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Abstract—Multi-variate time series forecasting plays a crucial
role in addressing key tasks across various domains, such as early
warning, pre-planning, resource scheduling, and other critical
tasks. Thus, accurate multi-variate time series forecasting is
of significant importance in guiding practical applications and
facilitating these essential tasks. Recently, Transformer-based
multi-variate time series forecasting models have demonstrated
tremendous potential due to their outstanding performance in
long-term time predictions. However, Transformer-based models
for multi-variate time series forecasting often come with high
time complexity and computational costs. Therefore, we propose
a low time complexity model called Fourier U-shaped Network
(F-UNet) for multi-variate time series forecasting, which is non-
Transformer based. Specifically, F-UNet is composed of low time
complexity neural network components, such as Fourier neural
operator and feed-forward neural network, arranged in a U-
shaped architecture. F-UNet conducts channel and temporal
modeling separately for the multi-variate time series. The U-
Net constructed based on Fourier neural operators is employed
to achieve channel interactions, while linear layers are used to re-
alize temporal interactions. Experimental results on several real-
world datasets demonstrate that F-UNet outperforms existing
Transformer-based models with higher efficiency in multi-variate
time series forecasting.

Index Terms—Multivariate time series forecasting, U-Net,
fourier transform

I. INTRODUCTION

With the continuous advancement of information and intel-

ligence, various technologies such as sensors and monitoring

devices have been widely applied, resulting in a large amount

of time series data. These abundant data resources provide a

solid foundation for conducting time series forecasting. The

widespread use of time series data has promoted research and

applications in time series forecasting. Time series forecasting

is a method that utilizes historical data models to predict future

trends. By analyzing time series data, we can identify patterns

and trends, and based on these patterns, establish predictive

models to anticipate future occurrences. This holds significant

importance in decision-making, resource planning, risk man-

agement, and other aspects. For instance, based on weather

forecasts, people can make disaster preparations in advance;

using traffic flow predictions, individuals can choose the

optimal travel routes; and through forecasting future weather

conditions based on historical data, precision agriculture can
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enhance crop yields and reduce costs by adjusting planting

times and methods.
Compared with traditional statistical methods and machine

learning methods, deep learning models have better adaptabil-

ity in time series prediction, can handle complex non-linear

relationships, handle large amounts of data, and adapt to differ-

ent data types, showing better prediction results. Transformer-

based models have emerged in many excellent works on multi-

variate time series prediction tasks because they can better

solve long-term prediction problems. However, the quadratic

complexity of the sequence length L in memory and time

limits the performance improvement of the Transformer-based

models. Therefore, current Transformer-based methods focus

on reducing the complexity of attention computing. LogTrans

[1] reduces complexity to O(L(log(L))2) by introducing local

convolution in Transformer. Informer [2] reduces complex-

ity to O(L log(L)) by utilizing ProbeSpare attention based

on KL divergence. Autoformer [3] reduces complexity to

O(L log(L)) by proposing an Auto-correlation mechanism.

FEDformer [4] reduces complexity to O(L) by replacing the

self-attention block with a frequency enhancement block.
Although Transformer-based models have made significant

progress in reducing complexity, recent studies have shown

that non-Transformer models, including SCINet [5], DLinear

[6], and MTS-Mixers [7], outperform Transformer-based mod-

els in terms of predictive performance. The multi-variate time

series forecasting model based on non-Transformer exhibits

advantages such as low time complexity and high predic-

tion accuracy. Encouraged by the outstanding performance

and promising prospects of excellent non-Transformer multi-

variate time series forecasting models, we propose a novel

non-Transformer Fourier U-shaped Network (F-UNet) for

multi-variable time series prediction. Specifically, the multi-

variate time series data consists of both channel and temporal

dimensions, and we separately model the channel interaction

and temporal interaction. The Fourier U-Net dynamically

captures local and global spatial correlations for channel in-

teractions, while linear layer is utilized to model the temporal

correlations for temporal interactions. The main contributions

of this paper are as follows.

