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Abstract—Data augmentations have been shown to improve
predictive performance of machine learning models in many
domains. Augmentations are typically used to improve classifica-
tion performance, but augmentations can distort the intrinsic
properties of the original data, thus reducing the utility of
a model for real-world applications. Because augmentations
directly affect the training data, and thus also affect the machine
learning models trained with said data, intelligent selection of
augmentations is as critical as the selection of input features and
other options in the machine learning pipeline. Such an approach
will enable greater transferability of trained models from the
research lab to products and services.

This paper presents two metrics to evaluate the potential and
realized impact of data augmentations. The first metric, eff-score,
assesses the relative efficacy of prospective data augmentations
before model training. To observe augmentation effects on the
intrinsic properties of the training data, the second metric,
nirvana distance, measures the effect of data augmentations
beyond overall predictive performance after model training.
These metrics are tested with a well known multi-purpose audio
data set and augmentations from the domain of environmental
sound scene analysis. The relative eff-scores correlate with classi-
fication results from predictive models trained on the augmented
data sets, and the distance components of the nirvana distance
explain results observed but not previously understood from
output confusion matrices. These results demonstrate promise
for data-driven, efficient selection of data augmentations whilst
exposing previously hidden impacts on machine learning models.
Furthermore, since eff-score and nirvana distance are domain-
independent, these metrics have widespread applicability.

Index Terms—data augmentation, augmentation evaluation,
eff-score, nirvana distance, visualization, audio

I. INTRODUCTION

Data augmentations are frequently used to increase predic-

tive performance of trained machine learning (ML) models

[1]–[3]. Training on augmented data is often “low-hanging

fruit” in the quest to develop a model that out-performs other

models [4]. This singular focus, though, potentially limits the

utility of developed models beyond the research lab. A model

that performs well on a single test set, or indeed with some

cross-validation, is not guaranteed to perform similarly on

samples from a larger, more diverse real-world environment

[5] – especially if the training data does not reflect all inherent
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qualities of real-world data [6]. Thus, in reality, researchers

have a hierarchy of three objectives:

1) to build predictive models which accurately recognize

all classes equitably;

2) to ensure models continue to predict fairly in an open

environment;

3) to ensure that any data processing at inference is mini-

mal to reduce latency when models are served.

During training, a predictive model learns a function with

which it transforms data observations (either pre- or post-

augmentation) into something toward a perfect classifier of

target classes. Fig. 1 represents this transformation as a four-

stage simple pipeline. The intrinsic properties of the real-

world data should be preserved when (the optional) stage two,

augmentation, is performed, lest the data be distorted such that

the model loses equitable treatment of all target classes.

Augmentations are primarily evaluated after stage three

in Fig. 1 (e.g., [7]), and such an approach to determining

appropriate augmentations is costly and time-consuming [8].

If augmentations could be evaluated prior to stage three, much

development could be optimised by cost and time reduction

[9]. Thus, pre-determining the best augmentation strategy is

preferable to simply “using them all” [8], and simply adding

more data is less beneficial than adding relevant data to

a training corpus. The first contribution of this paper is a

novel approach to understand and predict the efficacy of data

augmentations (Section IV-A). The second contribution of this

paper addresses equal recognition of all classes, with a metric

and a visualization process for evaluating the degree to which

augmentations alter per-class performance (Section IV-B).

Since the validity of machine learning predictions depends

upon the degree to which augmented data retains the properties

of real data [6], augmentations should not skew the data in a

way that gives “preferential treatment” to one or more classes

at the expense of others. Preserving fair performance of a

Fig. 1. Machine learning classifier pipeline.
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Fig. 2. (a) VAT image of original data from [10]; (b) & (c) confusion matrices from [11] for city and scene classification, respectively.

model on all classes is just as important as obtaining high

overall classification accuracy when seeking models that are

useful to society.

