board, the rules of the game,
and a board evaluation function. The parameters to compare
are the search depth and the execution time.

This paper aims to explore the performance of ACO and
Minimax algorithms as decision-making tools to play strategy
games without relying on prior game knowledge, contrasting
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the resources used to assess their advantages and disadvan-
tages.

The organization of this paper is as follows: Section 2
presents the related work. Section 3 explains the basis of the
Minimax algorithm. Section 4 describes the proposed method
to adapt the ACO algorithm for gaming. Section 4 shows
the evaluation function to guide the decision-making process.
Section 5 shows the experiments and their results. Section 6
offers a brief discussion about the results. Section 7 gives the
conclusions.

II. RELATED WORK

This section shows some articles as related work that dis-
cusses different algorithmic approaches for developing strate-
gic game-playing systems, with a focus on the game of Tic-
Tac-Toe. The mentioned methods utilize various techniques
such as ensemble-based boosting, rule-based inference, T-
AlphaBeta search algorithm, artificial neural networks, genetic
algorithms, and ant colony optimization.

In [6] the authors propose an algorithmic solution by com-
bining an ensemble-based boosting approach and rule-based
inference to build a probabilistic expert system that strate-
gically chooses the best optimal move for the next possible
state of the game. Nevertheless, they train their systems with
255,168 unique game states of Tic-Tac-Toe.

In [8] the authors propose a T-AlphaBeta search algorithm
for RTS games and return better results at the same time of
fast search. The algorithm has a balance between search depth
and search time. The game for the test they propose was Spaj-
Craft.

In [9] the author proposes a method to evolve strategies
for the Tic-Tac-Toe game using artificial neural networks
and genetic algorithms. The genetic algorithm generates a
population of solutions that are evaluated with the neural
network to calculate how strong the selected movement is.
Experiments showed that the method was able to evolve tic-
tac-toe players who could consistently win or draw against a
human opponent.

In [10] the author proposes evolutionary programming as
a technique to train neural networks for playing Tic-Tac-
Toe effectively. It uses an initial population of 50 neural
networks with random weights and connections and evaluates
them based on their performance against human opponents
or against other neural networks in a competitive process.
New populations of neural networks are generated that show
improvements. The evolutionary process continues until a
neural network is obtained that can play effectively and win
consistently against human opponents.

In [11] a method is proposed to evolve game strategies
using ant colony optimization (ACO) and neural networks. The
neural network is used to assess the fitness of each solution
in the ACO search. The fitness of a solution is determined
by how well it performs against a set of human opponents.
The solutions with the highest fitness are used to create the
next generation of solutions. This process is repeated until a

solution is found that can consistently win against a human
opponent.

III. MINIMAX ALGORITHM

The Minimax algorithm is a method used in many areas
such as game theory and decision-making to determine the
best strategy in zero-sum game situations [12] [13]. Its main
objective is to minimize the maximum possible loss or max-
imize the minimum possible gain in a game between two
players. Its space complexity is the same as the depth-first
search algorithm O(d). However, its time complexity is O(bd),
(where b is the branching factor and d is the depth of the tree),
which means that for complex search spaces, its execution time
will be exponential making the response time really long, and
in some cases with no possibility of terminating.

The Minimax algorithm operates on the principle that play-
ers will always choose their most beneficial move, maximizing
their gain while minimizing the opponent’s. By assessing the
complete game tree, it determines the best move considering
potential responses at every level. When the entire tree is
mapped, the algorithm identifies the optimal move, ensuring
a win or draw for the user. In extensive games, exploration is
typically limited to a specified depth, not always reaching the
end [14].

As an example of application, in [15], Baxter describes a
chess program called KnightCap that uses a combination of
temporal difference learning (TDL) and Minimax search to
improve its play.

IV. ANT COLONY OPTIMIZATION ALGORITHM FOR
PLAYING BOARD GAMES

This section presents the proposal of this paper, starting
with the description of how to translate a game board to a
graph. Then the evaluation function to guide the decision-
making process and the pheromone actualization is explained.
Finally, the pseudocode of the algorithm is shown.

Its time complexity is O(b∗d∗a∗e) where a is the number
of ants and e is the number of epochs.

A. How to See the Game as a Graph

In the case of board games, each state of the board can be
seen as a node, and the weight of each edge can be determined
by calculating the value of the board relative to the player. Fig.
1 shows a graph where each node represents a board state.
Each edge connects the current board state with a potential
future board state if the move is made. Each edge has the
board’s value after the potential move. The weight of each
edge is determined by the evaluation function that calculates
the value of the potential future board state when the move is
applied.