1) In multi-variate time series data, there are two dimen-

sions: channel and temporal. We perform separate oper-

ations for channel interaction and temporal interaction.

Specifically, for channel interaction, we use the Fourier
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U-Net as the framework to capture local and global

spatial correlations in the channel dimension. For tem-

poral interaction, we use linear layer as the framework to

capture temporal correlations in the time dimension.

2) We propose a Fourier U-shaped Network to finely process

local spatial information and global spatial information to

better capture channel dependencies.

3) We propose a non-Transformer model with low time

complexity, which, compared to the state-of-the-art

Transformer-based multi-variate time series prediction

models, achieves state-of-the-art predictive performance

on several common real-world multi-variate time series

datasets with very few parameters and fast inference

speed.

The rest of the paper is organized as follows. Related

Work is discussed in Section II. Fourier U-shaped network

architecture is described in Section III. Experimental Results

and Analysis are provided in Section IV. Finally, the paper is

concluded in Section V.

II. RELATED WORK

A. Multivariate Time Series Forecasting

Multivariate time series prediction refers to the prediction

of data at a certain time or period of time in the future

based on historical data. This technology is widely used in

economic, financial, meteorological, traffic, and other fields.

Due to the important application significance of multivari-

ate time series, many excellent models have been gener-

ated. ARIMA [8] uses a differential method to convert non-

stationary processes into stationary processes for prediction.

DeepAR [9] combines RNN and autoregressive methods to

model the probability distribution of future sequences. The

multivariate time series prediction models based on Trans-

former can effectively conduct long-term modeling, demon-

strating strong potential. Recently, in terms of time complexity

and prediction accuracy, non-Transformer-based models [5]–

[7] have surpassed Transformer-based models [5]–[7], and

non-Transformer-based models may once again be great.

B. U-Net

U-Net [10] is a deep learning architecture developed for

image modeling, segmentation, and generation in computer

vision. The U-Net architecture consists of two main compo-

nents: an encoder network and a decoder network. The encoder

network is designed to extract features and downsample them

to lower resolutions. The decoder network is designed to

obtain a feature map from the encoder network and sample it to

a higher resolution. Local and global information is processed

in a more distributed manner. Downsampling corresponds

to sequential processing of information more globally, while

upsampling corresponds to fine-grained global information and

adding local information by skipping connections. A typical

U-Net architecture is shown in Fig.1.

Fig. 1. U-Net based architectures.

Fig. 2. Fourier spatial interaction.

C. Fourier Neural Operator Layer

The Fourier Neural Operator (FNO) Layer [11] consists of

fast Fourier transform and weight multiplication. As shown

in Fig.2, the low Fourier modes provide global information,

while the high Fourier modes provide local information. The

Fourier neural operator layer simultaneously processes global

and local information by multiplying the weights of different

modes. Discrete Fourier Transform (DFT) in Fourier space is

briefly described below.

Discrete Fourier Transform (DFT) converts n-dimensional

complex signal f(x) = f(x1, ..., xn) at M1 × ... × Mn grid

points into its complex Fourier modes f̂(ε1, ...εn), Specifically,

as follows:

f̂(ε1, ...εn) = Ff (ε1, ...εn) =

ΣM1
m1=0...Σ

Mn
mn=0f(x)e

−2πi·(m1ε1
M1

+...+mnεn
Mn

).
(1)

where (ε1, ...εn) ∈ ZM1
× ...ZMn

.

III. FOURIER U-SHAPED NETWORK ARCHITECTURE

In this section, first briefly state the problem definition of

multivariate time series prediction; Secondly, briefly state the

series stationarization; Finally, a detailed introduction is given

to the overall architecture of F-UNet.

