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Abstract—Machine learning algorithms to aid decision-making
processes are increasingly common in several areas. When fully-
trained, algorithms tend to perform better, but the availability
of data labels shortly after testing without human intervention
is a challenging task in many areas, especially in data stream
learning with concept drifts, where data is generated very fast, in
real-time, with the possibility of changes in the data distribution.
Concept drifts have been addressed in different ways, but using
drift detectors with base classifiers in semi-supervised learning
is not so common. This article shows how to use state-of-the-
art supervised detectors in semi-supervised learning problems,
and it also includes an extension to the MOA framework. The
Experiments designed to test our proposal used Hoeffding Tree
(HT) as base classifier, combined with eight drift detectors and a
total of 62 artificial and five real-world datasets, configured with
15% and 30% labeled instances. The results indicate that drift
detectors designed for supervised learning can also be effectively
used in semi-supervised environments. This finding could lead to
a change of paradigm for future research, since supervised drift
detectors have never been considered as a viable alternative due
to the absence of labels shortly after testing in many real-world
data streams.

Index Terms—Concept drift, data stream, semi-supervised
learning, drift detection, online learning

I. INTRODUCTION

Nowadays, online learning algorithms are increasingly used
to analyze large data streams that arrive at great speed [1].
Such algorithms must be constantly updated, adapting quickly
to new data instances. Besides, the distributions of the data
can change over time (concept drift), which could degrade the
learning models. Concept drift is often present in data mining
and machine learning problems and applications, making the
extraction of knowledge a challenging task that needs con-
trolled computational resources.

Several classification algorithms use supervised inductive
learning and rely on representative training samples; thus,
labelled examples are provided by experts for training. Also,
if a concept drift happens, the classifier must be retrained,
requiring another training set. This process is complicated,
expensive, and an ideal training set is not always available.

Also, some instances of the sample may be unlabeled,
making its learning semi-supervised and creating extra diffi-
culty in finding a good generalization. Moreover, concept drift
detectors used with base classifiers in semi-supervised learning
are difficult to find, and the ideal learner combines robustness
to noise with sensitivity to concept drifts.

Semi-supervised classification can be seen as an extension
of supervised classification where the training set (X) contains
data labeled in the form XL = ⟨x⃗i, yi⟩li=1 and also unlabeled
data represented as XU = ⟨x⃗i⟩l+u

i=l+1. The variables x⃗ and y
store the set of attributes and the label, respectively.

Most semi-supervised algorithms are extensions of super-
vised and/or unsupervised learners, thus inheriting some of
their problems, such as high memory consumption and/or run-
time. Semi-supervised classification sometimes has problems
associated with labeling and the insertion of instances in
training: a mistake in the process can negatively influence the
model performance. For instance, even under most accommo-
dating circumstances, learning under the cluster assumption
can be hazardous and lead to a prediction performance worse
than simply ignoring the unlabeled data and doing supervised
learning [2]; also, the semi-supervised part of the methods
should be used only when there is not enough labeled data [3].

This paper shows that concept drift detectors proposed for
supervised learning with a base classifier can also be used in
semi-supervised scenarios with high performance. The ratio-
nale is: in partially labeled data streams, the auxiliary detector
is executed only when the processed instance of data is labeled.

To make the experiments and also their correct evaluation
possible, the Massive Online Analysis (MOA) [4] frame-
work was extended with new functionalities which allow
for the preparation and execution of experiments with semi-
supervised methods based on the simulation of unlabeled
instances. This arrangement makes it possible to control how
many labels are hidden from the methods and, at the same
time, to measure the accuracy of the methods precisely.

We claim that this work might encourage a change of
paradigm in the direction of future research, as many re-
searchers have previously dismissed supervised learning in
general and/or concept drift detectors in particular as unfeasi-
ble in real-world data streams by merely arguing that obtaining
all labels shortly after testing is unrealistic [5], [6].

The rest of this paper is organized as follows: next section
examines the literature about classification in semi-supervised
learning (including tool support) and concept drift detectors;
then, we describe the MOA extension implemented and used
in the experiments; after, all the configuration details of the
experiments are provided, followed by the experimental results
and, finally, conclusions, including proposals for future work.
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II. RELATED WORK

Currently, most semi-supervised online learning algorithms
are variations of traditional machine learning ones. Methods
such as COP-k [7], SEEDED-k-means, CONSTRAINED-k-
means [8], and REDLLA [9] are all based on the k-means
non-supervised algorithm [10]. Another widely used proposal
is the CO-Training algorithm [11] from which other versions
were also proposed [12], [13].

