
High Frequency Data-Driven Dynamic Portfolio
Optimization for Cryptocurrencies

Sulalitha Bowala
Department of Statistics
University of Manitoba

Winnipeg, Canada
bowalams@myumanitoba.ca

Aerambamoorthy Thavaneswaran
Department of Statistics
University of Manitoba

Winnipeg, Canada
Aerambamoorthy.Thavaneswaran@umanitoba.ca

Ruppa Thulasiram
Department of Computer Science

University of Manitoba
Winnipeg, Canada

Tulsi.Thulasiram@umanitoba.ca

Thimani Ranathungage
Department of Statistics
University of Manitoba

Winnipeg, Canada
ranathtd@myumanitoba.ca

Joy Dip Das
Department of Computer Science

University of Manitoba
Winnipeg, Canada

dasj@myumanitoba.ca

Abstract—Recently there has been a growing interest in
constructing portfolios with stocks and cryptocurrencies. As
cryptocurrency prices increase over the years, there is a growing
interest in investing in cryptocurrencies, along with diversifying
portfolios by adding multiple cryptocurrencies to the existing
portfolios. Even though investing in cryptocurrency leads to
high returns, it also leads to high risk due to the high un-
certainty of cryptocurrency price changes. Thus, more robust
risk measures have been introduced to capture market risk and
avoid investment loss, along with different types of portfolios to
mitigate risks. Many portfolio techniques assume asset returns
are normally distributed with constant variance. However, these
assumptions are violated in many cases. Unlike the existing
work, this study investigates the recently proposed data-driven
exponentially weighted moving average (DDEWMA) covariance
model to estimate the variance-covariance matrix for high
frequency (hourly data) cryptocurrency returns in Markowitz
portfolio optimization. The experimental results show that for
high-frequency data, the DDEWMA approach outperforms the
existing portfolio optimization model that uses the empirical
variance-covariance matrix. Improvements have been identified
in terms of the Sharpe ratio as well as risks (volatility, mean
absolute deviation (MAD), Value-at-Risk (VaR), and Expected
shortfall (ES)).

Index Terms—Cryptocurrencies, Portfolio Optimization,
Sharpe ratio, Volatility

I. INTRODUCTION

Numerous data sources follow a sequential pattern and
necessitate distinctive handling while constructing predictive
models. The task of prediction becomes challenging, es-
pecially when dealing with financial time series data like
trading volumes, stock and bond prices, and exchange rates.
Despite the complexities, certain indices can still be reasonably
forecasted with a degree of accuracy [1].

There is a growing interest in investing in different types
of stocks as a risk diversification strategy. Following the
financial crisis in 2008, the governing authorities have imposed
on financial institutions to use more robust risk measures
incorporating market risk to reduce the potential loss of

investments [2] in the future. Incorporating risk metrics like
volatility, value-at-risk (VaR), and Expected Shortfall (ES) into
the decision-making process serves as a means to mitigate the
potential risks of financial failures. Numerous studies have ex-
plored how these diverse risk measures can facilitate efficient
capital allocation and enhance risk management practices.

In 2008, the digital currency was introduced with the
introduction of Bitcoin [3]. A cryptocurrency is a form of
digital currency whose value is solely derived from the trust
placed in it. Digital currencies are transforming the conven-
tional financial system at a rapid pace, primarily because they
eliminate the need for financial intermediaries, eliminate trans-
actional delays, and reduce paperwork, among other benefits.
As Bitcoin prices increase over the years, there is an uprise in
investing in cryptocurrencies along with diversifying portfolios
by adding multiple cryptocurrencies to the existing portfolios
[4] and [5].

