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Abstract—To integrate and assist the system and automation
design phases of complex marine vessels, this paper proposes a
two-level semantically enhanced scheme. At the design level, the
system components are described and automatically connected
by a developed graph-making tool using semantic “knowledge“.
Decisions regarding the system selection are made based on
certain Quality of Service Criteria (QoS) and enforced in the final
semantic database using a dedicated cognitive agent. The automa-
tion level leverages the selected systems semantic information
with that of the associated automation components and reuses the
graph-making tool to update the connection graph. The resulting
knowledge-graph is then used to “reason“ for the creation of
feasible closed-loop control architectures while a cognitive agent
determines which closed-loop architecture to use based on various
QoS criteria. The chosen closed-loop architecture can then change
in an online manner during the vessel operation in case that
system reconfiguration is required either due to malfunctioning
components, or aiming to satisfy mission’s goals. The applicability
and efficiency of the proposed method are shown using a case
study for marine propulsion.

Index Terms—semantic knowledge models, cognitive archi-
tecture, computer-supported coordination, network modelling,
control systems, marine systems

I. INTRODUCTION

Nowadays, marine vessels’ operation is characterized by
continuously growing complexity due to the highly demanding
and safety-critical tasks that they need to perform. Meanwhile,
demands from the International Maritime Organisation for
vessel emission reduction [1] are currently shifting the vessel
owners’ focus to alternative fuels and exhaust gas treatment
technologies. This results in more complex designs whose
components are often sourced from different manufacturers
(e.g., MAN, ABB), are equipped with their own automation
components (controllers, sensors) and use different protocols
and naming conventions. It is the task of the designer (ma-
rine engineer) to select the components, manually create the
connection graph based on their expertise (knowledge graph),
reiterate the design until specifications are met (e.g., attain
a speed of 12 knots, satisfy emission regulations) and then
design the control system in such a way that all automation
components can function together smoothly and effectively
(interoperability).

However, the future of the maritime sector regarding what
alternative fuels will be used is still greatly uncertain. At
the same time, the vision for autonomous vessels has begun

materializing in recent years. The increase in the required
cyber-devices, communication and coordination algorithms
as well as more sophisticated control architectures are just
the start of the new Internet of Ships (IoS) era [2]. The
selection of vessel components, their interconnections, and
the corresponding automation are thus difficult decisions to
be made by the designer, since any future modification (e.g.
conversion to another fuel, component maintenance, re-tuning
a controller) will be associated with considerable labor time
and cost.

To deal with complexity during design, methods like “Point-
based design“ start at the requirements definition and sub-
divide the design into increasingly detailed subdivisions [3].
However, this makes it difficult to adapt systems when re-
quirements change without restarting the process [4]. Instead,
systems engineering enables better tractability of requirements
and allows investigating the impact of changes on the systems
levels [5]. The impact of changes in the operating environ-
ment, like surviving damage, are commonly researched [6].
However, changes to the design are dealt with as a separate en-
gineering activity during the lifetime. Integrating new systems
during the re-configuration of an existing vessel architecture
to meet updated requirements can be expensive and time-
consuming [7]. Therefore, several authors have proposed de-
sign preparations to support reconfiguration by implementing
attributes that facilitate system changes into the design [8].

Even though the investment can be large [9], it has been
shown that preparation performs well in uncertain scenarios
through model-based case studies [10]. However, in these
abstract models, no connection is made to what triggers a
reconfiguration and what should be done to meet the trigger
requirements in reality. Therefore, while such models are nec-
essary to support investments, human decision-making during
the operation should also be considered. This could be done by
adding a human-in-the-loop [11]. Especially as fleet renewal
timing is still separated from the design process [12], the
execution of a reconfiguration strategy during the operation
is left to operators (captain, vessel engineers) without clear
guidelines from the design. For instance, the vessel operators
will eventually decide if component maintenance is necessary
based on their experience and sensor information, in contrast to
automotive applications where a service schedule is prescribed
by the design. This lack of communication between designers
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and operators can result in design modifications not being
executed at the right time, as reconfiguration thresholds are
unclear.