A. Problem definition

Given a historical multivariate time series Xh =

[x1, ..., xT ] ∈ R
T×C , where T represents the length of the
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Fig. 3. An illustration of the proposed F-UNet architecture.

historical time series and C represents the number of features,

the multivariate time series prediction task aims to predict the

value of the next T ′ time steps, i.e., X̂f = [x̂T+1, ..., x̂T+T ′ ] ∈
R

T ′×C . The task of multivariate time series prediction is to

learn a mapping function f , i.e., Xh
f−→ X̂f .

B. Series Stationarization

Although stationarity is crucial for the predictability of

time series, the majority of real-world time series are non-

stationary, possibly exhibiting distributional shifts, where sta-

tistical characteristics such as mean and variance often vary

over time. Most existing works remove non-stationary infor-

mation (such as mean and variance) from the input sequences

during data pre-processing to reduce data distribution differ-

ences and improve predictive model performance. However,

applying the removal of non-stationary information through

normalization to the model inputs can introduce another issue,

preventing the model from capturing the original data distri-

bution, i.e., removing non-stationary information that may be

highly valuable for predictions.

We adopt the Reversible Instance Normalization (RevIN)

[12], which explicitly reintroduces the removed non-stationary

information back into the model. This effectively addresses

the problem of distributional shifts in time series forecasting.

RevIN is a general normalization and de-normalization method

with a symmetric structure of learnable affine transformations.

It consists of two corresponding operations [13]: the normal-

ization module handles non-stationary sequences caused by

varying means and standard deviations, making the sequences

more stable for predictability; the de-normalization module

transforms the model output back to the original statistical

data, i.e., the model output retains the non-stationary infor-

mation of the original sequences, preventing excessive over-

stabilization.

1) Normalization Module: This module is to convert the

original data into stationarized input, which follows a rela-

tively stable distribution. The Normalization Module can be

formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μt = Et[x
t
h] =

1

T
ΣT

j=1xt+j

σ2
t = V ar[xt

h] =
1

T
ΣT

j=1(xt+j − μt)
2

xnorm,t
h =

xt
h − μt√
σ2
t + ε

· α+ β

(2)

where ut, σ
2
t ∈ R

1×C , α, β ∈ R
C are learnable affine

parameter vectors. ε is a positive scalar that can be ignored.

2) De-normalization Module: Let NNp(·) represents the

neural network, where p is all the parameters of the neural

network. The stationary input sequence xnorm,t
h is input into

the neural network model NNp(·) to obtain the stationary

output x̂norm,t
f of the model, i.e., x̂norm,t

f = NNp(x
norm,t
h ).

The De-normalization Module can be formulated as follows:

x̂t
f =

√
σ2
t + ε · ( x̂

norm,t
f − β

α
) + μt (3)

De-normalization Module returns the original data distribution

information to the model output by scaling and shifting by an

amount equal to the shift and scaling of the input data in the

Normalization Module.

In summary, the stationary input sequence Xnorm
h obtained

through Eq.(2) is fed into the neural network model NNp(·)
to obtain a stationary output X̂norm

f of the model. Finally, the

stationary output is processed through Eq.(3) to obtain the final
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output X̂f of the model. The above process can be formulated

as: ⎧⎪⎨
⎪⎩

Xnorm
h = ΘNorm(Xh)

X̂norm
f = NNp(Xnorm

h )

X̂f = ΘdeNorm(X̂norm
f )

(4)

Where ΘNorm represents Normalization operation shown

in Eq.(2), ΘdeNorm represents De-normalization operation

shown in Eq.(3), and NNp represents the neural network

model.

C. Overall architecture of F-UNet

F-UNet models multivariate time series channel and tempo-

ral separately. In order to capture channel correlation, we fully

consider the interaction of local and global spatial information,

and design a Fourier U-Net. To capture temporal correlation,

a simple linear layer is used to map historical time steps

to predicted time steps. The proposed F-UNet architecture is

shown in Fig.3.