In 1952, Markowitz introduced a framework for computing
the ideal asset allocation within an investment portfolio, pio-
neering what is now known as modern portfolio theory [6].
The initial model finds the optimal weights (fund allocation
of initial investment) for a given level of risk, and different
versions of the model have been studied since then with com-
plicated modifications. Recently Awoye [7] studied a machine
learning approach with the Markowitz model, and the idea of
graphical Lasso was investigated in minimizing portfolio risk
by Millington and Niranjan [8]. Furthermore, researchers have
explored various methods in portfolio optimization, including
the Naı̈ve portfolio, Mean-variance portfolio, and Sharpe ratio
(SR). These investigations have revealed that a diversified
portfolio, inclusive of cryptocurrencies, tends to yield supe-
rior returns when compared to one that excludes them [9].
However, many of the approaches/studies assume normality
and are required to estimate/calculate the inverse covariance
matrix of asset price return. Thavaneswaran et al. [10] demon-
strated that the assumption of normality is not applicable to
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the chosen stocks, and the established portfolio risk metrics
are influenced by the greater skewness and kurtosis in the
portfolio returns. Hence, they proposed new risk measures
for portfolio optimization that incorporate high skewness and
kurtosis, and recently, Bowala and Singh [11] have investigated
the performance of new risk measures for high-frequency
cryptocurrency data.

Zhu et al. [12] introduce a portfolio optimization method
that relies on a data-driven exponentially weighted moving
average (DDEWMA) model for assessing volatility. The cur-
rent study extends the work of [12] by proposing a dynamic
portfolio optimization with DD volatility for cryptocurrencies.
Regular stock markets generally operate five days per week
with eight-hour shifts, and at the end of the day, a daily
adjusted closing price is reported for each stock. Therefore,
most studies consider daily data in the analysis. However,
cryptocurrency transactions happen twenty-four hours a day
and seven days per week. Given its nature, it is important to
investigate how a portfolio can be affected by this fast-moving
market. Thus, this study considers high-frequency data (hourly
adjusted closing prices) for cryptocurrencies in the analysis.

The rest of the paper comprises two sections followed by
the conclusions. Section 2 delves into data-driven variance-
covariance matrices and introduces a performance evaluation
metric for the new approach. Section 3 elaborates an overview
of the numerical experiments conducted for a portfolio that
includes six distinct cryptocurrencies.

II. METHODOLOGY

A. DDEWMA Model for Volatility

It has been noted that the volatility of asset returns fluctuates
over time [13]. Thus, models that can incorporate time-varying
volatility may provide better forecasts of risks. In 2020, Tha-
vaneswaran et al. [14] introduced a novel DDEWMA model
for volatility. The model can be extended to portfolio returns
(Rt) by replacing asset log returns with portfolio returns. The
model is written as:

σt+1 =
α

ρ
|Rt − R̄|+ (1− α)σt 0 < α < 1

where σt is volatility at time t and α is the smoothing constant
obtained by minimizing the one step ahead forecast error sum
of squares. ρ is the sign-correlation of the return,

ρ = Corr(R− R̄, sign(R− R̄)).

If the asset returns are believed to be Student-t distributed with
ν degrees of freedom (DF), ν can be estimated by solving the
equation 1 (see [14] for more details).

2
√
ν − 2 = ρ(ν − 1)Beta

(
ν

2
,
1

2

)
(1)

Let Pt be the adjusted closing price at time t. Then,
simple return at time t (Rt) can be calculated by Rt =
(Pt−Pt−1)/Pt−1. The weighted average of asset returns (Ri,t)
is known as portfolio return (Rp,t). When new observation
comes, the portfolio needs to be rebalanced in high-frequency

trading. This need for frequent updates on smoothed values
can be handled efficiently by DDEWMA.

The training period window for the study is [1, T1]. If the
last data point is collected at time T2, the test period is denoted
by [T1 + 1, T2]. After establishing the optimal smoothing
constant through the training data, it will then be applied to
predict volatility during the testing period. The DDEWMA
algorithm for computing a one-step-ahead forecast of volatility
and residuals proposed in [12] is summarized in algorithm 1.

