
How Far Out of Distribution Can We Go With ELA
Features and Still Be Able to Rank Algorithms?

1st Gašper Petelin
Computer Systems Department

Jožef Stefan Institute
Jožef Stefan International

Postgraduate School
Ljubljana, Slovenia
gasper.petelin@ijs.si

2nd Gjorgjina Cenikj
Computer Systems Department

Jožef Stefan Institute
Jožef Stefan International

Postgraduate School
Ljubljana, Slovenia

gjorgjina.cenikj@ijs.si

Abstract—Algorithm selection is a critical aspect of contin-
uous black-box optimization, and various methods have been
proposed to choose the most appropriate algorithm for a given
problem. One commonly used approach involves employing
Exploratory Landscape Analysis (ELA) features to represent
optimization functions and training a machine-learning meta-
model to perform algorithm selections based on these features.
However, many meta-models trained on existing benchmarks
suffer from limited generalizability. When faced with a new
optimization function, these meta-models often struggle to select
the most suitable algorithm, restricting their practical applica-
tion. In this study, we investigate the generalizability of meta-
models when tested on previously unseen functions that were
not observed during training. Specifically, we train a meta-
model on base COmparing Continuous Optimizers (COCO)
functions and evaluate its performance on new functions derived
as affine combinations between pairs of the base functions. Our
findings demonstrate that the task of ranking algorithms becomes
substantially more challenging when the functions differ from
those encountered during meta-learning training. This indicates
that the effectiveness of algorithm selection diminishes when
confronted with problem instances that substantially deviate from
the training distribution. In such scenarios, meta-models that use
ELA features to predict algorithm ranks do not outperform mere
predictions of the average algorithm ranks.

Index Terms—algorithm selection, exploratory landscape anal-
ysis, evolutionary computation, black-box optimization

I. INTRODUCTION

Continuous single-objective optimization (SOO) is a process
of finding the optimal value of a single objective function in a
continuous domain. It is a fundamental problem in optimiza-
tion and has applications in many different domains [1]. A
closely related problem in SOO is the automated algorithm
selection (AS) problem [2] where one wants to select the
best-performing optimization algorithm for a given problem.
In previous research, this issue has received considerable
attention [3]. Typically, the process of choosing algorithms
involves utilizing specific properties or features of the problem
at hand. Some examples of such features include Exploratory
Landscape Analysis (ELA) [4], Topological Landscape Anal-
ysis (TLA) [5], and Deep learning-based features [6]. This is
accompanied by a machine learning meta-model that given a
set of features either predicts performance (regression task [7])

or determines the most appropriate algorithm from a given set
(classification task [8]).

In the existing body of literature, algorithm selection is
predominantly carried out by utilizing established benchmark
suites like COmparing Continuous Optimizers (COCO) [9]
and IEEE Congress on Evolutionary Computation (CEC) [10].
For our specific case, our focus will solely be on the COCO
benchmark, which encompasses 24 classes of single-objective
optimization problems. Each problem class within the bench-
mark consists of multiple instances, created by applying var-
ious transformations such as scaling or shifting. Essentially,
the COCO collection comprises numerous problem instances,
all belonging to one of the 24 problem classes with problem
instances belonging to the same class usually having identical
or extremely similar properties [11].

In the context of utilizing the COCO benchmark, two
prevalent methods for algorithm selection and performance
prediction during validation are known as “leave-one-instance-
out” (LOIO) (see [12]) and “leave-one-problem-out” (LOPO)
(see [3]). By utilizing LOPO validation, the process of au-
tomated algorithm selection involves creating a meta-model
and evaluating it across various types of problems. Typically,
this entails selecting specific instances from one problem
class to form a test set, while the remaining instances from
the other 23 problem classes are utilized to construct the
meta-model. The LOPO validation for AS models can pose
significant challenges due to the diverse properties of COCO
problems [13]. Consequently, there may be instances during
prediction where a problem with similar properties has not
been previously encountered. Conversely, in contrast to LOPO
validation, LOIO validation tends to be more lenient since
the AS model is built using all problem classes. Under this
validation approach, some instances from a particular problem
class are employed for training, while others are used for
testing. Consequently, during the evaluation of the model,
functions with comparable properties have already been ob-
served, simplifying the task of selecting the best algorithm or
predicting performance. Further information and comparisons
between these two strategies can be found in [3].