The F-UNet consists of two core components: the Fourier

U-Net for channel interaction and linear layers for time

interaction. The overall model can be formulated as follows:

X C = fchannel(Xh). (5)

Xf = ftemporal(X C). (6)

Where fchannel and ftemporal respectively represent the pa-

rameters for channel interaction and time interaction. Detailed

descriptions of channel interaction and temporal interaction

are provided in III-D and III-E, respectively.

D. Channel Interaction

We perform channel interaction using the proposed Fourier

U-Net. The Fourier U-Net consists of Fourier neural operators

and channel-wise attention. The low Fourier modes of Fourier

neural operators provide global information, while the high

Fourier modes offer local information. The downsampling in

the U-Net corresponds to a more global sequential processing

of information, while the upsampling corresponds to fine-

grained global information. As a result, the Fourier U-Net

can effectively capture local and global spatial correlations.

Additionally, the introduction of channel attention adjusts the

importance of feature map channels, enhancing the model’s

focus and response to crucial features while reducing reliance

on irrelevant features. This improves the expressive capacity

and performance of the model in feature processing.

1) Fourier Neural Operator: The Fourier neural operator

includes the fast Fourier transform and the weight multi-

plication in Fourier space. The low Fourier modes provide

global information, while the high Fourier modes provide

local information. The Fourier neural operator combines global

and local information by weighting different modes simulta-

Fig. 4. Channel-wise Attention.

neously. Given the input X ∈ R
Cin×T , the Fourier neural

operator can be formulated as:

Xfourier = gfft(X ) ∈ C
Cin×d,

X ′
fourier[:, : modes] = WXfourier ∈ C

Cout×modes,

X ′
fourier[:,modes :] = Z,

Xifourier = gifft(X ′
fourier) ∈ R

Cout×T .

(7)

Where gfft and gifft represent the fast Fourier transform

and inverse Fourier transform, respectively. modes is the

number of modes, W ∈ C
Cin×Cout×modes denotes a complex

parameter matrix, Z ∈ C
Cout×(d−modes) represents the zero

matrix, that is, to filter out the invalid high-frequency part, and

d = T//2 + 1.

2) Channel-wise Attention: Inspired by the lightweight

convolutional attention module proposed by CBAM [14],

we incorporate channel-wise attention as shown in Fig.4 to

enhance the model’s representational capacity. Channel-wise

attention mainly focuses on relationships between different

channels within the feature map. In CNNs, each channel

represents different feature information. Some channels may

be more critical for the successful execution of the task, while

others may contribute less. The channel attention mechanism

calculates importance weights for each channel, enabling

the network to automatically learn and emphasize the most

relevant feature channels for the current task. Therefore,

the introduction of channel-wise attention allows for better

selection of important features and suppression of irrelevant

ones, thus improving the efficiency and representational power

of feature representation. Specifically, given the input/output

X ′
ca/Xca ∈ R

Cn×T of channel-wise attention, it can be

formulated as follows:

ψca(X ′
ca) = σ(Wn

1 (ReLU(Wn
0 (AvgPool(X ′

ca))))

+Wn
1 (ReLU(Wn

0 (MaxPool(X ′
ca))))),

Xca = ψca(X ′
ca) · X

′
ca.

(8)

Where ψca(X ′
ca) ∈ R

Cn×1 represents the 1-D channel atten-

tion weights, AvgPool(X ′
ca) and MaxPool(X ′

ca) ∈ R
Cn×1
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denote the average pooling and max pooling operations, re-

spectively. Wn
1 ∈ R

Cn×Cn
rn and Wn

0 ∈ R
Cn
rn

×Cn are parameter

matrices, and rn indicates the channel reduction factor. To

reduce the number of parameters, the same weights Wn
0 and

Wn
1 are shared.
In summary, the ith layer upsampling or downsampling in

the Fourier U-Net can be formulated as follows:

X̂ C
i = πfourier(X )

X C
i = πca(X̂ C

i ).
(9)

Where πfourier represents all the parameters of the Fourier

neural operator in Eq.(7), and πca represents all the parameters

of the channel-wise attention in Eq.(8).