Section II provides background on sound scene analysis

(the application test domain), summarizing pertinent literature

before describing the data set used in this work. Section III

describes the preparation of data and overall approach to

experimentation (in the context of the machine learning de-

velopment pipeline). Section IV details the novel metrics,

and Section V analyses the results of applying these metrics

to a case study. The paper concludes with a summary of

contributions and observations. A link to code for metrics and

visualizations used is provided to encourage and assist others

interested in investigating and evaluating data augmentations.

II. BACKGROUND

This work was initially inspired by observations from lit-

erature in the domain of sound scene analysis. In particular,

the authors observed from papers and conferences (e.g., [12])

that often researchers only state that standard augmentations

were applied before training, or simply name the augmenta-

tions used, without justification or rationale for augmentation

choices made. Such papers focus on detailing model design

parameters, but the model parameters may matter less than

the data processing applied [8] (in the same way that feature

selection is critical).

A. Case study domain: Sound scene analysis

Sound scenes are recordings of any environment, such

as an office or a street. Understanding these scenes is the

task of environmental sound analysis, which contains many

possible challenges: audio description (captioning) [13], scene

classification [14], event detection and/or classification [15],

bioacoustic recognition [16], geotagging [11], and synthetic

generation [17], to name a few. For practical use, real-world

data is desired to ensure a training corpus is representative

of real-world conditions. This data is often multi-faceted and

frequently contains noise (where noise is any component not

pertinent to a model’s primary task or purpose). The multi-

facetedness of real-world data can be exploited by multi-task

models, which infer higher-order features that contribute to

improve predictions on each task [18]. In the sound scene

analysis domain (and others), data collections of recordings

can be used for more than one task [10]. Even so, multi-

purpose data sets are not always of the size needed to

train predictive models; consequently, many researchers and

developers take advantage of data augmentation.

City classification is also known as audio geotagging [19].

The seminal audio geotagging study [11] provides a baseline

for city classification from audio; confusion matrices of their

best model are shown in Figs. 2(b)-(c). That work demon-

strated minor variation in the predictions over all target classes

without data augmentation and a robust predictive accuracy

with a multi-task CNN for both scene and city classification.

An investigation [10] into understanding the data space

of this multi-purpose audio data (a requirement for multi-

task models) used an unsupervised data-driven visualization

technique, the Visual Assessment of cluster Tendency (VAT)

[20]. [10] revealed some structure relating to different target

classifications. With multi-purpose audio data, VAT clusters

corresponding to scene labels appeared more obvious than

for city labels. The authors speculated the emergent clusters

explained common misclassifications seen in prior predictive

work. Fig. 2 shows a VAT image from [10] with ground

truth labels for separate scene/city classification tasks shown

as colored stacked bars on the left, along with the confusion

matrices from models trained on the same data (from [11]).

City classification rates reported in [11] were improved

in [7] through the use of data augmentations. Significant

improvement in accuracy was achieved, though limited evalua-

tion suggested that augmentation performance was not uniform

over all possible target classes. When broken down by target

classes, accuracy varied from 47% in a park to 91% on a bus.

Thus, the impact of an augmentation depends on the particular

task, model, and class at hand.

B. Augmentation methods for audio classification

[22] and [23] provide excellent reviews of many augmenta-

tions used in the audio domain. The augmentations described

here were chosen for this study due to the minimal number

of required parameters, their preservation of original target

labels (versus, for instance, mixup, which creates augmented
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Fig. 3. Visualization of selected stages to compute eff-score for the cyclic augmentation on data from [21]: (a) VAT dissimilarity image; (b) diversity values
(δ1...n) of neighborhoods along the diagonal of (a); and (c) histogram of δ1...n. x-axes for (a) and (b) represent sample numbers after VAT reordering.

samples with soft target labels [24]), and their use in prior

related work. A time stretch augmentation changes the tempo

and length of the original sample without changing its pitch.