The objective of this research is to investigate the general-

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 341

izability of meta-models in algorithm selection when utilizing
ELA features. Existing studies typically rely on either LOIO or
LOPO strategies, which often result in two extreme scenarios:
highly accurate meta-models that excel in algorithm selection
under LOIO, and underperforming meta-models when the
LOPO strategy is employed. Therefore, assessing the effec-
tiveness of specific features and meta-models in algorithm se-
lection becomes challenging. One strategy can be categorized
as “extremely easy” because the training and testing instances
are nearly identical, while the other strategy is considered
“extremely hard” due to the complete dissimilarity between
the prediction and training data, making learning a difficult
task.

Our contribution: In this paper, we evaluate the ability of
ELA features combined with meta-models in determining the
appropriate algorithm for unfamiliar problems. Our aim is to
construct a meta-model that can effectively map ELA features
to algorithm ranks. Subsequently, we assess the performance
of the meta-model on new problems generated by combining
existing COCO functions. Our results indicate that, in the
majority of cases, the meta-model’s ability to accurately rank
algorithms deteriorates substantially when applied to modified
problems that were not encountered during training. This
suggests that the current algorithm selection approach based
on LOIO methodology is inadequate, as even minor variations
in ELA features can result in meta-model producing poor
rankings. Furthermore, this highlights the limitations of the
LOIO methodology, as it can yield meta-models that perform
exceptionally well but fail to generalize to novel problems they
may encounter.

Outline: The structure of the remaining sections in the
paper is outlined as follows: In Section II, we elaborate on the
methodology employed to extract features from optimization
functions and utilize them to rank algorithms. Section III
shows the outcomes regarding the robustness of algorithms
trained on a specific problem and their generalizability to
new, unseen problems. Finally, Section IV provides concluding
remarks for the paper.

Reproducibility: The code used to carry out the experi-
ments can be found at the Gitlab repository https://repo.ijs.si/
gpetelin/affine-ranking.

II. METHODOLOGY

In this section, we present a comprehensive explanation
of the methodology employed in the research paper. The
process involves several steps: i) computing ELA features and
algorithm rankings for problem instances across all 24 base
COCO problem classes; ii) training a model that takes as input
ELA features and predicts algorithm rankings specifically
for problem instances falling under the 24 base problem
classes; iii) generating new problem instances by combining
existing base COCO functions, calculating ELA features for
these instances, and running the algorithm to get the ground
truth ranks of optimization algorithms; iv) utilizing the model
trained on the base problem classes to predict the rankings for
the newly generated problems; v) comparing the ground truth

rankings with predicted ones from out-of-distribution functions
and assessing the extent to which we can go outside the
distribution before the algorithm rankings become unreliable.

A. Affine Function Combinations and ELA Feature Represen-
tation

In this study, we make use of affine function transformations
as defined in [14]. Specifically, we use the following formula
to combine two functions from the COCO suite:

F (Pi,m, Pj,n, α)(x) =
exp(α log(Pi,m(x)− Pi,m(Oi,m))+
(1− α) log(Pj,n(x−Oi,m +Oj,n)− Pj,n(Oj,n)))

(1)

In this case Pa,b represents the b-th problem instance be-
longing to the a-th COCO problem class. The Oa,b represents
the location of the optimum of the function Pa,b. All of the
objective functions created by this equation have the optimal
solution of the objective value at zero (Pa,b(Oa,b) = 0.0).
Parameter α describes the mixing degree of two functions.
To give an example, Figure 1 demonstrates the newly created
2D functions that are a combination of instances belonging to
classes 1 and 22 with different values of α.