From the control aspect, once the system is slightly modi-
fied, closed-loop design will be redone from scratch due to its
centralized structure. The operators, on the other hand, rely
on the system feedback (e.g. speed, course, engine torque
information from sensors) to make decisions. Thus, reliable
and continuous communication of this information is essential
to prevent flawed decision-making. The authors of [13], [14]
both describe the use of digital twin technology for fault
diagnosis and accommodation of marine propulsion plants
using neural networks. Nevertheless, no discussion is made
on the semantics aspect that will enable such technologies
to be applied. Then, in [15], the authors propose a co-
simulation platform that will enable fast and reliable testing
and optimization of vessel system and automation designs
before construction, and that can also be used for training
purposes of crews during the vessel’s life-cycle. However, both
papers are using a fixed component library to choose from,
and connections to closed-loop control systems are proven
difficult to model. In addition, the occurrence of faults during
the operational phase of the vessel is not explored as a change
mechanism for the installed system configuration.

In previous work [16], [17] the impact of uncertainty when
selecting modifications or a starting design was investigated
through the use of exploratory methods dealing with deep
uncertainty, stochastic and robust optimization approaches.
However, both only considered simulated scenarios, not taking
the exact reasons for changes in the design or specific system
modifications into account. In addition, in [18], [19], the
authors proposed a switching logic between hardware and
virtual sensors and between different energy management
controllers. However, the implementation aspects of these
modular architectures were not explored.

This paper proposes a two-level semantically-enhanced ar-
chitecture aiming to assist the design and operation of marine
vessels while addressing current and future challenges of
environmental changes and design uncertainty in the maritime
field. The key aspects of the proposed architecture are the
semantic database of components (see Section II) and the
cognitive agent architecture (see Section III). An automated
tool for connecting system/ automation components based on
their semantic description, thus creating the knowledge graph,
reduces the active workload of the designer. The design of the
architecture takes into account the human-in-the-loop factor by
providing the designers or vessel operators with tools for better
decision-making. Moreover, the use of multiple cognitive
agents is aimed to enforce the design/operation decisions by
making use of semantic information, the knowledge graph,
and certain Quality of Service (QoS) criteria. In the first level
of the architecture, these criteria are related to the uncertain
transition path between different fuel options while in the
second level, these criteria are also tied to safe operation and
performance. A practical use-case of the proposed cognitive
architecture for marine propulsion is provided in Section IV,

followed by concluding remarks in Section V.
Considering the application, the main contribution of this

paper is the creation of a semantic database that enables
system and automation design revisions during the life-cycle
of the vessel, providing a sustainable engineering solution
to efficiently manage and process the uncertainties in design
decisions. The database is further enhanced with an automated
knowledge graph tool that can produce the connection graph
between components based on their semantic description.
Besides, the semantic description of components mitigates the
compatibility issues between parts of different manufactur-
ers. The addition of the cognitive architecture then provides
effective decision support to the human-in-the-loop element.
From the methodology point of view [20], the occurrence of
unexpected events (e.g. sensor faults) whose diagnosis can lead
to online reconfiguration of the control architecture using the
semantic database is considered. The semantic representation
of automation components is adapted to marine vessels and
includes virtual sensors and monitoring agents (see Section
II), in addition to control components [20].

II. SEMANTIC DATABASE OF VESSEL COMPONENTS

In this paper, we are discussing the use of a cognitive
architecture that will support the decision process of vessel
designers and operators. The core of this method consists of
a semantic database that can be seen in Fig.1. The seman-
tic database consists of a Components Database (F ) where
semantic information about available components are stored
(e.g. input, output, type), the knowledge graph where the
connections between components are visualized, and multiple
Quality of Service (QoS) criteria that are used for assessment
purposes. The components database is enriched by semantic
information provided either by the designer (e.g., the electric
motor requires electric power from the generators to produce
mechanical torque) or system manufacturers (e.g., operational
maps). Finally , in this paper, an automated knowledge graph
(G) tool is proposed to assist the design process.