Experimentation to discover a data appropriate stretch parame-

ter γ is needed, or a random value from a uniform distribution

works. Frequency stretch is analogous to time stretch in the

frequency dimension; here a random value between 10 and 100

is appropriate for γ. Stretch can be a third option where both

time and frequency is stretched on the same sample to generate

one new training sample. If a waveform is considered a loop, a

cyclic augmentation alters the start and end point of a sample

such that, to maintain the sample length, the original start of

the sample is appended to the end of the new sample. No

values are needed to be experimentally found as new starting

points can be random. Finally, drop is a method where random

frames are cut from the original sample.

C. Data

This work uses the same multi-purpose public evaluation

data as [11] which has predefined training, validation, and test

subsets [21]. Data were recorded from ten different scenes

(airport, bus, metro, metro station, park, public square,

shopping mall, street pedestrian, street traffic, and tram)

in six different cities (Barcelona, Helsinki, London, Paris,

Stockholm, and Vienna). Each acoustic scene has 864 ten-

second segments (giving 8640 segments across ten scenes).

These were recorded using a binaural Soundman OKM II

Klassik/studio A3 electret in-ear microphone and a Zoom F8

audio recorder using 24-bit resolution.

III. EXPERIMENTAL DESIGN AND DATA PREPARATION

This experiment addresses evaluation of data augmentations

with respect to two stages in the end-to-end machine learning

pipeline (Fig. 1). First, to estimate how well a data augmenta-

tion may improve classification performance, an unsupervised

data-driven metric is presented for use pre-training, at stage

two (augmentation). Second, a metric to evaluate how an

augmentation impacts the per-class prediction performance

of a model is presented for use post-training, in stage four

(prediction). These metrics are applied to a case study that

builds upon the work of [7].

To prepare the data for evaluating both new metrics, the

librosa [25] python library is used to extract log mel spec-

trogram features with parameters: 128 mel bands, 2048-point

STFT, input sampling rate = 22050 Hz, and hop length

= 512. Feature-wise normalization is completed separately

after applying each augmentation. Log mel spectrograms are

commonly used for sound scene analysis.

Three data augmentations – cyclic, stretch, and drop –

are separately applied to produce three augmented data sets.

For cyclic, each sample is shifted in time by 25%, 50%
and 75% of its length; for drop, the dropped frames are

random; and for stretch, a random number of columns and

rows at a random position are resized by bi-linear interpolation

four times on each audio sample each with different random

number of columns and rows to stretch. Augmentations are

applied to each channel separately and then averaged into

a single-channel feature matrix. These augmentation choices

were based upon their common use in the audio domain [22]

and in relevant prior work [7].

IV. METRICS FOR AUGMENTATION EVALUATION

In Section IV-A, an efficacy score, eff-score, is defined to

assess the potential efficacy of an augmentation on a given data

set, designed to be used pre-model training. In Section IV-B,

the nirvana distance, ND, is defined as a means of assessing

how far from ideal a particular augmentation performs on a

given data set, on a particular model (post-training).

A. Efficacy score

Selected stages to assess augmentation efficacy are shown in

Fig. 3. Broadly, this process includes: augmenting the original

data, reordering and visualizing the (augmented) data using

VAT [Fig. 3(a)], computing the diversity of pixel neighbor-

hoods along the diagonal [Fig. 3(b)], charting a histogram of

the computed diversities [Fig. 3(c)], and computing a score

to quantify the effectiveness of the augmentation. Before
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detailing eff-score, VAT is described as it forms the foundation

of our method.
1) Visual assessment of cluster tendency: VAT [20] is an

unsupervised method to visualize the degree to which data

points may cluster. A key feature of VAT is that the target

number of clusters (denoted as k in other methods) need

not be specified; VAT can be used to predict the number

of data clusters. Variations of VAT exist for different data

contexts [26], though VAT has been rarely applied to audio

data (and within audio, mostly on speech utterances) [10].

Visualization of data at different stages of processing can assist

with understanding changes to the data at each stage [27].