Algorithm 1 DDEWMA volatility forecasts of returns
Require: Data: Adjusted closing asset prices Pt, t =

0, . . . , k, . . . , T1, . . . T2.
1: Ri,t ← Pi,t−Pi,t−1

Pi,t−1
, t = 1, . . . , T1, . . . T2

2: ρ̂← Corr(R− R̄, sign(R− R̄))
3: Zt ← |Rt − R̄|/ρ̂
4: S0 ←

∑k
t=1 Zt

k
5: α← (0, 1)
6: St ← αZt + (1− α)St−1, t = 1, . . . , T1

7: αopt ← minα
∑T1

t=k+1(Zt − St−1)
2

8: for t← 1, T2 do
St ← αoptZt + (1− αopt)St−1

rest ← Rt−R̄
St−1

9: return St, t = T1, . . . T2

10: return rest, t = 1, 2, . . . T2

B. Optimal Portfolio Weights
As assets with high risks yield high returns in general,

maximizing return leads to high risk and lower risk resulting
in low return in the simplest setup in portfolio optimization.
It is important to have a measure that captures both return
and risk, and the Sharpe ratio (SR) is the most commonly
used and popular measure that captures both risks and returns.
The Portfolio Sharpe ratio (equation 2) is the risk-adjusted
portfolio return, and it enabled us to compare the performance
of different portfolios considering both risk and return.

SR =
E[Rp,t]− rf

N√
V ar(Rp,t)

=
µp − rf

N

σp
(2)

In equation 2 rf is the annual risk-free rate, N is the number
of tradings in one year, µp = ωTµ, and σp =

√
ωTΣω, where

ω, Σ, and µ are the vector of portfolio weights, the covariance
matrix, and the mean vector of the asset return, respectively.
Then, the annualized Sharpe ratio can be calculated by

√
N ∗

SR.
Finding the tangency portfolio, known as the optimal risky

portfolio, maximizes the Sharpe ratio given in equation 2. The
constraint for this optimization problem is that the sum of
portfolio weights (fund allocation from initial investment) is
equal to one. Thus, the entire initial investment will be invested
in the given portfolio, and ωi ∗ 100% gives the percentage
of funds allocated from the initial investment in asset i. The
optimal weights for the tangency portfolio are given by

wOptimal =
Σ−1(µ− rf )

1TΣ−1(µ− rf )
. (3)
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C. Data-Driven and Empirical Covariance Matrices

The correlation matrix is generated based on the covariance
matrix of the standardized residuals. An element in the data-
driven covariance matrix can be written as

Σdd[t− 1]i,j ← cordd[t− 1]i,j σ̂i,tσ̂j,t.

Following the equation 3, obtaining optimal weights for the
portfolio using a data-driven covariance matrix is shown in
the algorithm 2. Once the optimal weights are determined, the
realized return for the portfolio using the testing sample is
computed by

Rp,t =
∑

wi,t−1Ri,t.

Algorithm 2 Portfolio Weights from DDEWMA Covariance
Matrix
Require: Data: Adjusted Closing Price of assets Pi,t, t =

0, . . . , k, . . . T1, . . . T2, i = 1, . . . , n
1: Ri,t ← Pi,t−Pi,t−1

Pi,t−1
, t = 1, . . . , T2

2: σ̂i,t is the St−1 for Ri in Algorithm 1, t = T1+1, . . . T2

3: Σdd[t− 1]i,i ← σ̂i,t
2

4: Σdd[t− 1]i,j ← cordd[t− 1]i,j σ̂i,t ˆσj,t

5: Check the matrix is positive definite
6: Z ← Σ−1(µ−Rf )
7: wdd

i,t−1 ← Zi∑
Z

8: return wdd
i,t−1

In this study, apart from the Sharpe ratio, we predict
various other risk metrics, including mean absolute deviation
(MAD), Value-at-Risk (VaR), and Expected Shortfall (ES).
The formulas for calculating the Sharpe ratio, MAD, VaR,
and ES using a one-step-ahead volatility forecast (σ̂T+1) are
provided in equations 4, 5, 6, and 7, respectively.