A. Components database (F)

In [20] a components database was created to facilitate
the reconfigurability of temperature control in smart build-
ings. Motivated by this work, a component database is de-
signed considering the high complexity of the vessel system.
Particularly, to be able to represent the large number of
physical components in marine vessels and their complex
interconnections without exponentially increasing computation
time, the physical component description (e.g. Systems) is
simplified. Moreover, semantic information about the grouping
of hardware sensors for condition monitoring purposes is also
used. The database is thus further enhanced with the following
component descriptions:

1) “System“: Systems Σ(I), I = 1, · · · , nI each have
necessary input and output mediums. Therefore, system com-
ponents are added to the database including input and output
information for the specific medium (e.g. water, air etc.). For
instance, the fuel pump(s), electric motors, internal combustion

513



Fig. 1. Different actors’ role in the design of the semantic database

engines, batteries, propellers found inside marine vessels can
be considered as system components.

2) “Monitoring agent“: The monitoring agent M(I) is
used to oversee the health of sensors S(I) belonging to
system Σ(I), I = 1, · · · , nI . Due to the complexity associated
with marine systems, each “monitoring agent“ is typically
composed of one or more “monitoring modules“ M (I,q), q =
1, · · · , qI . The decision vector resulting from this comparison
is then compared to certain binary sensor fault signature
matrices in two levels of isolation, as already described in [21].
The result of the diagnosis is a mapping R(I) → S(I)F with
R(I) = r(I) denoting the set of residuals and S(I)F denoting
the faulty sensor set, as a result of the diagnosis process.

3) “Virtual sensor“: Each “virtual sensor“ instance lever-
ages the analytical redundancy of the system in order to create
virtual and fault-free measurements and is part of a “moni-
toring agent“. It is activated after the detection and isolation
of sensor faults by the respective “monitoring module“, thus
increasing computational effectiveness. A “virtual sensor“ is
described by the equation

x̂(I)(k) =f (I)
v (x̂(I)[k − 1], y(I)[k], u(I)[k],

x̂(I)[k]; ζ(I)s , S(I)F ),
(1)

where ζ
(I)
s denotes the design parameters of the virtual sensor.

In previous work [18], three types of “virtual sensors“
have been defined for Differential-Algebraic systems and may
be used under this module label; dynamic virtual sensors,
static virtual sensors, and Set Inversion via Interval Analysis
(SIVIA)-based “virtual sensors“.

The previously described system and automation modules
can be considered as being elements of the sets Fp and Fα

respectively, with:

Fα =Fa ∪ Fc ∪ Fs ∪ Fe ∪ Fy ∪ Fu ∪ Fm ∪ Fv, (2)

where Fa, Fc, Fs, Fe, Fy, Fu denote the set of “actuators“,
“controllers“, “sensors“, “state-estimators“, “pre-control func-
tions“ and “post-control functions“ respectively. The novelty
of the present paper regarding the semantic module database
resides in a richer description of the “plant“ and its associated
set Fp and the addition of module sets for “monitoring agents“

and “virtual sensors“ denoted as Fm, Fv respectively. From
the description of the modules belonging to each set, it can be
seen that modules of different sets can be connected with each
other by Input/Output coupling. This feature is exploited by the
Knowledge graph tool presented next. Finally, the components
database is defined as:

F = F (s)
p ∪ Fα, (3)

where F (s)
p ⊆ Fp denotes the selected systems set and Fα

denotes the automation set, already defined in (2).

B. Knowledge-graph (G)

Having described the various plant and automation com-
ponents for the semantic database, the knowledge graph is
created automatically using the semantic information of com-
ponents, in Algorithm 1. As a result, both the system designer
and the operator roles are assisted by this “smart“ feature.
The “knowledge graph“ tool is designed with two purposes
in mind; (i) to help the designer illustrate the interconnec-
tions between the physical system components in the design
level and, (ii) to enable the synthesis of feasible closed-
loop architectures, also known as the process of “semantic
matching“ [20], by combining the automation (Fα) with the
selected physical plant (F (s)

p ) components, again illustrating
the interconnections, in the automation level. As a result, the
“knowledge graph“ is created with the following features; (1)
vertices (V ): The entries of the semantic database, (2) edges
(E): The connections between vertices, (3) mediums (Υ): The
information carried by the connection.