VAT calculates the distance between all pairs of data points

prior to reordering them to produce a dissimilarity matrix

[rendered as a grayscale image, e.g., Fig. 3(a)]. The two

furthest data points are used as the start and end points, and

the resulting path between them after reordering is equivalent

to a minimal spanning tree of the complete graph per Prim’s

algorithm [28]. In typical use, dark blocks visible on the

diagonal suggest the number of clusters in the data. Here,

each audio sample was transformed into a single vector by

taking the feature-wise mean over all time frames before VAT

is applied. Euclidean distance was used to measure the distance

between feature vectors, but other measures are possible since

VAT is distance-measure independent. Patterns observed along

the diagonal of VAT dissimilarity images produced from

augmented data motivated eff-score.
2) eff-score: The eff-score, or efficacy score, is intended as

a relative value for comparative analysis of likely augmenta-

tion benefit. As a relative score, augmented data sets are from
the same source data. Once created, the following is evaluated

for each augmentation ξ in the set of augmentations Ξ:

1) Generate a VAT dissimilarity matrix D for the data set

(i.e., the augmented data) of dimensions n × n, where

n is the number of samples. D is rendered as an image,

so the matrix elements are referred to as pixels.

2) Extract the κ× κ neighborhood N of pixels (κ must be

>= 3 and odd) surrounding each of the n pixels on the

diagonal of D. For instance, if κ = 9, each resulting

neighborhood N is given by:

Ni =

⎡
⎢⎢⎣
p(i−4,i−4) p(i−4,i−3) ... p(i−4,i+4)

p(i−3,i−4) p(i−3,i−3) ... p(i−3,i+4)

... ... ... ...
p(i+4,i−4) p(i+4,i−3) ... p(i+4,i+4)

⎤
⎥⎥⎦ (1)

where p is a pixel from D and i is the index along the

diagonal, beginning with the upper left. [Note that for

i < (κ/2) and i > (n−(κ/2)), Ni will have dimensions

less than κ× κ due to the limits of D.]

3) Compute the diversity δ for each neighborhood N , with

δi = max(Ni) − min(Ni). max() and min() return the

maximum and minimum values, respectively, within the

specified neighborhood of pixels.

4) Group the diversity values δ1...n into b class intervals (or

bins) for creating a histogram to visualize the distribu-

tion. Here, b = 20 was empirically found to effectively

span the range of δ1...n computed for all neighborhoods

N1...n. To facilitate comparison, class intervals should

be consistent for every augmentation ξ and span the

maximum range of δ1...n for any ξ in Ξ.

5) Count the number of elements η grouped within each

class interval ι.

6) Compute the efficacy score, eff-score, for a given aug-

mentation ξ by:

eff-score = η1/

b∑
ι=1

ηι. (2)

B. Nirvana distance

The nirvana distance (ND) evaluates the performance of

different augmentations beyond overall classification accuracy

after model training. Data in feature space is not always

uniformly distributed, and some confusions between classes

can be explained through nearness of feature vectors [10].

Therefore, this metric combines the classification performance

of a given augmentation (by class) with information known

from the initial data.

Let � represent a matrix of distances in feature space

between classes, where �i,j represents the distance between

class i and class j. � should be inferred from the original

(non-augmented) data and may be computed prior to training

of classification models. For a model trained on ξ-augmented

data, let FNξ(g, p) represent the number of samples with

ground-truth label g that are misclassified as class p. Let C
represent a cardinality vector, where Cλ gives the number of

samples from class (label) λ for the data set under evaluation.

A distance component dc is defined for a given augmenta-

tion ξ and class λ as follows:

dcξ,λ =
∑
ι∈Λ

�λ,ι ∗ FNξ(λ, ι)

Cλ
(3)

where Λ is the set of all classes within the data set under

evaluation. The nirvana distance ND for augmentation ξ is

thus computed:

NDξ =
∑
λ∈Λ

dcξ,λ. (4)

The term nirvana distance is coined because NDξ may be

thought of as the distance of ξ from the “ideal” augmentation.

That is, finding an augmentation that yields (near) perfect clas-

sification performance such that ND ≈ 0, whilst distributing

any misclassifications in a way that reflects the original feature

space, would be akin to reaching “nirvana”.