Semi-supervised ensembles that consider the presence of
drifts include Semi-supervised Ensemble Learning of Data
Streams in the Presence of Concept Drift (SSEL) [5], Weight
Estimation Algorithm (WEA) [14], and Co-op Training [12].

Concept drift has been addressed from different points of
view, bringing solutions with varying degrees of mathematical
guarantees. Strategies for detecting the drifts are numerous and
are meant to adapt the classifiers when concept drift occurs.

Concept drift detectors are used to improve the performance
of classifiers. Several methods have been proposed over the
years. Drift Detection Method (DDM) [15] controls the error
rate (p) and its standard deviation (s) to detect concept drifts.

The Drift Detection Method based on the Hoeffding’s
inequality (HDDM) [16] has two versions: HDDMA and
HDDMW . HDDMA compares the moving averages to detect
concept drifts and HDDMW uses the Exponentially Weighted
Moving Average (EWMA) forgetting scheme [17] to weight
the moving averages which are then compared to detect
concept drifts. Both versions use Hoeffding’s inequality [18] to
set an upper bound to the level of difference between averages.

Fast Hoeffding Drift Detection Method for Evolving Data
Stream (FHDDM) [19] detects concept drifts using a sliding
window of size n and Hoeffding’s inequality. A drift is de-
tected when a significant difference between the maximum and
the most recent probabilities of correct predictions is observed.

Reactive Drift Detection Method (RDDM) [20] modified
DDM to tackle a well-known performance loss in long con-
cepts. It signals a new drift type when the number of instances
of the current concept reaches the predefined maximum num-
ber of instances and updates the DDM statistics using only
the most recent instances without modifying the base learner.
In addition, RDDM signals concept drifts when the number
of instances under the warning level reaches a threshold limit.

The state-of-the-art of semi-supervised methods that use
explicit change detection techniques is very limited. We found
only five methods that can be included in this definition and
all of them can be considered expensive in terms of execution,
both run-time and memory consumption.

The Semi-supervised Adaptive Novel Class Detection and
Classification over Data Stream (SAND) framework [6] is an
ensemble and detects concept drifts by detecting changes in
classifier confidences when testing and by detecting outliers
having strong cohesion among themselves.

Efficent Concept Drift and Concept Evolution Handling over
Stream Data (ECHO) [21] uses dynamic programming to re-
duce SAND’s concept drift detection module time complexity,
which is cubic. Its experimental results show that ECHO is
significantly faster than SAND maintaining similar accuracy.

The Diversity Measure Drift Detection Method for Semi-
supervised Environment (DMDDM-S) [22] uses two base
classifiers at the same time, Hoeffding Tree (HT) and Naive
Bayes (NB), to detect sudden drift by monitoring diversity. In
DMDDM-S, the class labels of incoming data are not always
necessary, but the authors use k-prototype clustering to label
the unlabelled data, which are later used to train the model.

The Batch Training using Distance-based Score and Fixed
Threshold Method (BDF) [1] is based on Self-training and
trains on all labeled instances plus the most confident pre-
dictions of the unlabeled ones, based on a distance-based
confidence score and a fixed confidence threshold.

Dynamic Selection Drift Detector (DSDD) [23] is based
on online bagging and uses self-training online learning [24].
Its algorithm has three modules: ensemble creation, dynamic
classifier selection, and drift detection. In the third module,
for each member classifier, a detector is applied – DDM or
Early Drift Detection Method (EDDM) [25].

Regarding tool support for semi-supervised data stream
experiments, we are only aware of MOA-SS [1], a MOA
extension that permits experiments using semi-supervised data
streams. Although our proposal bears some similarities with
MOA-SS, as both were implemented as extensions to MOA,
we claim our proposal provides more functionality and better
control over the generation of the semi-supervised data streams
by using configurable parameters.

III. IMPLEMENTATION OF SEMI-SUPERVISED SUPPORT

To carry out this research, there were two main problems:
(1) limited support to semi-supervised data streams learning;
and (2) limited availability of semi-supervised methods with
explicit concept drift detection. The first problem was solved
by implementing new resources in the MOA framework and
constitutes one of the contributions of this paper.

More specifically, the MOA framework classification tab
was expanded with several new functionalities to support semi-
supervised learning experiments.

1) A new learning type selector was created with values
Supervised and Semi-supervised. If supervised learning
is selected, MOA will work as the original version.
However, when semi-supervised learning is selected, the
algorithms will train only with the instances with a label,
though still testing in all processed instances.