The knowledge graph tool is built in two levels; the design
and the automation level. In the design level, the knowledge
graph algorithm 1 begins with a list of systems that are
considered by the designer for the installation. The algorithm
then starts for instance from a propeller (see vertex v1 in line
2) and connects the system components (vertices v2) that are
necessary for it to be operational in lines 3-10. When multiple
systems have the same input or output, graphs are duplicated.
The procedure is run for all the considered systems and results
in a knowledge graph (line 11) corresponding to the physical
plant connections. A decision is then made on which systems
will be installed using the cognitive architecture that will be
described in the next Section III. Thus, the set F (s)

p is obtained
(line 12). In order to make the chosen configuration opera-
tional, the addition of automation components is necessary.
In the automation level, the algorithm stars by connecting the
hardware automation components (e.g. sensors, actuators) and
the relevant controllers, as shown in lines 13-14. Moreover, the
information about the grouping of hardware sensors is used to
generate the “monitoring agents“ (belonging to set Fm) and
their connections in lines 15-24. A “monitoring agent“ requires
the output of relevant hardware sensors and controller(s) to
provide decisions on the occurrence of faults. Moreover, its

0The expression a.b in Algorithm 1 denotes the use of attribute b of the set
of attributes comprising object a. For instance, a vertex a can have attributes
b ∈ {input, output, · · · } that correspond to the semantic information carried
by vertex a.
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Algorithm 1 Multi-level Knowledge graph tool
Input: Fp,Fα − (Fm ∪ Fv) ,Fv ▷ Databases
Output: G ▷ Knowledge Graph

1: V ← Fp; E ← ∅; Υ← ∅ ▷ Design level
2: for v1 in V do ▷ Physical plant connections
3: for v2 in V do
4: y ← v2.output ∩ v1.input

1 ▷ y: medium
5: if y ̸= ∅ then ▷ Components can be connected
6: E ← E ∪ {v2, v1}
7: Υ← Υ ∪ {y}
8: end if
9: end for

10: end for
11: G← {V,E,Υ} ▷ Physical plant knowledge graph
12: Database update module: Fp 7→ F (s)

p ▷ Eq.(4)
13: V ← F (s)

p ∪ {Fα − (Fm ∪ Fv)} ▷ Automation level
14: Execute lines 2-10 ▷ Hardware automation connections
15: sg ← F .sensor groups ▷ Sensor grouping information
16: for i=1:length(sg) do ▷ Monitoring agents generation
17: V ← V ∪ {M i}
18: S ← {s ∈ Fs ∩ sg[i]} ▷ Connect sensors
19: C ← {c ∈ Fc ∩ S.edges} ▷ Connect controllers
20: E ← E ∪ {{S,M i}, {C,M i}} ▷ Update edges
21: Υ← Υ ∪ {S.output, C.output} ▷ Update mediums
22: E ← E ∪ {M i,C} ▷ Update edges
23: Υ← Υ ∪ {M i.output} ▷ Update mediums
24: end for
25: V ← F (s)

p ∪ Fα ▷ Virtual sensors addition
26: Execute lines 2-10 ▷ Virtual sensors connections
27: G← {V,E,Υ} ▷ Cyber-Physical knowledge graph

output (fault decision) can be used as input to the controller(s)
it is associated with in a fault-tolerant control scheme [18]. The
“virtual sensors“ are then connected in lines 25-26. Finally, the
complete cyber-physical knowledge graph is generated based
on the prescribed vertices, edges, and mediums, as shown in
line 27.

