
Scalable Kernelized Deep Fuzzy Clustering Algorithms for Big Data

Preeti Jha
Computer Science and Engineering

Indian Institute of Technology Indore, India
now at Koneru Lakshmaiah Education Foundation

Bowrampet, Hyderabad, India
preetijha@klh.edu.in

Aruna Tiwari
Computer Science and Engineering

Indian Institute of Technology Indore
Indore, India

artiwari@iiti.ac.in

Neha Bharill
Computer Science and Engineering

Mahindra University
Hyderabad, India

neha.bharill@mahindrauniversity.edu.in

Milind Ratnaparkhe
Biotechnology
ICAR-IISR

Indore, India
milind.ratnaparkhe@gmail.com

Om Prakash Patel
Computer Science and Engineering

Mahindra University
Hyderabad, India

omprakash.patel@mahindrauniversity.edu.in

Anjali Gupta
Computer Science and Engineering

Indian Institute of Technology Indore
Indore, India

guptaanjali7786@gmail.com

Deepali Sukhija
Computer Science and Engineering

Indian Institute of Technology Indore
Indore, India

sukhijadeepali2001@gmail.com

Deepika Sukhija
Computer Science and Engineering

Indian Institute of Technology Indore
Indore, India

sukhijadeepika2001@gmail.com

Rajesh Dwivedi
Computer Science and Engineering

Indian Institute of Technology Indore
Indore, India

rajeshdwivedi@iiti.ac.in

Abstract—Conventional scalable clustering-based Deep Neural
Network (DNN) algorithms cluster linearly separable data,
however non-linearly separable data in the feature space
is harder to cluster. This paper proposes a novel Scalable
Deep Neural Network Kernelized Literal Fuzzy C-Means
(SDnnKLFCM) and Scalable Deep Neural Network Kernelized
Random Sampling Iterative Optimization Fuzzy C-Means for
Big Data (SDnnKRSIO-FCM). These kernelized clustering
methods solve non-linear separable issues by non-linearly
transforming the input data space into a high-dimensional
feature space using a Cauchy Kernel Function (CKF). We cre-
ate kernelized deep neural network fuzzy clustering methods
using Apache Spark in-memory cluster computing technique
to efficiently cluster Big Data on High-Performance Computing
(HPC) machine. To demonstrate the effectiveness of the pro-
posed (SDnnKLFCM) and (SDnnKRSIO-FCM) in comparison
to previous scalable deep neural network clustering methods,
extensive tests are carried out on a variety of large datasets.
The reported experimental results show that the kernelized
non-linear deep clustering algorithms in comparison with
linear fuzzy clustering algorithms achieve significant improve-
ment in terms of Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), and F-score, respectively.

Index Terms—Kernelized Algorithms, Big Data, Non-linear,
Fuzzy Clustering, Deep Neural Network

1. Introduction

Clustering is an approach that aims to organize datasets
that are comparable into a single cluster on the basis of
several measures of similarity (e.g., Euclidean distance). On
the other hand, numerous approaches to the clustering of
data have been proposed [1], [2]. The performance of con-
ventional clustering is not good, and it has a very high level
of computing complexity, due to the ineffectiveness of the
similarity measures that are utilized in these algorithms on
high-dimensional data. Due to these factors, dimensionality
reduction and feature transformation have received a signifi-
cant amount of research attention for the purpose of mapping
the data into a new feature space. This will make it possible
for the existing classifiers to separate the newly created data
in a more straightforward manner. Linear transformations,
like principal component analysis (PCA) [3], and non-linear
transformations, including kernel methods [4] and spectral
methods [5], make up the bulk of the currently available
approaches to transforming data. Unfortunately, the highly

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1322



complex latent structure of the data continues to be a barrier
to the efficacy of existing approaches to clustering, despite
their best efforts. The development of deep learning has led
to the emergence of a property known as highly non-linear
transformation, which enables DNNs to convert data into
representations that are more conducive to clustering. This
property enables DNNs to be used for the purpose of data
transformation [6].