2) A new field was introduced to control the percentage of
instances that will be considered unlabeled.

3) Another new field controls the number of instances with
labels needed at the beginning of the training before
starting to use data without labels.

An important adaptation was made to expand the repetition
field, available in the MOAManager tool [26], which permits
changing the seed used to generate the actual data in artificial
dataset generators and repeating the experiments to obtain
results with confidence intervals. The extended version uses
this field also with real-world datasets, varying the places
where the labels are hidden from the classifiers.
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The aforementioned extensions allow for the generation of
data streams for semi-supervised learning, both from artificial
and real-world datasets. In the artificial datasets, it is also
possible to configure concept drifts in the data streams. Notice
that the provided implementation of the algorithm also avoids
the removal of labels in an unequal way in different concepts.

Another contribution was to modify the Other Tasks tab to
permit generating real-world semi-supervised datasets in the
arrf format: they can be generated both from labeled real-
world datasets and from scripts of artificial dataset generators.

It is also worth emphasizing that all the modifications men-
tioned above are compatible with the MOAManager tool and
respect the principles of the original MOA implementation. In
fact, because our implementation is strongly compatible with
MOAManager, we decided to name it MOAManagerSS.

IV. EXPERIMENT SETTINGS

This section presents all the configuration details of the
experiments designed to evaluate the use of supervised concept
drift detectors in semi-supervised stream problems.

Based on their popularity and efficiency [27], we selected
DDM, HDDMA, FHDDM and RDDM as supervised detec-
tors. Since we could not find MOA codes for any of the semi-
supervised methods, we implemented DMDDM-S, BDF and
DSDD in MOA, mainly because we found their codes for
other platforms. In addition, the DSDD version used in this
work uses DDM as its drift detector, the one with the best
performance in the results presented by the authors [23].

The hyper-parameters of all the tested methods were set
to the values proposed by their respective authors or their
default in MOA. However, an extra configuration of BDF
(BDF RDDM) was also tested, setting RDDM as its drift
detector. Note that all detectors used HT as base classifier.

The tests used the MOAManager tool [26], integrated with
MOA-SS [1] for the experiments using BDF, and with our
MOAManagerSS for the remaining methods.

The accuracy evaluation used the Prequential methodology
with a sliding window of size 1,000 as its forgetting mecha-
nism [28], default in MOA: each data instance is firstly used
for testing and then for training, and the final accuracy is based
on the cumulative sum of the sequential errors over time.

Six dataset generators were used to configure 20k, 50k and
100k instances datasets with abrupt and gradual drift versions,
and five real-world datasets were selected. For all of them,
versions with 15%, 30% and 100% of the labels were created.
The fully-labeled versions served as upper-bounds to provide
better insight into how good the other results might be. The
artificial datasets have four concept drifts regularly distributed.

The artificial dataset generators used in the experiments
have all been extensively used in the area and their descriptions
can be found elsewhere [27]. These are: Agrawal, LED,
Mixed, Sine, Waveform, and RandomRBF. The real-world
datasets are also well-known: Airlines, Connect4, Spam, and
Weather. In addition, we used a version of Covertype proposed
by Ienco Et al. [29], which is ordered by the elevation attribute,
inducing gradual drifts.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents and analyses the results of the tests
prepared to compare the selected supervised drift detectors
with the semi-supervised methods, also including a BDF
version configured with RDDM (BDF RDDM), using HT
as base classifier in a semi-supervised environment.

The accuracies of the methods are presented in Tables I
and II, referring to the artificial datasets containing abrupt and
gradual drifts, respectively, and in Table, III regarding the real-
world datasets. The best results are shown in bold in all these
tables.

Analyzing the results in Tables I and II, in general, the
supervised detectors were effective, even with fewer (15%)
known labels. This can be confirmed by comparing the ac-
curacy of the supervised detectors with the semi-supervised
methods: in most cases, all the supervised methods delivered
better results than those of the semi-supervised ones. With
more labels (30%), the accuracy also increased, as expected.
Two reasons explain this: (1) more training, since the classifier
receives more labeled instances; and (2) concept drift detec-
tions happen earlier and, thus, are likely to be more accurate.

A natural conclusion is that fewer labels delay detections, as
it takes more errors and instances to trigger them. Still, drifts
are eventually detected and help classifier recovery, positively
influencing the final accuracy. The relevance of the detectors
becomes clearer by analyzing the two versions of BDF. In
BDF RDDM, the inclusion of RDDM improved the results
in almost all scenarios and even delivered a few top results in
Agrawal(F1-F5) and RandomRBF datasets with 15% of labels.