SRT+1 =
E[RT+1|RT , RT−1, . . . R1]− Rf

N

σ(RT+1|RT , RT−1, . . . R1)
,

=
µ̂p − Rf

N

σ̂T+1
,

(4)

MADT+1 = σ̂T+1ρ̂, (5)

V aRT+1 = (−1000)(σ̂T+1t
−1
ν (p)

√
ν − 2

ν
), (6)

EST+1 = 1000 ∗ σ̂T+1∗(
fν(t

−1
ν (p))

p

)(
ν + (t−1

ν (p))2

ν − 1

)√
ν − 2

ν
,

(7)

where µ̂p is the expected portfolio return and fν is the
probability density function of a student-t distribution with
ν DF.

D. Utility of Portfolio Optimization

Zhu et al. [12] proposed a new metric to quantify the
performance increase of the data-driven approach against the
empirical approach in terms of the Sharpe ratio (equation
8). The newly introduced measure quantifies the percentage
increase in utility achieved by transitioning from the empirical
variance-covariance matrix to the data-driven exponentially
weighted moving average variance-covariance matrix.

Utility Increase % =
SR2

DD − SR2
EMP

SR2
EMP

(8)

III. EXPERIMENTAL RESULTS

The study considers hourly adjusted closing price data
from six cryptocurrencies: Bitcoin (BTC), Ethereum (ETH),
Binance Coin (BNC), Ripple (XRP), Dogecoin (DOGE), and
Cardano (ADA). Hourly adjusted closing prices (USD) are
downloaded from Yahoo! Finance (http://www.finance.yahoo.
com) from November 2020 to May 2021. The selection of
cryptocurrencies is based on their market cap (current Price x
circulating supply) according to Coinmarketcap (http://www.
coinmarketcap.com). Note that in Coinmarketcap, Tether has
the third-highest market cap, and USD Coin has the fifth-
highest market cap. However, they have not been included in
this study as Tether and USD Coin are stablecoins, and they
would be less attractive to be included in a portfolio.

Table I provides summary statistics for all the assets during
the study period. DOGE has the highest mean return, and
BTC has the lowest mean return among the selected cryp-
tocurrencies. The Skewness of mean returns indicates that data
are not significantly skewed except for DOGE. Nonetheless,
for all the cryptocurrencies, kurtosis is significantly high,
indicating heavy tail distributions for mean returns. The table
also provides the auto-correlation function values for log
returns. As these values deviate from zero, it suggests that
the series exhibits significant autocorrelation, signifying the
presence of volatility clustering. Based on the estimated sign
correlation value (ρ̂), the corresponding DF (ν) for student-t
distribution is determined. For all the assets, simple returns
indicate heavy tails with lower DF.

TABLE I
SUMMARY STATISTICS OF HOURLY RETURNS

Asset Mean SD Skewness Kurtosis ACF ρ̂ ν
BTC 0.0004 0.0108 0.3685 10.4182 0.0361 0.6913 3.66
ETH 0.0005 0.0126 -0.1244 7.3092 0.0288 0.6926 3.69
BNC 0.0011 0.0172 0.6385 12.4631 -0.0217 0.6467 3.09
XRP 0.0006 0.0192 0.1596 24.8716 -0.0294 0.5899 2.70
DOGE 0.0017 0.0347 3.5342 49.1230 0.0077 0.4759 2.33
ADA 0.0010 0.0179 0.4961 8.4593 -0.0650 0.6957 3.75