The value of each edge can be positive, negative, or zero.
The value will be negative if the board benefits the opponent
more than the player, positive if the board provides winning
possibilities for the player, and zero in the case of a draw.

Each node has four properties: move, weight, τ (pheromone
level), and children. A move gives the coordinates {x,y} of the
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Fig. 1. Graph of the Tic-Tac-Toe game

board to put the player’s symbol. Children are the descendant
nodes. However, the descendants are not necessarily all the
possible moves because each ant can only see a randomly
selected set of n moves from all possible moves. Each new
move is added to the node’s children. Therefore, the first ant
chooses among n moves it can see, but if the second ant
sees another n moves, all different from those of the first ant,
the second ant will choose among 2n possible moves. This
allows for greater exploration without significantly increasing
computational cost.

As each ant advances, it generates descendants from the
current node, expanding the graph only in the nodes it visits.
This presents a disadvantage compared to Minimax and other
algorithms due to its inability to consider all options, therefore,
it does not guarantee to find the optimal move every time.
However, it has an advantage in terms of computational cost.
This allows it to explore deeper in the same amount of time,
enabling it to find moves further into the future and thereby
outperform other algorithms with more limited future move
vision.

In the beginning, the value of τ is the same for all edges,
so the random selection is based solely on the probabilities
according to the weights of each edge. The ants will traverse
the graph sequentially, not in parallel. An epoch is when all
the ants finish their path. The maximum depth reached by each
ant is specified, and when all ants have finished their path, the
process of updating τ begins. As the graph is expanding, for
negative board’s values when the opponent is playing, we take
the value as positive, this is assuming the opponent is playing
the best move it can, so when we take the probabilities of each
move, the most negative value will be chosen by the opponent.
The sum of the path considers negative values as negative so
the final path’s value is negative when the play is bad for the
player.

The total value of the path is calculated by summing the
weight of all edges that each ant passed through. If the total
value is negative, the pheromones of each edge that the ant
traversed are erased, meaning τ = 0, to prevent the ants
from passing through there again in the future. If the value
is positive, the corresponding τ is updated.

After a relatively low number of epochs (between 10 and
20), the pheromone values are updated and differentiated,
with the best moves having much higher pheromone values

compared to other moves. To choose the move on the board,
we utilize the information provided by the algorithm in the
following manner:

• Take the first move chosen by each ant in the last epoch.
• Calculate the total value of the path for each of these ants

and sum the path values that started with the same move.
• The move with the highest sum of path values is chosen.
For example, for an algorithm with 5 ants:
• In the last epoch, the ants chose the following initial

moves: {3,2}, {2,1}, {3,2}, {1,3}, {1,3}.
• They obtained the path values: {19, 22, 14, 20, 23}.
• The paths that started with the move {3,2} had a total

of 33. The paths that started with the move {2,1} had
a total of 22, and the paths that started with the move
{1,3} had a total of 43. Therefore, for this example, the
move {1,3} is chosen.

B. Evaluation Function for Tic Tac Toe

For the evaluation function, three main aspects were con-
sidered: the number of rows, columns, or diagonals (any line)
where it is still possible to have a line of the same symbol
to win, the number of lines that are only one cell away from
winning, and lastly, whether the board has already been won
or lost. The scores for each aspect were defined empirically.

For each line that can be used to win, one point is awarded.
For each line that is only one cell away from the player
winning, 50 points are awarded. If the opponent will be the
winner, 100 points are subtracted. Lastly, for each line where
the opponent has all the cells in the row occupied by the player
and one cell occupied by the opponent, 40 points are added.
This was done to prioritize a tie over a risky move with a low
probability of winning.

Finally, if the board shows the player as the winner, the
value will be 100/depth, where depth is the level at which
the graph reached the move. Dividing by depth assigns higher
priority to moves that result in a faster win. If the board shows
the opponent as the winner, the value will be -100/depth. In the
case of a tie, the value will be 0. Fig. 2 shows some examples
of boards and their respective values.

C. Evaluation Function for Chess

In this section we will only explain how to evaluate the
board for Chess to get the values the algorithm needs to choose
a play, the rest of the algorithm is the same for both games.