0.0 0.25 0.5 0.75 1.0

Fig. 1. The red mark indicates the global optimum on the landscape resulting
from the combination of P22,1 with α = 1 and P1,1 with α = 0, for instance,
1 of both functions. The landscape evolves as α varies between 0.0 and 1.0.

In order to make the objective functions suitable for ma-
chine learning applications, we employ Exploratory Landscape
Analysis (ELA) [4], [15] features (specifically the Dispersion,
ELA Dist, ELA Level, ELA Meta, IC, NBC and PCA feature
groups). ELA features are utilized to quantify specific proper-
ties of continuous optimization problems, including convexity,
curvature, multimodality, and variable scaling. These features
are derived from a set of low-level metrics computed using
sampled points and corresponding function values within the
problem domain. In this paper, we calculate ELA features by
employing Latin Hypercube Sampling (LHS) with a sample
size of 1000D. In total, we use 62 ELA features to describe
each problem instance. Keep in mind that this represents
a relatively large sampling budget when calculating ELA
features. However, in this instance, we aimed for the features
to be as robust and reliable as possible.

B. Optimization Algorithm Portfolio

In our study we define portfolio of k optimization algo-
rithms as A = {a1, . . . , ak}. The portfolio consists of five
algorithms from the pymoo toolbox [16], which provides a
standardized approach to access different optimization algo-
rithms. The following optimization algorithms are assessed in

342

our study based on the availability of the code and popularity
within the field of optimization:

• Genetic Algorithm (GA) [17]
• Differential Evolution (DE) [18]
• Particle Swarm Optimization (PSO) [19]
• Evolutionary Strategy (ES) [20]
• Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [21]
All the algorithm hyperparameters were configured using

the default values defined in the pymoo framework version
0.5.0. All algorithms were assigned a budget of 2000D func-
tion evaluations.

C. Algorithm Ranking Metric

A method for algorithm selection based on machine learning
aims to identify a mapping that associates specific features
with algorithms available in a given portfolio. Various metrics
have already been proposed in this regard [3]. In our study,
we employ the pairwise ranking error (PRE) to evaluate and
compare the quality of different rankings. The pairwise error
between two ranked lists is defined as follows:

PRE =
1

|A| |A|
∑
ai∈A

∑
aj∈A

r(aj , ai) (2)

r(aj , ai) =

{
0 if rp(ai, aj) = rg(ai, aj)

1 if rp(ai, aj) ̸= rg(ai, aj)
(3)

In this scenario, the function rp(ai, aj) yields -1, 0, or 1
based on whether the predicted rank of algorithm ai is lower,
equal, or higher than the rank of algorithm aj , respectively.
Similarly, the function rg(ai, aj) also provides the values -1,
0, or 1, but in this case, it considers the order of algorithms in
relation to the ground truth, which is determined by executing
the algorithm on a specific problem instance 30 times. To
provide an example, let’s consider a set of algorithms [GA,
PSO, DE, CMA-ES, ES] and evaluate them three times on
a specific problem instance. The obtained ranks for each run
are as follows: [5, 2, 3, 1, 4], [5, 3, 2, 1, 4], [5, 2, 3, 1,
4]. By averaging these ranks across all three runs, we obtain
the average ranks: [5, 2.33, 2.67, 1, 4]. This indicates that,
based on these three runs, GA is ranked the worst while CMA-
ES is ranked as the best algorithm. These average ranks are
considered the ground truth for algorithm performance on a
specific problem instance.

Now, let’s assume a meta-model predicts algorithm ranks
of [4.8, 2.63, 2.37, 1.1, 4.1]. With this prediction, all the
algorithms are still ranked correctly, except for PSO and DE
whose rankings differ from the ground truth. To measure the
difference in rankings, we can calculate the pairwise error
using equation (2). The computed pairwise error, in this case,
is 0.1, since the predicted order is relatively close to the ground
truth order of algorithms.