Fuzzy c-Means (FCM) clusters well if feature space
data is linear [7]. Kernel-based Fuzzy c-Means (KFCM) are
designed to deal with non-linear shape clusters by substi-
tuting the Euclidean distance metric with a kernel metric
[8]. Scalable fuzzy clustering algorithms were devised by
modeling data in a neural network feature space to handle
high-dimensional data with a complex latent distribution
[9]. Scalable DNN based on fuzzy clustering algorithms:
Scalable Deep-Neural Network Random Sampling Iterative
Optimization-FCM (SDnnRSIO-FCM) and Scalable Deep-
Neural Network Literal Fuzzy c-Means (SDnnLFCM), de-
veloped to handle Big data [10]. Here, decoding the encoded
representation with an Autoencoder (AE) neural network
recovers the original data using the Apache Spark cluster.
Autoencoder maps data into lower-dimensional feature dis-
tribution in latent space in this work [10]. Although the
SDnnLFCM and SDnnRSIO-FCM algorithms handle DNN
using fuzzy clustering approaches [10]. The SDnnLFCM
and SDnnRSIO-FCM were unable to process data that can-
not be linearly separated. By making modifications to the
cluster centers, membership matrix, and vector norms the
proposed SDnnKLFCM and SDnnKRSIO-FCM algorithms
have been effective in resolving this issue. Instead of using
the Euclidean distance, a Cauchy Kernel Function (CKF) is
used to define the vector norm [11].

The following is an outline of the subsequent section
of this paper: Both the scalable fuzzy clustering algorithm
and the deep neural network architecture are explained in
detail in Section 2. The proposed SDnnKRSIO-FCM and
SDnnKLFCM method is discussed in 3. The experimen-
tal results are reported on the extremely large benchmark
datasets in Section 4. Section 5 concludes our work.

2. Preliminaries

Deep neural network (DNN) optimization and the com-
bination of unsupervised clustering algorithms are cur-
rently active research areas, although these techniques are
not scalable. The Scalable Deep-Neural Network Random
Sampling Iterative Optimization-FCM (SDnnRSIO-FCM)
and Scalable Deep-Neural Network Literal Fuzzy c-Means
(SDnnLFCM) are based on DNN techniques [10]. These
algorithms employ the Normal Autoencoder (NAE). A de-
tailed discussion of DNN techniques, SDnnLFCM, and
SDnnRSIO-FCM, is presented next.

2.1. Deep Autoencoder

AE learns unlabeled input embedding for a specified
network architecture. Encoding and decoding are the two

parts that comprise AE. The encoder takes data from a
higher-dimensional space and transforms it into a lower-
dimensional space, while the decoder takes data from
a lower-dimensional space and changes it to a higher-
dimensional space. The data that the decoder has received is
used as output so that the latent space can acquire the vast
majority of the information about the data space. Given a
dataset X with N data points. The kth neuron in the lth

layer of the AE for each xi (ith data point) is denoted as
zlki and defined as follows:

zlki = f

(
nl−1∑
j=1

zl−1
ji wl

jk + blk

)
. (1)

In this case, L represents the overall number of layers in
the AE, and l ∈ {1, 2, . . .L} represents the layer index. The
weights, bias, and the number of the neurons in the lth layer
are denoted as wl

jk, blk, and nl, respectively. In Equation
(1) activation function is denoted by f . We utilized the
sigmoid activation function represented as f(a)= 1

1+exp(−a) .
The output vector ( zl1i, z

l
2i), . . ., z

l
nli

in the lth layer. An
initial input layer of the AE is defined as z1i = xi in
Equation (1). The encoder consists of the L/2 layers and
z
l=L/2
i hidden features vector.

The decoder comprises the subsequent L/2 layers of
the neural network. It aims to reconstruct the xi from the
encoded output, zl=L/2

i . Let the output of the decoder be
denoted as zLi = hW,B(xi), with all the weights (W ) and
biases (B) in the AE. Identical to the output zlki of the lth

layer, the output of the kth neuron in the final layer of the
AE is given by zLki = hW,B(xi)k = f(

∑nL−1

j=1 zL−1
ji wL

jk +

bLk ). Since the decoded data should be close to the original
data, so AE aims to minimize the reconstruction loss given
by:

J(x, θ) =
1

N

N∑
i=1

∥ hW,B(xi)− xi ∥2 (2)