The method here is motivated by the Earth Mover’s Distance

(EMD) [29]. EMD is posed as a problem of moving a mass

of earth from some number of sources to fill some number of

holes. In this construction, I represents a set of suppliers, J a

set of consumers, and ci,j the cost to ship a unit of earth from

i ∈ I to j ∈ J . A flow fi,j represents the number of units of

earth shipped from supplier i to consumer j. A key constraint

in EMD is that the amount of earth moved from suppliers must

be the same as the amount given to consumers.
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Fig. 4. Histograms of diversity values (δ1...n) for: (a) no augmentations; (b) stretch augmentation; and (c) drop augmentation.

Many elements of EMD translate to ND. Here, the analog of

cost c is distance �, and flow f is represented by the number

of misclassified samples FN to be “moved” to correct classifi-

cation. A key difference between ND and EMD is that, unlike

with EMD, with ND there is only one valid “destination”

for each misclassified sample, and each misclassified sample

must go to that destination. Thus, the “flows” fi,j are already

defined by the classification failures and need not be computed

via an optimization problem. An additional difference is the

normalization factor Cλ. With EMD, the normalization factor

is the total flow from all sources i ∈ I to all destinations

j ∈ J ; for ND, the focus is on characterizing the performance

of an augmentation ξ, so each dcξ,λ is normalized by the total

number of samples within each λ; a greater number of correct

classifications by a model trained with ξ-augmented data will

yield a smaller numerator with same denominator (compared

to other augmentations) for dc.

V. CASE STUDY RESULTS

A. Applying eff-score

Table I shows scene and city classification accuracy re-

lated to the computed eff-score for each data augmentation,

calculated from a complete set of models. The single-task

scene models were trained for this paper consistent with the

method from [7], and other scores are duplicated from [7]

with the authors’ consent. Evaluation of eff-score included

empirical testing of different neighborhood sizes, and whilst

results were not significantly different, κ = 3 (i.e., 3× 3, the

minimum-sized neighborhood) and κ = 9 were selected to

show the relative effects. For single-task models trained for

city classification, the eff-score has strong positive correlation

with model performance (r = 0.82 and r = 0.99 for κ = 3 and

TABLE I
RESULTS SHOWING THE eff-score FOR EACH DATA AUGMENTATION

COMPARED WITH CLASSIFICATION ACCURACY (%) FROM CNN MODELS

single-task multi-task eff-score
Augment city scene city scene κ = 3 κ = 9

None 56 59 56 57 0.540 0.235
Drop 69 26 47 19 0.619 0.551
Stretch 71 72 75 63 0.633 0.578
Cyclic 75 77 79 70 0.829 0.739

κ = 9, respectively). The multi-task city models have lower

but still positive (r = 0.69 and 0.59, respectively) correlation

due to drop negatively impacting scene classification, which in

turn impacted city accuracy. This illustrates the need to find

the appropriate augmentations for the task, or tasks (in the

case of multi-task predictors).

Figs. 4(a)-(c) show histograms for no augmentations,

stretch, and drop, respectively [cyclic is already presented in

Fig. 3(c)]. The ratio of the counts in the first bin to the total

number of samples is a useful metric because with augmented

data, more uniform neighborhoods are sought along a VAT

diagonal; [30] discusses the value of variance reduction with

respect to data augmentations. A higher eff-score indicates

greater uniformity.

As noted above, drop negatively impacts scene classifica-

tion, suggesting that the results include an “exception” with

respect to likely performance of evaluated augmentations. This

is to be expected. Data augmentations do not perform equally

well on all models, as seen by the confusion matrices in

Fig. 5. Further, data augmentations are not the sole factor

responsible for a model’s performance; its design, size, pa-

rameters, training strategy, etc. all have a significant impact

[7]. Nevertheless, eff-score can predict the potential efficacy

of an augmentation, as supported by the data in Table I. As

will be explored in Section V-B, augmentations do not always

equally improve predictions for all classes within a target

schema, demonstrating that: a) the “best” augmentation is not

absolute and depends on the objective task, and b) an increase

in prediction accuracy can mask an augmented-induced bias

that has skewed the intrinsic properties of the original data.