E. Temporal Interaction
For temporal interactions, we choose to use feed-forward

neural networks to model the time dependencies. Specifically,

given the output X C ∈ R
T×C for channel interactions,

the output X f ∈ R
T ′×C of temporal interactions can be

formulated as:

Xf = WtempX C + btemp. (10)

Where Wtemp ∈ R
T ′×T and btemp ∈ R

T ′
are the parameters

of the feed-forward neural network.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup
1) Datasets: We conduct extensive experiments on several

widely used real-world multivariate time prediction datasets,

including ETT (transformer temperature) [2] (ETTh2, ETTm1,

ETTm2), Traffic, Electricity, Weather, ILI, and Exchange-Rate
[15]. Table I provides a brief description of these datasets.

All experiments on these datasets in this article are conducted

under the setting of multivariate time series prediction.
2) Compared methods: The baseline models selected in

the experiment include five state-of-the-art Transformer-

based models: FEDformer [4], Autoformer [3], Informer [2],

Pyraformer [16], LogTrans [1], and a state-of-the-art non-

Transformer-based model: SCINet [5].
3) Implementation details: The training of F-UNet is based

on L2 loss (Eq.(12)) and Adam optimizer. The training process

uses early stop over 10 epochs, with all models implemented in

PyTorch and trained and tested on a single NVIDIA GeForce

3090 32 GB GPU.
The hyper-parameter of the baseline methods are the same

as those in the original paper. Table II shows the settings of

hyper-parameter for different datasets.

B. Evaluation Indicator
As in previous work, we use two metrics: Mean Absolute

Error (MAE) and Mean Squared Error (MSE).

MAE(Xf , X̂f ) =

∑T ′

i=1

∑C
j=1 |x̂j

T+i − xj
T+i|

T ′ · C (11)

MSE(Xf , X̂f ) =

∑T ′

i=1

∑C
j=1(x̂

j
T+i − xj

T+i)
2

T ′ · C (12)

(a)

(b)

Fig. 5. Given 96 to predict 96 steps on the (a) ETTh2, (b) Exchange-Rate.

C. Results and Analyses

In the experiment, the input time steps for the ILI dataset

are set to 36, while for other datasets, they are set to 96. The

prediction time steps for the ILI dataset are set to 24, 36, 48,

60, whereas for other datasets, they are set to 96, 192, 336,

720. Table III summarizes the prediction results of different

models on eight multivariate time series datasets. The best

results are highlighted in bold, while the second best results are

highlighted with an underline. Figure 5 provides a qualitative

analysis comparing the prediction results of F-UNet and the

state-of-the-art Transformer-based model, FEDformer.

Table III demonstrates that the prediction results of F-UNet

are close to, and in some cases even superior to, the state-of-

the-art baseline models. On the Exchange, Weather, and ILI
datasets, the proposed F-UNet outperforms the state-of-the-art

comparative models for all prediction time steps. On the ETT
dataset, F-UNet outperforms the state-of-the-art Transformer-

based model. On the ECL and Traffic datasets, the prediction

results of F-UNet are comparable to those of the state-of-the-

art Transformer-based model. Overall, the proposed F-UNet

shows competitive advantages compared to the state-of-the-art

Transformer-based models.

Table IV presents the parameter counts of different models

with an input time step of 96 and an output time step of

96. Table V shows the inference time and average training

time for different models. From Table IV, it can be observed

that F-UNet has significantly fewer parameters than other

models. Taking into account the results from both Table III and

Table IV, we can deduce that even with a significantly lower

number of parameters compared to other baseline models, F-

UNet’s prediction results can be close to or even superior to

those of the baseline models, demonstrating its effectiveness

in multivariate time series prediction tasks.

Table III indicates that F-UNet’s predictive performance
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TABLE I
Summary of different datasets.