Regarding the detectors, RDDM stands out: its accuracies
were the best or close to the best in most datasets. A likely
beneficial characteristic of RDDM is its greater sensitivity
in detecting concept drifts. Although this aspect potentially
causes more false positives, with few labels available, RDDM
will likely trigger drifts more quickly than the other detectors.

To complete this analysis, we look at the accuracies in the
real-world datasets, shown in Table III. Despite presenting
the same patterns, the performance gain of BDF RDDM
draws our attention: it suggests that aligning semi-supervised
methods with supervised drift detectors can yield good results.

The results using 100% of the labels were omitted due to
limited space. They were collected to serve as an upper bound
and provide more insight on how much drop in performance
the methods suffer from fewer labels: it turned out that such
drops were smaller than expected. In most methods, with 15%
of the labels, the drop in accuracy was up to 10% in most
datasets, being smaller in the ones with larger concepts and in
four of the real-world datasets. Moreover, in several datasets,
there were drops of 2% or smaller. The most notable exception
was DSDD, with much larger drops, mainly because it is an
ensemble with high accuracies in the fully-labeled datasets.

In order to statistically evaluate the experiment results, we
applied FF [30], a variation of the non-parametric Friedman
test: the ranks included in all the tables are the results of FF .
In addition, the methods were compared using the Nemenyi
posthoc test [30] to point out the statistical differences.
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TABLE I
MEAN ACCURACIES IN PERCENTAGE (%) WITH 95% CONFIDENCE AND HT BASE CLASSIFIER IN ARTIFICIAL DATASETS WITH ABRUPT DRIFTS

%Labels SIZE DATASET DDM HDDMA FHDDM RDDM DMDDM-S BDF BDF RDDM DSDD

15%

Agrawal (F1-F5) 59.84±0.46 60.73±0.34 61.02±0.36 61.07±0.39 53.64±0.22 57.97±0.43 62.32±0.39 51.03±1.10
Agrawal (F6-F10) 71.44±1.85 78.40±0.84 78.89±1.05 77.59±1.93 70.52±0.16 61.34±0.50 68.50±1.28 66.57±2.61
LED 64.55±0.50 64.34±0.47 63.75±0.50 64.95±0.33 38.27±0.73 46.85±0.36 61.71±0.41 35.39±3.56

20K Mixed 87.44±0.21 88.20±0.22 87.45±0.21 87.88±0.23 60.99±0.21 63.45±0.37 87.69±0.26 57.00±0.74
Sine 84.55±0.59 85.43±0.34 85.00±0.27 85.48±0.32 62.94±0.23 61.79±0.55 84.81±0.40 60.20 ±0.86
Waveform 77.59±0.45 78.03±0.39 78.34±0.38 78.66±0.29 58.01±0.94 76.28±0.39 77.72±0.42 58.37 ±2.46
RandomRBF 31.42±0.49 31.40±0.52 30.38±0.52 31.07±0.46 21.82±0.26 28.90±1.20 33.92±0.52 26.52±1.38

Agrawal (F1-F5) 61.50±0.73 63.32±0.40 63.58±0.34 63.67±0.37 53.19±0.12 59.85±0.63 64.07±0.34 54.24±1.05
Agrawal (F6-F10) 77.56±1.96 82.39±0.59 83.63±0.52 82.77±0.97 71.37±0.15 64.36±0.37 71.51±0.58 70.37±0.80
LED 69.63±0.18 69.68±0.18 69.43±0.28 69.81±0.16 38.81±0.68 50.01±0.91 67.98±0.36 36.81±5.22

50K Mixed 89.95±0.59 90.74±0.22 90.62±0.19 90.69±0.20 61.23±0.16 65.00±0.54 89.76±0.21 63.50±0.91
Sine 86.92±0.55 88.33±0.15 88.23±0.14 87.92±0.17 62.97±0.12 62.65±0.43 86.50±0.29 66.91±0.97
Waveform 78.99±0.25 79.17±0.21 79.25±0.26 79.58±0.22 57.84±0.62 77.02±0.27 79.09±0.25 62.43±1.57
RandomRBF 31.11±0.51 31.59±0.39 30.79±0.48 31.38±0.38 21.67±0.14 29.85±1.85 35.88±0.50 25.00±1.36