B. Measuring nirvana distance

A set of trained CNN models from [7], [11] were used to

generate predicted labels for augmented and non-augmented

data. The results are presented in Fig. 5 as a series of confusion

matrices in order to: a) compare predictions of multi-task

models to single-task models, and b) discover and compare

changes in predictive behavior from different augmentations.

Confusion matrices serve as a primary tool for evaluating

model performance, but they are limited in conveying nuance.

To address this, data are plotted as bar charts (as illustrated

by Fig. 6 for single-task model, no augmentation).
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Fig. 5. Confusion matrices for trained models, city schema. Row 1: single-task models. Row 2: multi-task models. Column 1: no augmentation. Column 2:
drop augmentation. Column 3: stretch augmentation. Column 4: cyclic augmentation.

Table II contains class-wise city classification accuracy for

each model, per augmentation, separated between single-task

and multi-task models. Although it is desirable all target

classes are equally affected by an augmentation, this is not

the case, as evidenced by the wide-ranging scores between

classes in each model type and augmentation pair.

The values of ND are presented in Table III for each model

by augmentation used, with class-wise distance components

representing how much each class contributed to the overall

Fig. 6. Predictions by target class for single-task, no augmentation model.
For each ground truth group, left bar indicates true positives (TP), right stack
indicates false negatives (FN).

TABLE II
CLASSIFICATION ACCURACY (%), BY CITY, FOR MODELS TRAINED ON

DATA USING SPECIFIED AUGMENTATION

City\Aug→ none drop stretch cyclic
Single-task models

Barcelona 40.0 65.1 62.2 58.9
Helsinki 50.0 66.9 77.3 73.6
London 76.5 81.0 79.6 69.8
Paris 32.4 56.2 83.8 77.9
Stockholm 80.8 82.2 64.3 58.5
Vienna 7.6 72.1 80.3 66.8

Multi-task models
Barcelona 55.1 11.9 72.2 78.1
Helsinki 53.7 74.3 81.5 85.4
London 14.8 19.6 78.1 79.6
Paris 87.2 28.8 78.5 79.7
Stockholm 73.1 55.3 72.0 76.7
Vienna 54.4 5.9 69.0 71.3

distance. To assess the degree to which the properties are

maintained and classes are treated fairly, the variance of the

distance components that comprise each ND are given in

Table IV. Here, a smaller value indicates more uniformity

across target classes. Without augmentations, a single-task

classifier has significantly greater between-class variation. This

is noticeably reduced with each augmentation, indicating that

the augmentations have improved the ease with which the

classes can be discriminated. This observation further suggests

that these models depend upon the augmentations to transform

the original data in order for the models to score accurately.

With the exception of the model trained with drop-augmented

data, multi-task models outperformed single-task models for

city classification, and Table IV multi-task values show that the
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TABLE III
DISTANCE COMPONENT COMPUTED FOR EACH CITY AND AUGMENTATION

WITH OVERALL NIRVANA DISTANCE (ND) FOR EACH MODEL

City\Aug→ none drop stretch cyclic
Single-task models

Barcelona 1.594 1.109 1.292 1.375
Helsinki 1.737 0.932 0.555 0.567
London 0.471 0.343 0.182 0.233
Paris 0.855 0.576 0.179 0.250
Stockholm 0.917 0.960 1.757 1.932
Vienna 4.868 1.094 0.511 1.072

ND 10.443 5.015 4.476 5.430
Multi-task models

Barcelona 1.561 2.640 0.949 0.731
Helsinki 1.158 0.995 0.470 0.345
London 1.137 1.344 0.202 0.172
Paris 0.310 1.739 0.292 0.248
Stockholm 1.407 1.897 1.389 1.070
Vienna 2.055 2.447 1.014 0.932

ND 7.627 11.062 4.316 3.497

TABLE IV
VARIANCE IN COMPONENTS OF NIRVANA DISTANCE (ND) FOR EACH

MODEL/AUGMENTATION

Model type none drop stretch cyclic
Single-task 2.58 0.10 0.41 0.46
Multi-task 0.33 0.40 0.22 0.14

tested augmentations have much less effect on the uniformity

of per-class performance. In these instances, class uniformity

remaining consistent and predictive performance increasing

represents the most desirable outcome for models designed

for real-world use.