C. Quality of Service criteria

The Quality of Service (QoS) criteria for the target ar-
chitecture are classified as design and automation criteria.
The design criteria are related to the available systems, the
necessary interconnections and subsystems, and the opera-
tional requirements. By visualizing the interconnections and
additional systems for different selections, the designer gains
insight into the consequences of each selection. Physical plant
knowledge graphs can be ranked by using operational criteria
such as available mass and volume thresholds, or energy
capacity targets. After a selection, separate systems within
the graph can be replaced to test improvements in system
characteristics.

The automation criteria are related to the vessel systems’
performance and safety. For instance, the components belong-
ing to the hardware (Fs) and the virtual (Fv) sensor set are

to be used interchangeably by the system when one or more
hardware sensors fail during operation. Considering control
system performance, switching to the sensor with the mini-
mum reference tracking error is preferable. However, certain
types of virtual sensors require a long time for convergence, so
choosing a sensor with a higher convergence rate but moderate
reference tracking error to avoid danger is also a reasonable
option. The time to switch is also taken into consideration as
multiple consecutive switches might compromise control sta-
bility. The aforementioned criteria have already been explained
in detail in [16]–[18].

The next step is to design a suitable cognitive architecture
that can assist human decisions regarding the system, automa-
tion design, and operation phases of marine vessels by utilizing
the semantic database presented before.

III. MULTI-LEVEL COGNITIVE ARCHITECTURE

In this work, the marine vessel system and automation
design processes are integrated using a cognitive architecture
consisting of two levels; design and automation, as shown
in Figure 2. As previously discussed, each component in the
semantic database can be categorized into “sets“ of similar
components. The design level determines the system selection
(F (s)

p ) from the physical plant “set“ (Fp) based on the design
criteria. The automation component sets (Fα) are then added
to F (s)

p in the automation level. The various “sets“, in both
levels, are processed internally and in correlation to each other
by the “knowledge graph“ in order to determine their physical
or cyber interconnections. The “sets“ can be thus linked to
each other to form a “smart“ vessel system feedback control
and monitoring scheme, as shown in Figure 2.

A. Design level

At the design level, the semantic information of “systems“
is used to form clusters of systems. The clusters considered
for the vessel design receive an index value (e.g. 1,2,· · · ) and
are then assessed based on the design criteria. This process
results in a design decision σd ∈ Z+ regarding the systems
that will be considered in this iteration of the design. The
physical plant database Fp is consequently filtered and the
chosen configuration’s semantic information, denoted as F (s)

p ,
is communicated to the automation level. The database update
module can thus be defined using the mapping operator:

fd : Σd ×Fp 7→ F (s)
p , (4)

where Σd is the space of configuration decisions σd, Fp is the
physical plant database and F (s)

p ⊆ Fp is the chosen part of
the physical plant database space for the current configuration.

B. Automation level

The automation level employs the full component database
F , defined in (3), formed from the semantic information about
the chosen configuration’s plant components F (s)

p with the ad-
dition of related automation components Fα. The knowledge
graph is then used to “match“ components in feasible closed-
loop architectures, in a process called “semantic matching“.
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Fig. 2. Multi-level cognitive architecture for intelligent marine vessels. At the
design level, the cognitive agent determines the system selection F

(s)
p from a

physical plant database Fp of potential options based on design criteria. In the
automation level, the cognitive agent determines the closed-loop configuration
to be used based on the automation criteria and the monitoring agents decision
D(I) regarding the occurrence of faults (f (I)

a , f (I)
p , f (I)

s )..

This information in conjunction with the automation criteria
is used by the switching logic to “reason“ about which feasible
closed loop architecture will be rendered active, in a process
called “semantic reasoning“ [20]. The switching logic is an
online feature, taking into consideration that the decisions
of the various “monitoring agents“ also affect the choice of
closed-loop configuration during operation. In case of sensor
faults (f (I)

s ) affecting one or more sensors of the plant (I), an
efficient logic has been proposed in [18]. The output of the
switching logic is in general a switching vector signal:

σ(I) = [σ(I)
p σ(I)

a σ(I)
s σ(I)

c σ(I)
y σ(I)

u σ(I)
m σ(I)

v ]⊤, (5)

where σ
(I)
p , σ

(I)
a , σ

(I)
s , σ

(I)
c σ

(I)
y , σ

(I)
u , σ

(I)
m , σ

(I)
v denote the

indices of the modules that are required from the sets
Fp, Fa, Fs, Fc, Fy, Fu, Fm and Fv . The intelligent automa-
tion module can then be defined using the mapping operator

f : Σ×F 7→ I, (6)

where Σ is the space of configuration decisions σ(I), F (s)
p

was defined in (4), F was defined in (3) and I is the space
of active configurations of the feedback control scheme.