The ranking error is a measure used to evaluate the perfor-
mance of ranking algorithms. It assesses how well a ranking
algorithm predicts the correct order of items in a list compared

to a ground truth ranking. If the predicted ranking list and
ground truth ranking list both rank optimization algorithms in
the same order, the ranking error would be 0.0. This indicates
a perfect match between the meta-model predictions and the
ground truth rankings. A ranking error of 0.5 signifies that
the meta-model predictions are equivalent to random ranking.
In other words, the meta-model performance is no better than
randomly assigning ranks to the optimization algorithms in
the portfolio. Lastly, a ranking error of 1.0 indicates that
the predictions are completely opposite to the ground truth
rankings. This means that the algorithm has reversed the order
of all the items in the list. Note that in practice ranking is often
performed using more advanced tools such as DSC [22] that
might assign the same rank to algorithms where there is no
statistical difference in performance.

D. Meta-model

In this study, we use three different meta-models that map
between ELA features obtained through sampling an objective
function and optimization algorithm ranks. All of the meta-
models are essentially multi-target regression models, which
take 62 ELA feature values as input and produce predictions of
five real numbers that correspond to algorithm rankings. Three
meta-models, in this case, are xgboost, mean, and random.

• xgboost: This meta-model performs ranking using the
XGBoost [23] machine-learning algorithm (from python
package xgboost version 2.0.0 with default hyperpara-
maters). XGBoost is a popular machine-learning algo-
rithm that performs an iterative process of incorporat-
ing new decision trees into the ensemble. Noteworthy
advantages of XGBoost include its ability to handle
missing data, accommodate various data types (categor-
ical, numerical), and typically deliver good results on
tabular [24], [25].

• mean: This ranking algorithm calculates the average
ranking across the entire training set and makes predic-
tions solely based on that, without considering the ELA
features of individual problems. Alternatively, one can
view this ranking model as the “single best solver” in the
ranking context, as it represents the mean rank across the
entire training dataset.

• random: With this meta-model, optimization algorithms
are assigned random rankings without considering any
characteristics or features of the problem.

Be aware that the meta-models were trained to predict the
rankings of optimization algorithms rather than the actual
performance achieved by a particular algorithm. Before train-
ing the meta-models, the algorithm performance is converted
into ranks meaning that the meta-model uses multi-output
regression [26] to predict the ranks of five algorithms in the
portfolio.

III. RESULTS

The results section consists of several parts. First, we
present the experimental setup III-A followed by the sub-
section performance of the algorithms on 24 base COCO

343

problem classes without any modification in III-B. Next, we
illustrate some examples of algorithm ranking on problems
obtained with affine transformations in III-C. Finally, in III-D
we demonstrate how well the ranking meta-model trained on
only base functions can rank algorithms accurately on affine
combinations of functions.

A. Experimental Setup

In this paper, we exclusively focus on objective functions
with a dimensionality D = 5. In each algorithm’s execution, a
fixed budget of 2000D function evaluations is allocated with a
population size of 20. In total 62 ELA features are computed
using the 1000D LHS sampling strategy. For every problem
instance, the algorithms from the portfolio are run 30 times
with random seeds. Problem instances 1-5 belonging to COCO
base problems are utilized for training, while instances 6-10
are employed to evaluate the performance of the meta-models.
The mixing parameters α, always range between 0.0 and 1.0
with increments of 0.1.

B. Algorithm Ranking on Base COCO Problems

To gain a deeper understanding of the performance of
various algorithms across different problem classes, Figure 2
presents the average ranks of all five optimization algorithms
for all 24 base COCO problem classes on five-dimensional
problems. Each problem class comprises multiple instances,
and we obtain the average rankings by considering all 10
problem instances and 30 runs for each instance. The figure
reveals significant variations in the average rankings of algo-
rithms across different COCO problem classes. For instance, in
problem class 1-Sphere function, the PSO and DE algorithms
consistently achieve the best rankings, followed by CMA-
ES, ES, and finally GA. Conversely, for problem instances in
problem class 3-Rastrigin function, the DE algorithm performs
the best, while CMA-ES obtains the worst rank. This shows
the diversity in algorithm rankings across different problem
classes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
COCO base class