In this study, one month of adjusted closing prices of assets
(24 hours per day * 30 days per month = 720 data points per
month) are used as the training data, and portfolio forecasts
are obtained using the data-driven and empirical approaches
for one day (24 hours/24 data points). More importantly, we
consider a dynamic setup for obtaining the portfolio forecasts,
and it enables us to avoid the seasonality and cyclic effect
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of cryptocurrency price data. In the following subsections, SR
rolling forecasts and rolling risk forecasts of portfolios are
summarized using 2021 January, February, and March monthly
data. Once the models are trained, one day of hourly forecasts
of SR, MAD, VaR, and ES are obtained with both empirical
and data-driven variance-covariance matrices. In this study,
the risk-free rate is represented by the average treasury bill
rate (T-bill rate). Specifically, for each month, we utilize the
mean treasury bill rate of that respective month as the risk-
free rate. The treasury bill rates are obtained from Bloomberg
(https://www.bloomberg.com/canada).

A. Forecasts of SR and risks using January 2021

This subsection summarizes the forecasts using January
2021 data for both data-driven and empirical approaches.
Table II summarizes means and standard deviations of SR
and risks. Compared to the empirical approach, the mean
SR using the data-driven variance-covariance matrix is higher
with a lower standard deviation. Moreover, both means and
standard deviations of volatility, MAD, VaR, and ES forecasts
are higher using the empirical covariance matrix.

TABLE II
SUMMARY OF FORECASTS USING JANUARY 2021 DATA

σ̂ SR MAD VaR ES
EMP mean 0.0120 0.0960 0.0088 30.4175 42.3860

SD 0.0020 0.0135 0.0014 5.3154 7.3874
DD mean 0.0068 0.1430 0.0051 16.3438 22.0146

SD 0.0005 0.0112 0.0004 1.2623 1.6178

Fig. 1. SR Rolling Forecasts of Portfolios (January 2021)

Figures 1 visualizes the rolling forecasts of SR and risk for
January 2021 data. SR is higher with the data-driven variance-
covariance matrix, and risks are lower for each hour. This
indicates that using the empirical variance-covariance matrix
leads to portfolios with high risks and lower SR compared to
the data-driven approach. A similar trend was observed for
other risk measures: simple volatility, MAD, VaR, and ES.

Figure 2 further summarizes and visualizes the risks of the
portfolio using comparison boxplots for the data-driven and
empirical approaches for January 2021 data. Observe that risks
using empirical covariance matrix are always high with high
variability. Though it is visible from the figures that portfolios

Fig. 2. Comparison Boxplots of Risks (January 2021)

constructed with data-driven covariance matrix outperform,
it is also important to quantify the improvement for further
clarification. The calculated increase in utility when transition-
ing from the empirical covariance matrix to the DDEWMA
variance-covariance matrix is approximately 138.80% for data
from January 2021. It is a significant improvement in SR.

B. Forecasts of SR and risks Using February 2021 Data

The SR and risk forecasts using data-driven and empirical
variance-covariance matrices with February 2021 data are
summarized in this subsection. Means and standard deviations
of the forecasts are provided in Table III. Similar to January
data, the SR forecast obtained with February data using the
data-driven variance-covariance matrix is larger than that with
the empirical variance-covariance matrix. Moreover, volatility,
MAD, VaR, and ES mean forecasts are higher with the
empirical variance-covariance matrix indicating the new data-
driven approach is superior considering February 2021 data as
well.

TABLE III
SUMMARY OF FORECASTS USING FEBRUARY 2021 DATA

σ̂ SR MAD VaR ES
EMP mean 0.0116 0.1314 0.0086 28.6721 39.4283

SD 0.0021 0.0226 0.0016 5.4796 7.2324
DD mean 0.0087 0.1725 0.0063 21.3815 30.7767

SD 0.0020 0.0325 0.0015 5.2433 6.9800

Forecasts of SR obtained for the testing period (one
day/twenty-four hours) using February data are visualized in
Figure 3. The SR rolling forecasts with data-driven covariance
matrix are higher than the SR rolling forecasts with empirical
covariance matrix, except for the eleventh hour. However,
it is observed that volatility, MAD, VaR, and ES forecasts
using data-driven covariance matrices are consistently lower
compared to the empirical approach. It is also important
to point out that the gap between the forecasts using data-
driven and empirical covariance matrices is smaller compared
to forecast gaps considering January data. This can be seen

378



in the comparison boxplots given in Figure 4. Nonetheless,
median volatility, MAD, VaR, and ES forecasts obtained using
the data-driven covariance matrix are lower compared to the
forecasts obtained with the empirical covariance matrix.