IV. MARINE PROPULSION USE-CASE

Out of all systems involved in marine applications, the
propulsion system is considered to be the most safety-critical
[21]. At the same time, it’s associated with high complexity
in system interconnections and due to continuously stricter
emission-control regulations, the modifications in this system

Fig. 3. Knowledge graph for diesel-electric propulsion. Each color of the
edges represents a different medium used. The semantic description of the
overlapping plant components (electrical propulsion cluster) shown in the
shaded area is given in Table I

are expected to be the most frequent and uncertain. In this
section, the cognitive architecture described in Section III is
applied to a database of systems concerning marine propulsion,
modelled as discussed in Section II.

The design target for the marine vessel in this scenario
is to be able to convert between diesel-electric (σd = 1)
to methanol-electric propulsion (σd = 2). The database is
thus comprised of two parts, the changeable mechanical part
(diesel/methanol) and the overlapping electrical part, whose
systems’ semantic description is provided in Table I. Taking
into consideration safety, space, and methanol toxicity con-
cerns, already elaborated on in [16], [17], the design decision
given as the output of the design level is σd = 1, indicating the
use of a diesel-electric configuration for the initial design. Us-
ing the automated graph-making tool described in Algorithm
1, the system connections for the diesel-electric installation
are shown in Figure 3. The application of this tool was done
using the Python Igraph package and Python 3.9.

TABLE I
SEMANTIC INFORMATION FOR OVERLAPPING SYSTEMS INVOLVED IN

TARGET PROPULSION ARCHITECTURES

System Inputs Outputs

Gearbox
Cool air Hot air

Motor Power Propeller PowerEngine Power
Fixed Pitch Propeller Propeller Power Thrust

Electric Motor Voltage Motor Power
Cooler Hot air Cool air

Having connected the physical plant components, the se-
mantic database proceeds to acquire information about the
automation components. The knowledge graph tool updates
the physical plant knowledge graph using Algorithm 1, by con-
necting the hardware (sensors, actuators) and cyber automation
components (cotrollers, monitoring agents, virtual sensors,
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TABLE II
EXCERPT OF SEMANTIC INFORMATION FOR AUTOMATION COMPONENTS

Component Inputs Outputs Sensor set Units
Speed controller Shaft speed Injected Fuel - -

Shaft speed sensor Thrust Shaft speed S(1,2) rps
Motor torque sensor Motor Power Motor Torque S(2,1) Nm

Torque controller Motor Torque Voltage - -
Shaft speed reference - Shaft speed - rps

Motor torque reference - Motor Torque - Nm

Fig. 4. Addition of hardware automation components in the knowledge graph.
An excerpt of the semantic description of the additional hardware automation
components can be found in Table II.

reference signals), resulting in the cyber-physical knowledge
graph. An excerpt of the semantic information regarding the
hardware automation components is shown in Table II while
the updated graph containing the vertices corresponding to
the hardware automation components is shown in Figure 4.
At the end of this process, the knowledge graph is composed
of 50 vertices and 154 connection edges. After acquiring
the complete automation graph, the process of “semantic
matching“ forms the feasible closed loops through simple
traversal of the graph. In this case study, the resulting loops
differ on whether they use hardware or virtual sensors for
feedback and condition monitoring. For brevity purposes of
subsequent analysis, it is assumed that only hardware sensors
are used for monitoring purposes and as input to virtual sensors
while control feedback can stem both from hardware and
virtual sensors. Under this assumption, the cognitive agent
reasons for the feasibility of 6 closed loop configurations. The
details of the closed-loop feedback control architectures are
given in Table III. In this paper, the case study presented in
[18] is reused to illustrate the use of the cognitive architecture.
The control objective is for the vessel to achieve a reference
power profile with a magnitude of PD = 9400 kW. The
system is simulated with two permanent abrupt offset sensor
faults affecting the shaft speed sensor at 20 sec and the electric