GA

PSO

DE

CMAES

ES

Al
go

rit
hm

 ra
nk

5.0 4.8 2.7 2.1 2.6 4.1 4.2 4.0 4.3 4.2 4.4 3.8 4.3 4.9 4.4 3.3 4.6 4.5 3.0 3.1 3.8 3.7 2.6 3.7

1.8 1.8 2.3 2.7 2.6 2.0 3.5 3.8 3.4 3.4 3.6 3.4 4.0 2.8 3.7 2.3 3.5 3.5 2.9 3.1 3.1 2.9 2.8 2.4

1.8 1.8 1.1 1.2 2.6 4.6 3.4 3.0 3.6 4.2 3.7 4.4 3.5 3.9 2.7 3.1 3.5 3.6 3.1 1.9 2.8 2.7 3.5 3.0

2.4 2.4 4.7 4.8 3.0 1.1 1.7 1.3 1.3 1.0 1.0 1.1 1.0 1.0 2.2 2.0 1.3 1.6 2.0 4.6 3.7 3.5 1.9 1.8

4.0 4.1 4.1 4.1 4.1 3.1 2.1 2.9 2.4 2.1 2.2 2.3 2.1 2.3 2.0 4.2 2.2 1.8 4.0 2.3 1.7 2.3 4.1 4.0

Fig. 2. Algorithm ranks for each of the 24 COCO problems classes aggregated
across 10 problem instances per class with 30 runs per instance.

C. Algorithm Ranking on Affine Function Recombinations

One of the goals of the paper is to explore the behavior of
algorithms on novel functions that are formed by combining
existing functions through affine recombination. To illustrate
this, Figure 3 shows the rankings of algorithms when transi-
tioning between problem instances of problem classes 1 and 22
using the described affine function combinations. We observe
that when algorithms are ranked for this specific function
combination, the following can be expected: if the function

deviates slightly from the original COCO base functions (α <
0.2 or α > 0.8), the algorithm ranks remain relatively stable.
However, when a new function differs substantially from the
base functions (0.3 < α < 0.7), the algorithm ranking can
deviate from what would be observed on any of the base
functions from which the new one is created. An example
of this is the ranking of the DE algorithm, which achieves an
average rank of 1.8 and 2.6 on base functions, but obtains a
rank of 4.0 on a newly created function with α = 0.5. This
showcases the difficulty and counterintuitive nature of ranking
algorithms when applied to unfamiliar functions derived from
base COCO functions. It suggests that for some problem
pairs, algorithms that excel with the base functions may not
perform effectively with the function created as a combination
of base functions thus making the task of predicting the ranks
a challenging task.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Alpha parameter

GA

PSO

DE

CMAES

ES

Al
go

rit
hm

 ra
nk

5.0 5.0 5.0 5.0 4.9 4.7 4.5 4.2 3.9 3.7 3.6

1.8 1.6 1.3 1.1 1.4 1.9 2.5 2.8 3.0 2.9 3.0

1.8 1.6 2.1 3.6 3.9 4.0 3.8 3.6 3.2 2.9 2.6

2.4 2.8 2.6 2.1 1.9 1.8 2.0 2.5 3.0 3.3 3.4

4.0 4.0 4.0 3.2 3.0 2.6 2.3 2.0 1.8 2.2 2.4

P1 P22

Fig. 3. Ranking of five different algorithms when evaluated on combinations
of problems 1 and 22.

D. Out of Distribution Generalization of Meta-models

In this subsection, we investigate the ability of a model,
which is specifically trained to rank algorithms for instances
belonging to the 24 base COCO problem classes, to generalize
to previously unseen instances created by combining objective
functions from these base problems. Meta-models (described
in II-D are trained solely on problem instances where α =
0.0 or α = 1.0. The trained meta-models are then evaluated
on both the base COCO functions (α = 0.0 or α = 1.0)
and functions created through combination or base functions
(0.0 < α < 1.0).