Fig. 3. SR Rolling Forecasts of Portfolios (February 2021)

Fig. 4. Comparison Boxplots of Risks (February 2021)

Since the performances of the two approaches are close at
certain testing hours, it is important to see the improvements in
SR using the data-driven variance-covariance matrix over the
empirical variance-covariance matrix. The estimated average
change of the percentage increase is 76.86%.

C. Forecasts of SR and risks for March 2021

The SR and forecasts of risks using March data are also
obtained, and results are summarized in Table IV. The mean
SR forecast using the data-driven variance-covariance matrix
is larger than the mean SR forecast obtained with the empirical
variance-covariance matrix. Mean risk forecasts are still lower
with the data-driven covariance matrix, and standard deviations
of the forecasts are also lower compared to the empirical
approach. Thus, this indicates that the data-driven approach
outperforms the empirical approach using March 2021 data in
terms of SR and risks.

TABLE IV
SUMMARY OF FORECASTS USING MARCH 2021 DATA

σ̂ SR MAD VaR ES
EMP mean 0.0040 0.0845 0.0031 9.7942 12.5759

SD 0.0005 0.0060 0.0004 1.1315 1.4449
DD mean 0.0036 0.0922 0.0027 8.8411 11.6315

SD 0.0003 0.0142 0.0002 0.7745 1.0986

Fig. 5. SR Rolling Forecasts of Portfolios (March 2021)

We observed that for some cryptocurrencies adjusted closing
prices decreased towards the end of the study period. This
will bring a negative effect on portfolio returns, ultimately
leading to a lower Sharpe ratio when the risk is fixed. Also,
we observed sudden price increases and decreases during
March 2021 for some cryptocurrencies. Therefore, during this
volatile period (March), we expect somewhat different results
in terms of SR and risk forecasts compared to the forecasts
obtained with January and February data. The SR forecasts for
the testing period (one day/twenty-four hours) using March
2021 data are given in Figure 5. During the testing period,
SR forecasts using the data-driven variance-covariance matrix
are higher or closer to the SR forecasts obtained with the
empirical variance-covariance matrix. Similar observations can
also be made for the risk forecasts, and in most instances,
risks using the data-driven covariance matrix are lower. This
closed performance of the empirical approach and data-driven
approach can be seen with comparison boxplots given in
Figure 6 for risks. In contrast to the January and February
comparison boxplots for risks, boxplots for the two approaches
overlap for March data. However, boxplots indicate that risk
forecasts obtained with the data-driven variance-covariance
matrix have lower median and lower variability compared
to the risk forecasts obtained with the empirical variance-
covariance matrix. This ambiguity of the performances of the
two approaches can be addressed by measuring the gain in
utility when switching to the data-driven approach. Using the
equation 8, the percentage gain has been calculated, and for
March 2021 data, 19.54% gain in utility can be obtained when
switching from the empirical variance-covariance matrix to the
DDEWMA variance-covariance matrix.
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Fig. 6. Comparison Boxplots of Risks (March 2021)

IV. CONCLUSION

This paper extends the portfolio optimization based em-
pirical covariance matrix to dynamic portfolio optimization
with high frequency (hourly) cryptocurrency data. The driving
idea, unlike the existing work, is studying dynamic portfolio
optimization without assuming normality for portfolio returns.
Our experimental findings demonstrate that when constructing
portfolios with cryptocurrencies, the new approach surpasses
the commonly used portfolio optimization method based on
the empirical variance-covariance matrix. This superiority is
evident through higher Sharpe ratios and reduced risks.
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