Agrawal (F1-F5) 65.25±0.86 66.66±0.45 66.09±0.66 66.89±0.40 53.52±0.17 61.60±0.44 66.36±0.31 55.55±0.66
Agrawal (F6-F10) 82.62±0.51 84.62±0.30 84.98±0.24 84.51±0.37 71.62±0.09 65.79±0.32 73.09±0.30 72.78±1.20
LED 71.09±0.20 71.18±0.15 71.06±0.30 71.57±0.14 38.37±0.36 50.62±0.83 70.59±0.20 27.41±4.39

100K Mixed 90.47±0.21 91.06±0.10 91.06±0.09 90.96±0.11 61.20±0.11 65.98±0.65 90.76±0.17 71.13±1.08
Sine 88.71±0.19 89.50±0.13 89.49±0.11 89.04±0.16 63.04±0.11 63.77±0.54 88.16±0.21 75.33±0.64
Waveform 79.07±0.18 79.66±0.18 79.66±0.15 79.71±0.12 58.40±0.44 77.42±0.18 79.52±0.16 61.34±1.41
RandomRBF 31.86±0.37 32.02±0.34 31.05±0.23 31.86±0.32 21.81±0.10 30.89±1.54 36.91±0.39 23.12±0.74

30%

Agrawal (F1-F5) 61.05±0.46 62.44±0.47 62.76±0.37 62.81±0.38 59.99±0.26 59.18±0.25 63.94±0.29 56.22±1.05
Agrawal (F6-F10) 72.66±1.80 80.05±0.43 81.54±0.51 80.64±1.04 78.55±0.54 63.19±0.31 69.56±0.98 72.58±1.19
LED 68.25±0.42 68.27±0.27 67.98±0.35 68.47±0.23 55.79±0.28 50.59±0.44 61.85±0.49 51.16±5.63

20K Mixed 89.22±0.22 89.17±1.17 89.51±0.21 89.65±0.22 58.97±0.86 65.32±0.53 87.80±0.27 73.83±1.13
Sine 86.19±0.54 87.22±0.18 87.07±0.16 87.08±0.19 68.60±1.12 64.13±0.37 85.22±0.32 77.80±0.83
Waveform 78.48±0.34 78.71±0.30 78.58±0.44 79.28±0.29 76.74±0.22 76.96±0.28 78.83±0.32 74.73±0.77
RandomRBF 31.14±0.44 31.58±0.45 31.13±0.46 31.37±0.40 30.02±0.58 28.95±1.34 31.23±0.51 27.07±1.05

Agrawal (F1-F5) 64.36±1.11 66.83±0.42 66.08±0.48 66.87±0.40 61.90±0.31 61.19±0.21 66.28±0.27 59.78±0.69
Agrawal (F6-F10) 82.23±0.89 84.43±0.21 84.50±0.29 84.24±0.30 79.87±0.30 66.39±0.40 72.61±0.37 81.07±0.87
LED 71.16±0.16 71.26±0.18 70.90±0.27 71.46±0.15 57.47±0.73 53.00±1.15 63.26±0.30 60.08±5.49

50K Mixed 90.31±0.36 90.99±0.13 90.93±0.11 90.87±0.12 67.36±1.27 65.56±0.42 88.55±0.21 85.29±0.58
Sine 88.74±0.23 89.41±0.13 89.37±0.12 88.88±0.16 82.30±0.60 64.03±0.45 86.06±0.16 85.61±0.33
Waveform 79.03±0.25 79.53±0.22 79.58±0.22 79.76±0.20 78.11±0.14 77.44±0.24 79.49±0.28 76.57±0.38
RandomRBF 31.57±0.38 32.17±0.28 31.13±0.30 31.88±0.27 30.80±0.49 30.71±1.45 31.45±0.29 26.05±1.08

Agrawal (F1-F5) 67.16±1.49 70.27±0.34 69.23±0.55 70.26±0.27 62.21±0.16 59.55±0.15 68.30±0.27 60.40±0.66
Agrawal (F6-F10) 83.20±0.92 85.30±0.37 86.08±0.16 85.39±0.38 81.29±0.17 66.08±0.59 73.41±0.39 83.19±0.28
LED 72.01±0.40 72.54±0.14 71.91±0.20 72.66±0.13 63.65±0.19 54.71±0.87 63.48±0.25 64.66±4.90