Each plot displays three lines representing different ranking
techniques. The blue line represents the mean pairwise ranking
error of the xgboost ranking model. The green line represents
the mean ranking error that would result from ranking algo-
rithms randomly i.e. the random meta-model. The orange line
represents the mean error from the mean meta-model obtained
by predicting the mean rank from the training data across all
problem classes and instances. Specifically for this paper the
mean ranking model always predicts the ranking [3.87, 2.98,
3.06, 2.18, 2.91] for algorithms [GA, PSO, DE, CMA-ES,
ES]. Note that a meta-model that always predicts the correct
ranking would obtain a ranking error of 0.0.

Considering the limited space available, we are unable to
showcase the performance of meta-models across all con-
ceivable problem combinations. However, we have carefully
chosen a few combinations to present. Figure 4 illustrates
the behavior of the ranking model for the problem class
combinations (P12-P15), (P7-P9), (P6-P9), and (P19-P24) as

344

representative examples. Each line shows the mean pairwise
ranking error computed over problem instances from 6 up to
10 for different meta-models and different values of α. By
examining the uppermost plot in the diagram, we can observe
the effectiveness of various strategies in achieving a high
ranking for a combination of problems P12 and P15. When
α = 0.0 or α = 1.0, the xgboost meta-learner demonstrates
superior performance compared to the mean model’s predicted
ranks. This is because the training dataset already contained
similar instances of the problem. In such instances, the xgboost
ranker achieves a ranking error of slightly less than 0.1,
whereas the mean meta-model experiences an error of 0.2.
However, once new problem instances are introduced where
α ̸= 0.0 and α ̸= 1.0, the performance of the xgboost
ranking model rapidly declines. Specifically, at α = 0.6, the
xgboost meta-model exhibits a ranking error of approximately
0.3, while mean meta-model results in an error of 0.15. This
indicates that xgboost is proficient at ranking algorithms for
problems that closely resemble those in its training data.
Conversely, ranking problems that deviate further from the
training distribution becomes substantially more challenging
for xgboost, rendering the mean meta-model more effective in
such cases.

0.00

0.25

0.50
P12 - P15

XGBoost rank
Mean rank
Random rank

0.00

0.25

0.50
P7 - P9

0.00

0.25

0.50
P6 - P9

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.00

0.25

0.50
P19 - P24

Pa
irw

ise
 E

rro
r

Fig. 4. Generalization of ELA features when performing algorithm ranking for
a selected few problem classes. Better meta-model performance is indicated
by a lower pairwise error.

Similar observations can also be made in the lower three
plots shown in Figure 4. For instance, when considering
combinations of problems P7 and P9, the xgboost meta-
model archives algorithm ranking error that is comparable
to mean meta-model ranking when α = 0.0 or α = 1.0.
However, the performance of xgboost declines when predicting
algorithm ranks for unfamiliar problems. Around α = 0.6, the
xgboost ranking model achieves an inferior accuracy to ran-
domly ranking algorithms, indicating poor generalization on
unseen problems. Conversely, when combining problems P6
and P9, the xgboost ranking meta-model achieves satisfactory

outcomes even for previously unseen instances of problems
compared to the random meta-model. Despite being trained
only on problem instances with α = 0.0 and α = 1.0, the
algorithm demonstrates the ability to achieve minimal ranking
errors on mixed instances combining P6 and P9, surpassing the
mean ranking strategy in some of the cases. Lastly, we shift
our attention to the plot that depicts the model’s accuracy on
instances involving a combination of problems P19 and P24.
In this scenario, the xgboost meta-model outperforms both
the random and the mean meta-model for 0.3 < α < 0.9
in terms of pairwise ranking error. This once again confirms
that the ranking meta-model based on xgboost can generate
precise rankings for problems P19 and P24, which were part of
the training set. However, it performs poorly when confronted
with new problems that are a combination of both, indicating
that these new out-of-distribution problems pose a challenge.
In summary, this analysis reveals that meta-models trained
to rank algorithms on base COCO problem instances often
exhibit limited generalization when faced with new problem
instances formed by combinations of base COCO problems.
However, it is noteworthy that there are instances, where the
xgboost meta-model can still generate algorithm ranks that
closely align with the ground truth, even for these newly
created problems.