Fig. 7 visualizes the individual distance components of ND
for each augmentation. The left plot reflects that the single-

task model using no augmentation classifies Vienna poorly (as

confirmed by Fig. 6). The right plot shows that cyclic is best

for multi-task models (confirmed by Table III) given that it has

the smallest and most uniform dc values. This illustrates that,

for this model, cyclic appears to retain the intrinsic properties

of the raw data that contribute to inter-class separation, doing

so from an original data space where the class centroids

are not equidistant from each other. For reference, Fig. 8

maps the original data space (i.e., � to compute ND) using

Euclidean distance between class centroids (from [11]) as

the edge weights of the graph. In this figure, London and

Paris are the acoustically closest cities in the non-augmented

data, explaining their confusions in the corresponding non-

augmented confusion matrices (Fig. 5, column 1) and bar chart

(Fig. 6).

VI. CONCLUSIONS AND FUTURE WORK

This work is a foundation for evaluating the potential

and realized impact of augmentations on the performance of

machine learning models. This paper presents metrics and

visualizations to efficiently and intelligently select and evaluate

augmentations, both pre- and post-model training. This repre-

sents an innovation for machine learning model development,

with the potential to save development time and cost while

simultaneously increasing the utility of developed models for

real-world use. The effectiveness of an augmentation is data,

task, model, and class dependent, so the validation presented

here should be extended to try different machine learning

model architectures, test in other domains, and expand the

set of augmentations under analysis. Nevertheless, this work

represents an important step forward in the evaluation of

augmentations, which — despite their influence on model

performance (on par with the impact of feature selection

or model parameters) — has heretofore been understudied.

MATLAB code for the presented metrics and visualizations are

publicly available [31]; it is hoped that others will experiment

with these methods and build upon this work for the benefit of

the machine learning community and to improve the products

of their efforts.
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and S. Misra, “Data augmentation and deep learning methods in sound
classification: A systematic review,” Electronics, vol. 11, no. 22, 2022.

[24] L. Zhang, Z. Deng, K. Kawaguchi, A. Ghorbani, and J. Zou, “How
does mixup help with robustness and generalization?,” in International
Conference on Learning Representations, 2021.

[25] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proceedings of the 14th python in science conference, 2015, vol. 8, pp.
18–25.

[26] D. Kumar and J. C. Bezdek, “Visual approaches for exploratory data
analysis: A survey of the visual assessment of clustering tendency (VAT)
family of algorithms,” IEEE Systems, Man, and Cybernetics Magazine,
vol. 6, no. 2, pp. 10–48, 2020.

[27] K. Rajendra Prasad, “Gaussian mixture model (GMM) based k-means
method for speech clustering,” International Journal of Advanced
Research in Computer Science, vol. 8, no. 7, pp. 643–647, 2009.

[28] T. C. Havens, J. C. Bezdek, J. M. Keller, M. Popescu, and J. M. Huband,
“Is VAT really single linkage in disguise?,” Annals of Mathematics and
Artificial Intelligence, vol. 55, pp. 237–251, 2009.

[29] Y. Rubner, C. Tomasi, and L. Guibas, “A metric for distributions with
applications to image databases,” in Sixth International Conference on
Computer Vision (IEEE Cat. No.98CH36271), 1998, pp. 59–66.

[30] S. Chen, E. Dobriban, and J. H. Lee, “A group-theoretic framework for
data augmentation,” J. Mach. Learn. Res., vol. 21, no. 1, January 2020.

[31] D. Heise, “MATLAB File Exchange community profile,”
https://www.mathworks.com/matlabcentral/profile/authors/4656280.

1119