The function assigns different values to each piece: pawn =
1, knight = 3, bishop = 3, rook = 15, queen = 25, king = 0.
It accumulates the value and number of pieces for each color.
It also adds the number of opponent’s pieces attacked and
subtracts the number of pieces under attack by the player. It
evaluates control of the center of the board and adds a value of
one if the pieces are on central squares. It checks for check,
and if the piece giving check is not in danger, 500 points
are added. In the case of checkmate, 2000 points are added.
Depending on the turn, the score is adjusted to reflect control
of the game, assigning a positive value if the current player’s
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Fig. 2. Evaluation function with different board states

Fig. 3. Graph before pheromone actualization. Letter V represents the board’s
value, T represents the pheromone’s value

Fig. 4. Graph after pheromone actualization. Letter V represents the board’s
value, T represents the pheromone’s value

pieces have the advantage over the opponent and a negative
value otherwise.

D. Pheromone Actualization

First, it is important to note that two variables are used:
τ (the current pheromone value of the edge) and deltaTau,
an auxiliary value that stores the amount to be added to the
current τ , initialized to 0.

The process of updating the pheromones on each edge is as
follows:

• The edges traversed by each ant are examined.
• Check the value of the ant’s path used on this edge.
• If it is greater than zero, deltaTau = Q * (ant’s path value)

+ child.deltaTau.
• If deltaTau ≤ 0, deltaTau = 0
• Finally, each node is revisited and updated using the for-

mula: child.tau = (1−rho)∗child.tau+child.deltaTau
Fig. 3 shows an example of two ants, one red and one blue,

playing with the ’O’, the root node is the actual board. After
they complete their path, the red ant chose a path that finished
with a win for the player, while the blue ant finished with a
win for the opponent. Fig. 4 shows pheromone actualization,
the board’s values are the same but τ value has changed.

Algorithm 1 Main Game Loop
1: d1← depthACO
2: d2← depthMinimax
3: E ← epochs
4: board← gen tab(n)
5: #check if the game finished
6: Gameover ← check winner(board)
7: while not Gameover do
8: Print(’ACO Plays’)
9: move← ACO(board, d1, n,Q, rho, ants, E, True)

10: board← apply move(board,move, True)
11: Gameover ← check winner(board)
12: if not Gameover then
13: Print(’MiniMax Plays’)
14: move← compMove(board, False, d2)
15: board← apply move(board,move, False)
16: Gameover ← check winner(board)
17: end if
18: end while

V. EXPERIMENTS AND RESULTS

The pseudocode for ACO to play against Minimax, both in
Tic-Tac-Toe and in Chess, is shown in Algorithm 1 box. The
first scenario used three different game modes of Tic-tac-toe:

• Tic-Tac-Toe 3x3: The game is played on a square board
consisting of 9 cells arranged in 3 rows and 3 columns.
Two players participate in the game, with one using the
symbol ”X” and the other using the symbol ”O.”

• Tic-Tac-Toe 5x5: Same as Tic-Tac-Toc 3x3 but with
a square board of 25 cells arranged in 5 rows and 5
columns.

1452



Algorithm 2 ACO
1: function ACO(board, d, n,Q, ρ, ants, epochs, player)
2: for epoch← 1 to epochs do
3: CostPath← []
4: for ant← 1 to ants do
5: AccumWeight← []
6: for current depth← 1 to d do
7: Gameover ← CHECK WINNER(board)
8: if ¬Gameover then
9: # EXPAND function gives possible

moves
10: moves, weights← EXPAND(board)
11: if moves /∈ node.children then
12: ADD CHILD(node, child)
13: end if
14: visibility ← [child.weight ×

child.tau for child in descendants]
15: visibility ← [−value if value <

0 else value for value in visibility]
16: end if
17: Probabilities ←

[value/
∑

(visibility) for value in visibility]
18: # ROULETTE makes a selection by

roulette
19: index← ROULETTE(Probabilities)
20: node← descendants[index]
21: AccumWeight.append(node.weight)
22: CostPath.append(

∑
(AccumWeight))

23: end for
24: UPDATE TAU()
25: end for
26: end for
27: moves← Path[0] for each ant
28: sums← []
29: for move in moves do
30: sum value← 0
31: for cost,move in COSTPATH() do
32: if move = list(move) then
33: sum value += cost
34: end if
35: end for
36: sums.append(sum value)
37: end for
38: max sum← max(sums)
39: index max sum← index of max sum in sums
40: movement← list(moves[index max sum])
41: return movement
42: end function

Fig. 5. Results (in percentage) of playing 500 times the configuration of Tic-
Tac-Toe 3x3

• Meta Tic-Tac-Toe 3x3: This is a game that extends the
3x3 game, where each of the nine cells is, in turn, a 3x3
board. The way to select a cell on the larger board is by
winning in the corresponding sub-board of that cell.