2.2. Deep Clustering Based on Student’s-t Distri-
bution

AEs are optimized by deep clustering methods DEC
[12] and IDEC [13]. DEC and IDEC cluster the data us-
ing a Student’s-t distribution-based clustering layer. The
data X is input for the network, where, xi ∈ Rd. And
Z = z1, . . . , zi, . . . , zN , where, a hidden feature from the
AE is zi ∈ Rc. The d and c are the dimensions of the input
layer and hidden feature layer, respectively. The clustering
layers will continue to receive zi for Student’s-t distribution
clustering [12], [13]. The output obtained from the clustering
layer is given as follows:

µij =
(1 + ∥zi − µj∥2/α)−

α+1
2∑c

k=1(1 + ∥zi − µk∥2/α)−
α+1
2

,

c∑
j=1

µij = 1 ∀i

(3)
The clustering layer training weights defined as follows:

µ = [µ1, . . ., µj , . . ., µc], class depicted by c, and clustering

1323



layer j with jth neuron. µij is the degree of membership
for a given cluster. Whereas, µij depicts the cluster center
or Student’s-t distribution. The target pij of the Student’s-t
based membership µij is determined by Equation (4).

pij =
µ2
ij/
∑

i µij∑c
k=1(µ

2
ik/
∑

i µik)
,

c∑
j=1

pij = 1 ∀i. (4)

2.3. KL-Divergence-Based Objective Term

The deep fuzzy clustering model limitation improves
FCM clustering. Several clustering methods now assess
memberships using within-cluster compactness. The Stu-
dent’s t-distribution-based algorithms are given in Equation
(3). The µij is defined as pij in Equation (4). Because the
output µij of the clustering layer is connected to the input
zi, which is obtained by minimizing distributions by the
KL divergence. As a result, the clustering layers output
is displayed in Equation (4), where the membership µij

approaches pij .
The mean squared error (MSE) term from Equation

(2) is motivated by AE design and the concept of data
recovery. The optimization of membership from Equation
(5) is related to the KL-divergence component. The objec-
tive function of the deep fuzzy clustering is represented in
Equation (6).

min KL(P ||Q) = min

N∑
i=1

c∑
j=1

pij log
pij
µij

. (5)

L =

N∑
i=1

∥ hW,B(xi)− xi ∥22 +α

N∑
i=1

c∑
j=1

pij log
pij
µij

. (6)

2.4. Scalable Deep-Neural Network Random Sam-
pling Iterative Optimization-FCM (SDnnRSIO-
FCM) and Scalable Deep Neural Network Literal
Fuzzy c-Means (SDnnLFCM)

The SDnnLFCM and SDnnRSIO-FCM algorithms are
implemented on the Apache Spark cluster under the HPC
environment [10]. The dataset is batch-divided. In each iter-
ation, the batch is encoded by the encoder layers. Clustering
is done after passing encoded data to decoder layers. Equa-
tion (2) calculates the NN and MSE loss after decoding the
reconstruction. Scalable Literal FCM (SLFCM) processes
encoded data to determine cluster centers and membership
values during clustering. SLFCM is the scalable version of
the FCM algorithm [14]. Equation (4) calculates the target
distribution from membership values. As described in sec-
tion 2.3, we calculate the KL-divergence loss for clustering
using this target distribution and membership values. Equa-
tion (6) calculates the final loss value from the MSE loss
and clustering KL loss. The stochastic algorithm adjusts the
NN weights using this loss. SLFCM inputs cluster centers
as follows: The first batch pre-initialized the cluster centers.

The second batch clustering uses output cluster centers
from the first batch. Membership values from the first and
second batches are blended to discover updated third-batch
cluster centers. All Batches follow the same technique. In
SDnnLFCM, SLFCM runs iteratively. Whereas, SDnnRSIO-
FCM works as follows: It calls SLFCM for the initial two
batches and then merges the output of the first two batches
to obtain membership values that can be used to calculate
updated cluster centers. The formulation for membership
values and cluster centers is given in Equations. (7) and (8),
respectively.