100K Mixed 90.38±0.41 91.25±0.09 91.26±0.08 91.08±0.09 80.95±0.35 67.74±0.94 88.84±0.14 88.63±0.38
Sine 90.12±0.08 90.64±0.09 90.62±0.08 90.25±0.15 83.25±0.36 64.52±0.45 86.76±0.14 87.65±0.19
Waveform 79.29±0.20 79.69±0.17 79.81±0.15 79.88±0.12 79.05±0.10 78.39±0.19 79.83±0.15 77.00±0.20
RandomRBF 32.16±0.39 32.46±0.22 31.13±0.16 32.35±0.21 32.27±0.28 30.66±1.32 31.69±0.24 25.09±1.04

Rank 4.11 2.17 2.95 1.96 6.76 7.02 4.14 6.88

To perform the statistical analysis, initially the overall ranks
were calculated for all experiment setup. In absolute terms, we
can observe that, in the artificial datasets, RDDM, HDDMA

and FHDDM were the three best-ranked methods, whereas
BDF RDDM was the best semi-supervised algorithm. On the
other hand, in the real-world datasets, BDF RDDM, RDDM,
and FHDDM were the best three methods in this order.

The Nemenyi posthoc test results are graphically displayed
using diagrams where the Critical Difference (CD) is repre-
sented by bars connecting statistically similar methods and a
horizontal ruler marks the ranks of all the analyzed methods.

Figure 1a represents the results in the datasets with abrupt
drifts. RDDM was the best method, though without statistical
difference to HDDMA and FHDDM. It is worth pointing out
that the results of the gradual datasets and those separated by
percentage of labels were omitted, but they are quite similar
to those already presented, with only minor differences.

Finally, Figure 1b captures the results in the real-world
datasets. In this evaluation, BDF RDDM, RDDM, and

FHDDM were all significantly superior to DSDD, being
statistically similar to the other tested methods.

1 2 3 4 5 6 7 8

RDDM
HDDM_A

FHDDM
DDM BDF_RDDM

DMDDM-S
DSDD
BDF

CD= 1.6201, α= 0.05, N= 42, k= 8

(a)

1 2 3 4 5 6 7 8

BDF_RDDM
RDDM

FHDDM
HDDM_A DDM

DMDDM-S
BDF
DSDD

CD= 3.3203, α= 0.05, N= 10, k= 8

(b)

Fig. 1. Accuracy statistical comparison of all methods using FF and the
Nemenyi posthoc test on (a) datasets with abrupt drifts and partial labels
(15% and 30%), with 95% confidence, and (b) real-world datasets.
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TABLE II
MEAN ACCURACIES IN PERCENTAGE (%) WITH 95% CONFIDENCE AND HT BASE CLASSIFIER IN ARTIFICIAL DATASETS WITH GRADUAL DRIFTS

%Labels SIZE DATASET DDM HDDMA FHDDM RDDM DMDDM-S BDF BDF RDDM DSDD

15%

Agrawal (F1-F5) 59.31±0.30 60.13±0.30 60.43±0.35 60.62±0.37 53.40±0.20 57.95±0.41 61.92±0.31 51.82±1.14
Agrawal (F6-F10) 70.76±1.69 74.98±1.32 77.26±1.18 76.15±2.01 69.98±0.18 61.33±0.47 67.47±1.04 66.60±2.63
LED 63.77±0.58 63.29±0.41 63.22±0.45 64.13±0.38 37.21±0.47 47.26±0.52 60.88±0.38 32.98±3.61

20K Mixed 85.98±0.16 86.14±0.16 85.99±0.15 86.23±0.16 60.14±0.19 63.80±0.31 85.65±0.30 56.81±0.70
Sine 83.45±0.47 83.88±0.24 83.68±0.25 83.99±0.25 62.03±0.17 62.08±0.56 83.31±0.33 59.07±0.79
Waveform 77.15±0.39 77.48±0.45 77.54±0.39 78.15±0.33 57.79±0.87 75.94±0.36 77.22±0.38 58.49±2.52
RandomRBF 31.18±0.51 31.24±0.56 30.28±0.62 31.14±0.49 21.66±0.16 28.86±1.31 33.87±0.69 26.47±1.38

Agrawal (F1-F5) 61.20±0.72 62.86±0.46 63.33±0.36 63.66±0.40 53.21±0.11 59.73±0.60 64.04±0.32 54.10±0.87
Agrawal (F6-F10) 76.30±1.86 81.63±0.50 82.32±0.56 81.62±1.37 71.17±0.12 64.40±0.31 70.98±0.66 70.33±0.98
LED 69.50±0.19 69.34±0.21 69.12±0.21 69.66±0.19 38.08±0.43 49.68±0.69 67.36±0.36 32.00±4.81