For each of the three Tic-Tac-Toe variants, 500 games were
played, pitting the proposed ACO algorithm against Mini-
max with Alpha-Beta pruning. Experimental results indicate
that ACO outperforms Minimax in terms of speed, despite
both algorithms being allocated approximately one second
of computation time. Minimax achieves a depth of three,
whereas ACO explores a depth of seven. The ACO algorithm’s
parameters are detailed below:

• depthACO = 7 depth for ACO algorithm
• depthMinimax = 3 depth for Minimax algorithm
• n = 20 number of moves chosen randomly
• Q = 1 learning ratio
• rho = 0.1 Pheromone Decay Rate
• ants = 5
• epochs = 15

The algorithm’s parameters were empirically selected after
experimentation with various parameter sets. The results for
the three Tic Tac Toe’s variants are depicted in Fig 5.

• Win by ACO: 6% of the games Win by Minimax: 2% of
the games Draw: 92% of the games

• Win by ACO: 0% of the games Win by Minimax: 0% of
the games Draw: 100% of the games

• Win by ACO: 21% of the games Win by Minimax: 12%
of the gamesDraw: 67% of the games

In the case of Chess, two distinct experiments were con-
ducted:ACO playing against Minimax with a depth of five
for the ACO algorithm, while a depth of three was used for
Minimax. The other experiment used the Kaufman Test with
a depth of five for ACO and three for Minimax. Subsequently,
both algorithms were evaluated at a depth of three.

The Kaufman Test, originally introduced by Larry Kaufman,
comprises a set of 25 chosen positions extracted from real
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chess games. Participants are presented with these positions
and are tasked with providing a move for each position [16].

In the context of the Kaufman test, when the test conditions
impose an identical time constraint on both algorithms, the
observed outcome indicates that ACO correctly identifies the
optimal move for four boards, whereas Minimax attains the
correct move for two boards. Conversely, when the constraint
is placed on the depth of search, ACO identifies the correct
move for three boards, while Minimax achieves correctness
for two boards. The average time for ACO to give the move
of the 25 boards is 0.757s, the average time for Minimax is
1.6s. The average memory used for ACO to give the move of
the 25 boards is 115.365Mb, the average memory for Minimax
is 116.08Mb.

Both algorithms were also pitted against each other as was
done in the case of Tic Tac Toe; however, in these games,
Minimax exhibited a significantly higher win rate, winning
80% of the time, while 20% resulted in draws.

VI. DISCUSSION

The Ant Colony Optimization algorithm performs slightly
better than the Minimax algorithm in two out of three Tic
Tac Toe variants. However, in the 5x5 Tic Tac Toe variant, all
matches resulted in draws. This could be due to the increased
complexity of achieving victory in the 5x5 variant, where
strategic planning is more intricate due to the opponent’s
enhanced ability to block potential paths to victory. In contrast
to the 3x3 format, where opportunities for victory prevail, the
5x5 board limits offensive and defensive strategies, resulting
in a higher likelihood of draws as players prioritize blocking
victory paths over gaining a definitive advantage.

In the context of chess, a game with a significantly larger
search space, it becomes evident that ACO exhibits improved
performance during the Kauffman test but performs less op-
timally when competing against Minimax. This discrepancy
may arise from an evaluation function that inadequately as-
signs a sufficiently high value when victory is attainable. Given
the extensive search space inherent to chess, the probability
of selecting the optimal value diminishes, contributing to this
observed difference in performance.

VII. CONCLUSIONS

The ACO approach demonstrates a greater ability to explore
different options and find suboptimal moves in a limited time.

However, it is important to note that these conclusions may
vary depending on the specific game configurations. While
adding variants may complicate the game, further research and
testing with other strategy games are recommended to validate
these results in different contexts.

While this article explored various strategy games, it is
feasible to implement the algorithm in diverse decision-making
problems. As shown in Algorithm 2, the code is not specific
to the game being played, with the only difference being in
the EXPAND function. By adapting the evaluation function
to the specific context, it can be implemented without the
need for prior information. Examples of such problems include

risk identification and management in investment, route and
logistics planning, trajectory planning for robotics, and vehicle
routing. While these problems can be solved using Minimax,
having an alternative algorithm can be advantageous when
resources are limited.
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