Membership Degree (µr) =
(1−K(xi, vj))

1/(p−1)∑c
j=1(1−K(xi, vj))1/(p−1)

(7)

Cluster Center (c′) =

∑s
i=1 m

p
ijK(xi, vj)xi∑s

i=1 m
p
ijK(xi, vj)

(8)

Despite the fact that the SDnnLFCM and SDnnRSIO-
FCM algorithms manage DNN by employing fuzzy clus-
tering methods, data that cannot be linearly separated
could not be processed by either the SDnnLFCM or the
SDnnRSIO-FCM. Hence, both the proposed SDnnKLFCM
and SDnnKRSIO-FCM algorithms have been success-
ful addressing this issue. A detailed description of the
SDnnKLFCM and SDnnKRSIO-FCM algorithms is given
in the next section.

3. PROPOSED WORK

The SDnnKRSIO-FCM and SDnnKLFCM kernelized
versions of the SDnnRSIO-FCM and SDnnLFCM, respec-
tively, are proposed in this study for handling Big Data
analysis. The SDnnLFCM and SDnnRSIO-FCM use fuzzy
clustering to handle DNN [10]. Hence, SDnnLFCM and
SDnnRSIO-FCM could not process non-linear data. The
proposed SDnnKLFCM and SDnnKRSIO-FCM algorithms
solved this problem by modifying the cluster centers, mem-
bership matrix, and vector norms. Here, Cauchy Kernel
Functions (CKFs) define vector norms instead of Euclidean
distances. The proposed algorithms are cutting-edge meth-
ods that can be used to cluster non-linear data. Each data
block is processed in parallel using Apache Spark. To ac-
quire more expressive characteristics that aid in handling
non-linear relations, kernel functions CKF [11] utilized are
defined as follows:

K(x, y) =
σ2

∥x− y∥2 + σ2
(9)

Where σ denotes the smoothing parameter and ∥.∥ denotes
the Euclidean distance. The Cauchy kernel is a unit-norm
kernel, i.e., 0 ≤ K(x, y) ≤ 1 ∀ x, y ∈ X . If σ in Equation
(9) tends to zero then K(x, y) ≈ 0, and if it tends to infinite
then K(x, y) ≈ 1.

1324



3.1. Scalable Kernelized Deep Neural Network Lit-
eral FCM (SDnnKLFCM)

As mentioned before, linear relations are supportable
by SDnnLFCM. To expand SDnnLFCM, the kernel method
concept is presented in order to handle non-linear relation-
ships. By using the CKF, the SDnnKLFCM algorithm is
a kernelized variant of the SDnnLFCM method. Algorithm
1 provides a summary of the proposed SDnnKLFCM. The
cluster nodes are initialized once the NAE has been pre-
trained on the data using a learning rate (0.001) for 100 iter-
ations. With a learning rate of 0.001, the initial training now
starts. For each iteration and batch, layers from the network
encoder section are used to create the hidden representation
Zr. The MSE loss is then computed using this format,
and data clustering is performed in Line 5. Line 6 and 7
employs the KSLFCM method for clustering. The KSLFCM
is a scalable kernelized version of the FCM method [7]. To
determine the desired distribution for membership values,
the Student’s t-distribution is employed at Line 8. The values
of the goal distribution and current distribution are used to
calculate the clustering loss for the particular batch in the
line that follows. The NN weights are finally changed using
Stochastic Gradient Descent on Line 10. It contains the KL
Divergence loss from Line 9 and the MSE loss identified in
Line 5.

Algorithm 1: Proposed SDnnKLFCM
Input: X = x1, x2, . . . , xN , Nc, m, ϵ;
Output: µ, c

1 Sample: X into N/Nb batches, and train batch of
training data using Xr, r = 1, 2, . . ., N/Nb ;

2 Initialize weights W and biases B to pretrain the
AE. Initialize cluster center c;

3 while (epoch ≤ MaxIter) do
4 for (batch ∈[1,N/Nb]) do
5 Calculate the hidden features Zr, the

reconstruction hW,B(Xr) and the MSE
loss with Equation (2).

6 Calculate µr ( membership degrees) and c′

(cluster centers) using Equation (7) and
(8), respectively.

7 µr, c = KSLFCM(Zr, c,m, ϵ) [7], here,
K is the Cauchy kernel.