Figure 5 illustrates the pairwise ranking results obtained
for different α levels, encompassing pairs between all 24
problem classes and 5 problem instances present in the test set.
The figure provides several key observations. When utilizing
ELA features to map algorithm ranks, the xgboost ranking
model demonstrates superior performance for problems ob-
served during training or those similar to the training set.
Therefore, when a problem is observed during training, the
xgboost ranking model consistently outperforms the mean
ranking meta-model in terms of average ranking. Training and
evaluation of xgboost the meta-model on instances belonging
to base problems yield a pairwise ranking error of 0.1 on
new instances from the same base problems, which surpasses
the mean meta-model ranking error of 0.3. However, when
encountering new problem instances created as combinations
of existing base COCO problems, the performance of xgboost
meta-models which rely on ELA features substantially dete-
riorates. In such cases, simply predicting mean ranks across
all 24 problems often achieves better results compared to the
xgboost ranking method or around 0.3.

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.0

0.2

0.4

Pa
irw

ise
 E

rro
r

XGBoost rank
Mean rank
Random rank

Fig. 5. Generalization of ELA features when performing algorithm ranking
across all problem instances and problem classes. Better meta-model perfor-
mance is indicated by a lower pairwise error.

345

IV. CONCLUSION AND FUTURE WORK

This research paper investigates the effectiveness of ELA
features in describing problems and their application in pre-
dicting the ranking of optimization algorithms. Specifically,
it explores the capabilities of a meta-model that is trained
exclusively on base functions and assesses its performance in
ranking algorithms when applied to newly generated problems
using affine transformations. The results indicate that the meta-
model exhibits varying degrees of success in predicting algo-
rithm order. Although it shows relative success in predicting
the ranks of algorithms for problem classes whose instances
fall within the training distribution, its performance substan-
tially declines as the optimization problems deviate from what
the meta-model has seen during training. The model’s ability
to rank algorithms in these cases becomes comparable to
predicting the mean ranking that is obtained over all of the
problems. These findings underscore the limitations of meta-
models trained exclusively on base functions and highlight
the need for further research to enhance their generalization
capabilities, particularly for out-of-distribution problems.

In future work, it would be valuable to investigate the
underlying factors that contribute to the varying difficulty
levels of algorithm ranking for different problems. Under-
standing the characteristics or patterns that make certain prob-
lems more challenging can provide insights into improving
algorithm performance. Additionally, exploring methods to
quantify the meta-model’s confidence in its predictions [27]
can further contribute to determining if the meta-model is
certain in its predictions and if one should trust the ranks
that are predicted. Furthermore, creating new problems that
bridge the gaps between existing problems and incorporating
them into the training phase could help improve the model’s
generalization capabilities and ensure better performance on
out-of-distribution problems.

ACKNOWLEDGMENT

Funding in direct support of this work: Slovenian Research
Agency: research core funding No. P2-0098, young researcher
grant No. PR-11263 to GP, and young researcher grant PR-
12393 to GC.

REFERENCES

[1] A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their appli-
cations to engineering problems,” Neural Computing and Applications,
vol. 32, pp. 12 363–12 379, 2020.

[2] J. R. Rice, “The algorithm selection problem,” in Advances in computers.
Elsevier, 1976, vol. 15, pp. 65–118.

[3] R. Tanabe, “Benchmarking feature-based algorithm selection systems for
black-box numerical optimization,” IEEE Transactions on Evolutionary
Computation, vol. 26, no. 6, pp. 1321–1335, 2022.

[4] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory landscape analysis,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation, 2011,
pp. 829–836.

[5] G. Petelin, G. Cenikj, and T. Eftimov, “Tla: Topological landscape
analysis for single-objective continuous optimization problem instances,”
in 2022 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2022, pp. 1698–1705.