50K Mixed 89.39±0.16 89.52±0.13 89.49±0.13 89.46±0.14 60.77±0.14 64.86±0.47 88.77±0.21 62.55±1.04
Sine 87.06±0.20 87.39±0.15 87.29±0.14 87.24±0.16 62.57±0.13 62.89±0.37 86.05±0.20 66.81±1.13
Waveform 78.83±0.24 78.86±0.15 78.96±0.27 79.38±0.22 58.32±0.67 77.13±0.27 78.93±0.27 61.27±1.98
RandomRBF 31.63±0.42 31.81±0.38 31.14±0.43 31.61±0.36 21.70±0.15 29.11±1.80 36.09±0.44 25.62±1.05

Agrawal (F1-F5) 64.29±1.03 66.62±0.48 65.78±0.54 66.80±0.42 53.48±0.15 61.60±0.48 66.15±0.35 55.89±0.69
Agrawal (F6-F10) 82.69±0.39 84.50±0.25 84.70±0.24 84.52±0.25 71.52±0.07 65.94±0.37 73.02±0.58 72.24±0.89
LED 71.29±0.15 71.25±0.14 70.88±0.18 71.63±0.14 38.43±0.32 50.72±0.92 70.37±0.16 25.38±3.81

100K Mixed 90.46±0.15 90.71±0.07 90.72±0.07 90.69±0.07 61.00±0.10 65.10±0.31 90.44±0.15 71.44±1.07
Sine 88.72±0.11 89.12±0.09 89.11±0.08 88.93±0.11 62.83±0.09 63.70±0.56 87.71±0.21 75.74±0.77
Waveform 79.04±0.21 79.52±0.20 79.50±0.17 79.83±0.14 58.33±0.58 77.43±0.18 79.49±0.15 61.74±1.15
RandomRBF 31.50±0.47 31.99±0.29 31.10±0.23 31.80±0.31 21.67±0.09 30.65±1.49 36.73±0.34 23.48±0.92

30%

Agrawal (F1-F5) 60.57±0.36 61.52±0.36 62.30±0.34 62.27±0.41 59.90±0.27 58.96±0.27 63.41±0.30 56.22±1.15
Agrawal (F6-F10) 71.69±1.81 78.94±0.72 79.23±0.75 79.12±1.40 78.42±0.47 63.03±0.32 68.69±1.01 71.90±1.30
LED 67.81±0.26 67.30±0.30 66.88±0.36 67.85±0.22 55.92±0.26 50.54±0.39 60.92±0.41 53.56±5.16

20K Mixed 86.93±0.22 87.12±0.19 87.15±0.18 86.94±0.20 59.28±0.85 65.05±0.44 85.85±0.29 70.70±0.99
Sine 84.86±0.26 85.18±0.21 85.19±0.20 85.00±0.20 68.12±1.43 63.87±0.39 83.45±0.29 77.17±0.78
Waveform 78.11±0.30 78.10±0.33 78.27±0.30 78.60±0.26 76.74±0.23 76.73±0.31 78.10±0.34 74.53±0.97
RandomRBF 31.35±0.47 31.73±0.43 30.63±0.40 31.31±0.39 30.22±0.52 29.01±1.35 31.28±0.49 27.06±1.09

Agrawal (F1-F5) 64.22±1.06 66.48±0.37 65.99±0.47 66.39±0.35 61.64±0.30 61.12±0.18 65.82±0.23 59.61±0.42
Agrawal (F6-F10) 81.94±0.98 84.04±0.34 84.07±0.27 83.98±0.31 79.93±0.29 66.19±0.50 72.52±0.39 81.05±0.80
LED 71.02±0.17 70.91±0.17 70.51±0.24 71.27±0.15 56.87±0.46 53.01±0.96 63.06±0.32 58.62±5.98

50K Mixed 89.75±0.14 89.92±0.10 89.92±0.09 89.83±0.12 66.97±0.95 65.38±0.33 87.74±0.17 84.84±0.52
Sine 88.24±0.21 88.55±0.12 88.57±0.11 88.39±0.14 81.69±0.49 63.97±0.42 85.57±0.22 85.26±0.29
Waveform 78.90±0.21 79.27±0.22 79.18±0.17 79.55±0.19 78.09±0.12 77.47±0.22 79.37±0.24 76.49±0.39
RandomRBF 31.59±0.44 32.03±0.28 31.10±0.28 31.95±0.32 30.67±0.56 31.43±1.31 31.42±0.26 25.95±0.95