8 Calculate the target Pr by Equation (4).
9 Calculate the KL loss by Equation (5).

10 Calculate total loss by Equation (6) and
backpropagate.

3.2. Scalable Kernelized Deep Neural Network
Random Sampling Iterative Optimization FCM
(SDnnKRSIO-FCM)

The SDnnKRSIO-FCM is the kernelized version of
SDnnRSIO-FCM [10]. The SDnnKRSIO-FCM is imple-

mented on the Apache Spark cluster in the HPC environ-
ment. The proposed algorithm SDnnKRSIO-FCM is sum-
marized in Algorithm 2. The number of batches that NN will
divide the dataset into is determined in Line 1. After that,
cluster nodes are initialized and the Normal Autoencoder
is pre-trained on the data using a learning rate ( = 0.001)
for 100 iterations. With a learning rate of 0.001, the initial
training now begins. For each iteration and batch, layers
from the network encoder section are used to create the
hidden representation Zr. The MSE loss is then computed
using this format, and data clustering is performed. One of
the parameters given to KSLFCM for the initial batch was
pre-initialized cluster centers. The KSLFCM is a kernelized
version of scalable FCM algorithms [7]. The input cluster
centers for the second batch are taken from the first batch
output cluster centers. Updated output cluster centers were
made by merging all previous membership values used as
input cluster centers for the remaining batches. To deter-
mine the desired distribution for membership values, the
Student’s-t distribution is employed. The values of the goal
distribution and current distribution are used to calculate the
clustering loss for the particular batch in the line that fol-
lows. The NN weights are finally changed using Stochastic
Gradient Descent on Line 16. It contains the KL Divergence
loss and the MSE loss identified in Line 7.

4. EXPERIMENTAL RESULTS

In the experiments, we evaluate the performance of
SDnnKLFCM and SDnnKRSIO-FCM in comparison with
SDnnLFCM and SDnnRSIO-FCM by utilizing various mea-
sures such as Normalized Mutual Information (NMI), Ad-
justed Rand index (ARI), and F-score, respectively.

4.1. Experimental Environment and dataset de-
scription

The experimentation employed two supercomputers:
PARAM Shakti and PARAM Siddhi-AI1 provided by Na-
tional Supercomputing Mission (NSM) from IIT Kharagpur
and CDAC-Pune India. The Apache Spark cluster frame-
work is utilized to compute proposed deep fuzzy cluster-
ing algorithms. We computed results on three Benchmark
datasets2: MNIST, Fashion MNIST, and QMNIST for our
experiments by testing our proposed SDnnKLFCM and
SDnnKRSIO-FCM in comparison with SDnnLFCM and
SDnnRSIO-FCM algorithms. We have replicated all three
datasets to work with Big Data. Table 1 demonstrates fea-
tures of these datasets used for experimentation.

4.2. Evaluation Criteria

The NMI, ARI, and F-score measures are used to evalu-
ate the proposed scalable kernel-based deep fuzzy clustering

1. https://en.wikipedia.org/wiki/PARAM
2. https://www.kaggle.com/datasets

1325



Algorithm 2: Proposed SDnnKRSIO-FCM
Input: X = x1, x2, . . . , xN , number of clusters

Nc, m, ϵ
Output: µ, c

1 Sample: X into N/Nb batches.
2 Train each batch of training data and represent it

as Xr, r = 1, 2, . . ., N/Nb;
3 Initialize weights W and biases B to pretrain the

AE.
4 Initialize cluster centers c.
5 while (epoch ≤ MaxIter) do
6 for (batch ∈[1,N/Nb]) do
7 Calculate the hidden features Zr, the

reconstruction hW,B(Xr) and the MSE
loss with Equation (2).

8 if batch is 1 then
9 Calculate the memberships µr and

cluster centers c′ by using Equation (7)
and (8), respectively.

10 µr, c
′ = KSLFCM(Zr, c,m, ϵ) [7],

here, K is the Cauchy kernel.
11 else
12 µr, c

′ = KSLFCM(Zr, c
′,m, ϵ)

13 Aggregate membership degrees
obtained from previous batches.

14 Calculate new cluster centers.

15 c′ =
∑N

i=1 µ′
ijxi∑N

i=1 µ′
ij

,∀j.