[6] B. van Stein, F. X. Long, M. Frenzel, P. Krause, M. Gitterle, and T. Bäck,
“Doe2vec: Deep-learning based features for exploratory landscape anal-
ysis,” arXiv preprint arXiv:2304.01219, 2023.

[7] A. Jankovic and C. Doerr, “Landscape-aware fixed-budget performance
regression and algorithm selection for modular cma-es variants,” in
Proceedings of the 2020 Genetic and Evolutionary Computation Con-
ference, 2020, pp. 841–849.

[8] U. Škvorc, T. Eftimov, and P. Korošec, “Transfer learning analysis
of multi-class classification for landscape-aware algorithm selection.
mathematics 10 (3)(2022),” 2022.

[9] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“Coco: A platform for comparing continuous optimizers in a black-box
setting,” Optimization Methods and Software, vol. 36, no. 1, pp. 114–
144, 2021.

[10] G. Wu, R. Mallipeddi, and P. Suganthan, “Problem definitions and
evaluation criteria for the cec 2017 competition and special session
on constrained single objective real-parameter optimization,” Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou China
and Technical Report, Nanyang Technological University, Singapore.,
10 2016.

[11] Q. Renau, J. Dréo, C. Doerr, and B. Doerr, “Towards explainable
exploratory landscape analysis: extreme feature selection for classifying
bbob functions,” in Applications of Evolutionary Computation: 24th In-
ternational Conference, EvoApplications 2021, Held as Part of EvoStar
2021, Virtual Event, April 7–9, 2021, Proceedings 24. Springer, 2021,
pp. 17–33.

[12] A. Nikolikj, R. Trajanov, G. Cenikj, P. Korošec, and T. Eftimov,
“Identifying minimal set of exploratory landscape analysis features for
reliable algorithm performance prediction,” in 2022 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2022, pp. 1–8.

[13] G. Cenikj, R. Dieter Lang, A. Petrus Engelbrecht, C. Doerr, P. Korošec,
and T. Eftimov, “SELECTOR: Selecting a Representative Benchmark
Suite for Reproducible Statistical Comparison,” in Proceedings of The
Genetic and Evolutionary Computation Conference, 2022, in Press.

[14] D. Vermetten, F. Ye, and C. Doerr, “Using affine combinations
of bbob problems for performance assessment,” arXiv preprint
arXiv:2303.04573, 2023.

[15] Q. Renau, J. Dreo, A. Peres, Y. Semet, C. Doerr, and B. Doerr,
“Automated algorithm selection for radar network configuration,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2022, pp. 1263–1271.

[16] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,”
IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[17] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80,
pp. 8091–8126, 2021.

[18] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a
practical approach to global optimization. Springer Science & Business
Media, 2006.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[20] T. Bäck, “Evolution strategies: An alternative evolutionary algorithm,”
in Artificial Evolution: European Conference, AE 95 Brest, France,
September 4–6, 1995 Selected Papers. Springer, 2005, pp. 1–20.

[21] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation, vol. 9,
no. 2, pp. 159–195, 2001.

[22] T. Eftimov, P. Korošec, and B. K. Seljak, “A novel approach to statistical
comparison of meta-heuristic stochastic optimization algorithms using
deep statistics,” Information Sciences, vol. 417, pp. 186–215, 2017.

[23] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[24] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84–90, 2022.

[25] C. Bentéjac, A. Csörgő, and G. Martı́nez-Muñoz, “A comparative
analysis of gradient boosting algorithms,” Artificial Intelligence Review,
vol. 54, pp. 1937–1967, 2021.

[26] H. Borchani, G. Varando, C. Bielza, and P. Larranaga, “A survey on
multi-output regression,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 5, no. 5, pp. 216–233, 2015.

[27] D. Guillory, V. Shankar, S. Ebrahimi, T. Darrell, and L. Schmidt,
“Predicting with confidence on unseen distributions,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 1134–1144.

346