Datasets ETTh ETTm Traffic Weather Electricity ILI Exchange-Rate

Variants 7 7 862 21 321 7 8
Timesteps 17,420 69,680 17,544 52,696 26,304 966 7,588

Granularity 1hour 15min 1hour 10min 1hour 1 week 1day
Start time 7/1/2016 7/1/2016 1/1/2015 1/1/2020 1/1/2012 1/1/2002 1/1/1990
Task type Multi-step Multi-step Multi-step Multi-step Multi-step Multi-step Multi-step

Data partition 6:2:2 6:2:2 7:1:2 7:1:2 7:1:2 7:1:2 7:1:2

TABLE II
The hyper-parameters used in different datasets.

Hyper-parameters ETTh2 ETTm1 ETTm2 Traffic Weather Electricity Exchange-
Rate

ILI

Batch size 16 32 32 32 32 32 32 32
Number of Fourier modes 10 8 10 8 10 10 10 8

Number of U-Net hidden layer channels [8,16] [8,16] [8,16] [16,32] [16,32] [8,16] [8,16] [8,16]
Learning rate 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3

TABLE III
Multivariate time series forecasting results. The length of the historical horizon is set as 36 for ILI and 96 for the others. The prediction lengths are

{24,36,48,60} for ILI and {96, 192, 336, 720} for others. Black bold is state-of-the-art and underline is the second-best result.

Method F-UNet FEDformer SCINet Pyraformer Autoformer Informer LogTrans
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.203 0.307 0.193 0.308 0.205 0.312 0.386 0.449 0.201 0.317 0.274 0.368 0.258 0.357
192 0.216 0.320 0.201 0.315 0.197 0.308 0.378 0.443 0.222 0.334 0.296 0.386 0.266 0.368

ECL 336 0.228 0.329 0.214 0.329 0.202 0.312 0.376 0.443 0.231 0.338 0.300 0.394 0.280 0.380
720 0.264 0.355 0.246 0.355 0.234 0.338 0.376 0.445 0.254 0.361 0.373 0.439 0.283 0.376
96 0.612 0.339 0.587 0.366 0.651 0.393 0.867 0.468 0.613 0.388 0.719 0.391 0.684 0.384

192 0.640 0.355 0.604 0.373 0.604 0.372 0.869 0.467 0.616 0.382 0.696 0.379 0.685 0.390
Traffic 336 0.663 0.360 0.621 0.383 0.611 0.375 0.881 0.469 0.622 0.387 0.777 0.420 0.734 0.408

720 0.682 0.367 0.626 0.382 0.649 0.393 0.896 0.473 0.660 0.408 0.864 0.472 0.717 0.396
96 0.112 0.242 0.148 0.278 0.142 0.249 1.748 1.105 0.197 0.323 0.847 0.752 0.968 0.812

192 0.212 0.329 0.271 0.380 0.261 0.364 1.874 1.151 0.300 0.369 1.204 0.895 1.040 0.851
Exchange 336 0.385 0.454 0.460 0.500 0.457 0.490 1.943 1.172 0.509 0.524 1.672 1.036 1.659 1.081

720 1.040 0.771 1.195 0.841 1.364 0.859 2.085 1.206 1.447 0.941 2.478 1.310 1.941 1.127
96 0.181 0.232 0.217 0.296 0.239 0.271 0.622 0.556 0.266 0.336 0.300 0.384 0.458 0.490

192 0.236 0.276 0.276 0.336 0.283 0.303 0.739 0.624 0.307 0.367 0.598 0.544 0.658 0.589
Weather 336 0.289 0.312 0.339 0.380 0.330 0.335 1.004 0.753 0.359 0.395 0.578 0.523 0.797 0.652