16 Calculate the target Pr by Equation (4),
KL loss by Equation (5), total loss by
Equation (6) and backpropagate;

TABLE 1. DATASETS DESCRIPTIONS.

Datasets #Training instances #Testing instances #Features #Classes

MNIST 60,000 10,000 784 10
Fashion-MNIST 60,000 10,000 784 10
QMNIST 60,000 60,000 784 10

methods on Big Data. The NMI computes the clustering
results, and a comparison to the ground truth is performed
using the results obtained from clustering algorithms. In this
case, the class would stand for the absolute truth, and the
cluster would be the result of the clustering method [15].
ARI is a measure of the degree to which two data clusters
are comparable. To avoid erroneous positive results, ensure
that the maximum value in each column is set to 1 and that
all other values are set to 0 [15]. F-scores indicate clustering
output correctness. Class cluster precision and recall are cal-
culated. Higher F-scores indicate better grouping. Clustering
findings match ground truth when F-score is approaching 1.
The weighted total of class maximum F-scores determines
the overall F-score [15].

4.3. Results and Discussion

In this section, we present the discussion on re-
sults of SDnnLFCM, SDnnRSIO-FCM, SDnnKLFCM, and
SDnnKRSIO-FCM algorithms evaluated on three bench-
mark datasets, MNIST, Fashion-MNIST, and QMNIST, and
do the comparative analysis on the performances. Compari-
son is done on the basis of NMI, ARI, and F-score measures.
The algorithms are trained on the training dataset and then
the results are calculated on the test dataset for every dataset.

Table 2 we have listed the results for the MNIST
dataset on the respective performance measures: NMI, ARI,
and F-score. All these measures represent the quality of
the cluster obtained from the SDnnLFCM, SDnnRSIO-
FCM, SDnnKLFCM, and SDnnKRSIO-FCM algorithms.
The NMI measure of the proposed SDnnKRSIO-FCM is
better than the SDnnRSIO-FCM. However, the proposed
SDnnKLFCM and SDnnLFCM are significantly closer.
The ARI measure of SDnnKRSIO-FCM is better than
SDnnRSIO-FCM. The F-score measure for the proposed
SDnnLFCM is better than SDnnLFCM and SDnnRSIO-
FCM.

Table 3 we have listed the results for the Fashion-
MNIST dataset on the respective performance measures.
The NMI measure of the proposed SDnnKLFCM is bet-
ter than the SDnnLFCM and SDnnRSIO-FCM. The ARI
measure of the proposed algorithms is significantly closer
to the earlier developed algorithms. The F-score measure
for the proposed SDnnLFCM and SDnnKRSIO-FCM is far
better than SDnnLFCM and SDnnRSIO-FCM. The proposed
algorithms outperform in terms of F-score for the Fashion
MNIST dataset.

Table 4 we have listed the results for the QMNIST
dataset on the respective performance measures. The NMI
measure of the proposed SDnnKLFCM and SDnnKRSIO-
FCM are significantly closer. The ARI measure of the
proposed algorithms is significantly closer to the earlier
developed algorithms. The F-score measure for the proposed
SDnnLFCM and SDnnKRSIO-FCM is significantly better
than SDnnLFCM and SDnnRSIO-FCM.

TABLE 2. RESULTS OF SDNNLFCM, SDNNRSIO-FCM,
SDNNKLFCM, AND SDNNKRSIO-FCM ON MNIST DATASET.

Algorithm Measures

NMI ARI F-score

SDnnLFCM 0.1809 0.1071 0.0657

SDnnRSIO-FCM 0.0943 0.03902 0.0748

SDnnKLFCM 0.1535 0.0583 0.1438

SDnnKRSIO-FCM 0.1795 0.0908 0.0423

1326



TABLE 3. RESULTS OF SDNNLFCM, SDNNRSIO-FCM,
SDNNKLFCM, AND SDNNKRSIO-FCM ON FASHION-MNIST

DATASET.

Algorithm Measures

NMI ARI F-score

SDnnLFCM 0.1584 0.0378 0.0735

SDnnRSIO-FCM 0.1852 0.0594 0.0708

SDnnKLFCM 0.2124 0.0575 0.1526

SDnnKRSIO-FCM 0.1217 0.0343 0.1229

TABLE 4. RESULTS OF SDNNLFCM, SDNNRSIO-FCM,
SDNNKLFCM, AND SDNNKRSIO-FCM ON QMNIST DATASET.