Agrawal (F1-F5) 67.35±1.55 69.91±0.34 68.93±0.58 70.12±0.32 62.28±0.19 59.43±0.14 68.19±0.27 61.16±0.85
Agrawal (F6-F10) 83.39±0.79 85.00±0.31 85.86±0.13 85.21±0.40 81.11±0.17 66.00±0.54 73.31±0.49 82.91±0.24
LED 72.13±0.25 72.28±0.15 71.75±0.17 72.60±0.13 63.71±0.18 55.08±0.95 63.23±0.22 61.64±5.46

100K Mixed 90.40±0.25 90.72±0.07 90.73±0.07 90.67±0.07 81.05±0.37 66.91±0.58 88.56±0.15 88.09±0.34
Sine 90.09±0.10 90.20±0.09 90.23±0.09 90.10±0.12 82.98±0.36 64.61±0.54 86.50±0.16 87.50±0.27
Waveform 79.46±0.18 79.68±0.18 79.76±0.16 79.90±0.12 79.05±0.10 78.39±0.15 79.85±0.13 76.89±0.25
RandomRBF 31.97±0.32 32.27±0.22 31.05±0.17 32.12±0.20 32.18±0.31 30.76±1.36 31.73±0.27 24.88 ±1.15

Rank 3.90 2.38 2.75 2.10 6.74 6.93 4.30 6.90

VI. CONCLUSIONS

In this research, extensive experimentation was carried out
to investigate the possibility of using supervised concept drift
detectors in semi-supervised learning environments, mainly
driven by the idea of executing the drift detector only on the
labeled instances.

To enable this idea in practice and also be able to correctly
evaluate the results, it was necessary to add new functionalities
to the MOA framework. The implemented features permit
hiding from the methods the labels of a subset of the instances
of fully-labeled datasets, based on configurable parameters
under the control of the user.

All the experiments used Hoeffding Tree (HT) as base
learner, combined with four supervised concept drift detec-
tors and three semi-supervised methods, using a reasonably
large number of artificial and real-world datasets, configured
with 15%, 30% and 100% of instances with labels. In the
results, the performances of the supervised methods RDDM,

HDDMA and FHDDM were better in the datasets with both
abrupt and gradual drifts, in all tested configurations. As for
the semi-supervised methods, the best results were those of
BFD RDDM.

The reported results allow us to claim that the use of super-
vised detectors in semi-supervised environments is possible,
can deliver excellent results, and might mark a paradigm
change for future research in the area.

In the future, this research can be extended with experiments
in other semi-supervised scenarios testing other competitive
supervised classifiers and detectors, also including the use of
ensembles of classifiers such as Boosting-like Online Learning
Ensemble (BOLE) [31], Fast Adaptive Stacking of Ensembles
(FASE) [32], Online AdaBoost-based M1 (OABM1) [33],
etc., combined with concept drift detectors such as RDDM.
Another possible way to proceed is to adapt supervised
concept drift detectors in other existing semi-supervised al-
gorithms, similar to how it was done in this research with
BDF and RDDM and proved promising.
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TABLE III
MEAN ACCURACIES IN PERCENTAGE (%) WITH 95% CONFIDENCE INTERVALS AND HT BASE CLASSIFIER IN REAL-WORLD DATASETS

%Labels DATASET DDM HDDMA FHDDM RDDM DMDDM-S BDF BDF RDDM DSDD

15%

Airlines 63.18 63.87 65.01 64.77 65.13 64.10 66.35 58.74
Connect4 70.09 70.52 70.43 70.77 69.81 70.57 73.55 65.87
Covertype 75.50 78.50 78.13 78.42 73.72 73.21 78.01 66.26
Spam data 90.27 89.64 89.23 89.57 89.85 84.54 89.99 76.67
Weather 68.69 68.72 68.81 68.88 69.09 69.94 68.94 67.92

30%

Airlines 63.69 64.59 65.38 64.82 65.18 67.56 68.24 63.17
Connect4 71.64 72.29 72.38 72.46 70.08 70.08 73.58 69.25
Covertype 78.50 79.98 80.41 80.24 74.19 59.74 68.07 78.76
Spam data 91.01 90.80 90.53 90.47 90.04 83.49 88.93 88.36
Weather 70.29 69.63 70.05 69.99 69.23 69.94 70.35 69.76

Rank 4.60 4.30 3.50 3.40 4.95 5.25 2.70 7.30
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