720 0.362 0.359 0.403 0.428 0.400 0.379 1.420 0.934 0.419 0.428 1.059 0.741 0.869 0.675
24 2.185 0.922 3.228 1.260 2.782 1.106 7.394 2.012 3.483 1.287 5.764 1.677 4.480 1.444
36 1.766 0.852 2.679 1.080 2.689 1.064 7.551 2.031 3.103 1.148 4.755 1.467 4.799 1.467

ILI 48 1.824 0.865 2.622 1.078 2.324 0.999 7.662 2.057 2.669 1.085 4.763 1.469 4.800 1.468
60 2.345 0.955 2.857 1.157 2.802 1.112 7.931 2.100 2.770 1.125 5.264 1.564 5.278 1.560
96 0.340 0.376 0.358 0.397 0.312 0.355 0.645 0.597 0.346 0.388 3.755 1.525 2.116 1.197

192 0.431 0.425 0.429 0.439 0.401 0.412 0.788 0.683 0.456 0.452 5.602 1.931 4.315 1.635
ETTh2 336 0.498 0.463 0.496 0.487 0.413 0.432 0.907 0.747 0.482 0.486 4.721 1.835 1.124 1.604

720 0.498 0.482 0.463 0.474 0.490 0.483 0.963 0.783 0.515 0.511 3.647 1.625 3.188 1.540
96 0.378 0.402 0.379 0.419 0.350 0.385 0.543 0.510 0.505 0.475 0.672 0.571 0.600 0.546

192 0.424 0.426 0.426 0.441 0.382 0.400 0.557 0.537 0.553 0.496 0.795 0.669 0.837 0.700
ETTm1 336 0.455 0.443 0.445 0.459 0.419 0.425 0.754 0.655 0.621 0.537 1.212 0.871 1.124 0.832

720 0.534 0.489 0.543 0.490 0.494 0.463 0.908 0.724 0.671 0.561 1.166 0.823 1.153 0.820
96 0.199 0.279 0.203 0.287 0.201 0.280 0.435 0.507 0.255 0.339 0.365 0.453 0.768 0.642

192 0.268 0.324 0.269 0.328 0.283 0.331 0.730 0.673 0.281 0.340 0.533 0.563 0.989 0.757
ETTm2 336 0.345 0.373 0.325 0.366 0.318 0.352 1.201 0.845 0.339 0.372 1.363 0.887 1.334 0.872

720 0.464 0.439 0.421 0.415 0.439 0.423 3.625 1.451 0.422 0.419 3.379 1.388 3.048 1.328

is comparable to, and even superior to, the recent state-of-

the-art Transformer-based FEDformer model, while Table V

shows that F-UNet’s inference time and average training time

are significantly lower than those of FEDformer. Based on

the results from Table III and Table V, it can be concluded

that compared to the state-of-the-art Transformer-based multi-

variate time series prediction models, F-UNet achieves higher

accuracy and efficiency with fewer parameters.
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TABLE IV
Number of parameters for different models with input/output–96/96 settings.

F-UNet SCINet Autoformer Informer FEDformer-f

Number of parameters 0.08M 0.27M 10.54M 11.33M 16.30M

TABLE V
Different models Inference Time and Average Training Time at ETTh2/Exchange-Rate with a given input of 96 steps and predict 96 steps.

Models Average Training Time (s) Inference Time (s)

F-UNet 5.32/2.42 2.328/1.199
FEDformer-f 76.75/49.11 8.934/4.503

V. CONCLUSION

This article proposes a multivariate time series prediction

method based on non-Transformer models for the problem of

multivariate time series prediction. Compared to Transformer-

based models, this method can achieve more accurate pre-

diction of future multivariate time series data with fewer pa-

rameter quantities through a U-shaped Fourier neural operator

layer and a simple linear layer. The experimental results show

that this method has high prediction accuracy and low time

complexity, and can provide an effective solution for multi-

variate time series prediction. In the future, we will further

develop multivariate time series prediction models based on

non-Transformer methods, and gain a deeper understanding

of the reasons why simple non-Transformer-based models

outperform state-of-the-art Transformer-based models.
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