TABLE III
FEASIBLE CLOSED LOOP CONFIGURATIONS USING COMBINATIONS OF
HARDWARE AND VIRTUAL SENSORS FOR CONTROL FEEDBACK. MORE

INFORMATION ON VIRTUAL SENSORS CAN BE FOUND IN [18]

Configuration ID ID01 ID02 ID03
Speed Feedback Hardware Hardware Virtual (dynamic)

Torque Feedback Hardware Virtual (static) Hardware
Configuration ID ID04 ID05 ID06
Speed Feedback Virtual (dynamic) Virtual (static) Virtual (static)

Torque Feedback Virtual (static) Hardware Virtual (static)

motor torque sensor at 50 sec. The initial conditions for the
simulation, power split strategy, parameters, switching criteria,
and switching logic have been previously described in [18]
and will thus be omitted. The decisions of the monitoring
agents regarding the occurrence of sensor faults are shown in
Figure 5 while the closed-loop configurations implementations
by the intelligent automation module can be seen in Figure 6.
As observed in Figure 5, the sensor fault in the shaft speed
sensor is diagnosed at t = t1 = 20 sec (decision receives the
value 1) while the decision regarding the diagnosis of faults in
the motor torque sensor remains 0. Subsequently, the control
configuration changes from 1 to 5 (a static virtual sensor is
used for the shaft speed), as can be seen in Figure 6. Then,
at t = t2 = 50 sec, both decisions of the agents become
1 meaning that faults have been diagnosed in both the shaft
speed and the motor torque hardware sensors. Thus, the control
configuration changes from 5 to 6 (static virtual sensors are
used for both the shaft speed and the motor torque), as pre-
sented in Figure 6. Based on the above results, the automated
knowledge graph tool manages to effectively connect the
physical plant, hardware, and cyber automation components
using their semantically-enhanced description. The cognitive
agent designed at the automation level managed to match the
cyber-physical components to create the feasible closed-loop
architectures, shown in Table III. Moreover, the monitoring
agents’ feedback regarding the occurrence of sensor faults has
been used effectively to alter the configuration selection by
the intelligent automation module.

V. CONCLUDING REMARKS

This paper introduced a two-level semantically-based
methodology aiming to assist and connect the system and
automation design processes of marine vessels. To this end,
the plant components, their connections and design specifica-
tions have been described using well established knowledge
representation techniques and used to form the semantic
database. The suggested semantic description of vessel plant
and automation components was kept general in an effort to
facilitate the integration of parts from different manufacturers,
using different protocols and naming conventions into a unified
inter-operable system. At the design level, the physical plant
components database was filtered by using the stored semantic
information to connect them, assessing the resulting knowl-
edge graphs and selecting the physical plant components that
will be used in the current installation. Then, at the automation
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Fig. 5. Feedback of monitoring agents’ decisions to the intelligent automation
module for the specified sensor fault scenario (blue: monitoring agents’
decision regarding the occurrence of faults in the shaft speed sensor, magenta:
monitoring agents’ decision regarding the occurrence of faults in the motor
torque sensor). A value of ’0’ indicates that faults have not been diagnosed
while a value of ’1’ indicates that faults were diagnosed.

Fig. 6. Closed-loop configuration implementation by the intelligent automa-
tion module for the specified sensor fault scenario. The online switching
mechanism is activated by the decisions of the monitoring agents regarding
the occurrence of faults.

level, the database was appended with semantic information
regarding automation components, the new component con-
nections and operation specifications. A decision logic was
then used to determine the automation components that would
be used in the control configuration and the decisions were
implemented using an intelligent automation module.
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