Algorithm Measures

NMI ARI F-score

SDnnLFCM 0.0687 0.0324 0.0908

SDnnRSIO-FCM 0.1609 0.0705 0.0576

SDnnKLFCM 0.0012 -3.4638 0.0998

SDnnKRSIO-FCM 0.1414 0.0704 0.0932

5. Conclusion

This paper proposes SDnnKRSIO-FCM and
SDnnLFCM clustering algorithms for handling Big
Data efficiently. In the proposed algorithms, the Cauchy
kernel is utilized as the kernel function for processing
non-linear data, and the kernelized FCM algorithm is
used as an integral part of the proposed algorithms. The
data were reduced to lower dimensions using AE, and
then clustering was applied to them. For Big Data fuzzy
clustering issues, Apache Spark implemented the proposed
algorithms on an HPC machine. SDnnKRSIO-FCM
partitioned huge data into several batches and utilized AE
to convert higher-dimensional data into lower-dimensional
representations. Then the clustering of lower-dimensional
data is performed in parallel. Here, the membership matrix
is not stored during clustering, which speeds up processing
and saves storage space. In order to calculate the next
result, the SDnnKRSIO-FCM algorithm makes use of
all previous iterations. Additionally, it updates the AE in
order to get a better representation of the data clustered
in the lower dimension. In the future, scalable deep fuzzy
clustering algorithms can be applied to genome sequences

for the identification of disease and drought in soybean
plants.

Acknowledgments

This work is supported by the National Supercomputing
Mission, HPC Applications Development Funded Research
Project by DST in collaboration with the Ministry of Elec-
tronics and Information Technology (MeiTY), India.

References

[1] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[2] S. Agarwal, S. Yadav, and K. Singh, “Notice of violation of ieee pub-
lication principles: K-means versus k-means++ clustering technique,”
in 2012 Students Conference on Engineering and Systems. IEEE,
2012, pp. 1–6.

[3] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[4] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The annals of statistics, pp. 1171–1220, 2008.

[5] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” Advances in neural information processing systems,
vol. 14, pp. 849–856, 2001.

[6] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[7] P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, M. Mounika, and
N. Nagendra, “A novel scalable kernelized fuzzy clustering algorithms
based on in-memory computation for handling big data,” IEEE Trans-
actions on Emerging Topics in Computational Intelligence, vol. 5,
no. 6, pp. 908–919, 2020.

[8] Y.-P. Zhao, L. Chen, and C. P. Chen, “Multiple kernel shadowed
clustering in approximated feature space,” in International Conference
on Data Mining and Big Data. Springer, 2018, pp. 265–275.

[9] Q. Feng, L. Chen, C. P. Chen, and L. Guo, “Deep fuzzy clustering—a
representation learning approach,” IEEE Transactions on Fuzzy Sys-
tems, vol. 28, no. 7, pp. 1420–1433, 2020.

[10] P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, O. P. Patel, V. Anand,
S. Arya, and T. Singh, “Hpc enabled a novel deep fuzzy scalable
clustering algorithm and its application for protein data,” in 2022
IEEE Conference on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB). IEEE, 2022, pp. 1–8.

[11] A. dos SP Soares, W. D. Parreira, E. G. Souza, S. J. de Almeida,
C. M. Diniz, C. D. Nascimento, and M. F. Stigger, “Energy-based
voice activity detection algorithm using gaussian and cauchy kernels,”
in 2018 IEEE 9th Latin American Symposium on Circuits & Systems
(LASCAS). IEEE, 2018, pp. 1–4.

[12] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in International conference on machine learn-
ing. PMLR, 2016, pp. 478–487.

[13] J. Xie, R. Girshick, and a. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in International conference on machine learn-
ing. PMLR, 2016, pp. 478–487.

[14] N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based scalable clus-
tering algorithms for handling big data using apache spark,” IEEE
Transactions on Big Data, vol. 2, no. 4, pp. 339–352, 2016.

[15] M. Rezaei and P. Fränti, “Set matching measures for external cluster
validity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 8, pp. 2173–2186, 2016.

1327


