
Swarm Intelligence Numerical Optimization
Algorithm Representing Individuals as Dynamic

Graphs in the Euclidean Search Space
Kaho Hayashi

Kyushu Institute of Technology
Iizuka, Japan

hayashi.kaho465@mail.kyutech.jp

Kei Ohnishi
Kyushu Institute of Technology

Iizuka, Japan
ohnishi@csn.kyutech.ac.jp

Abstract—We propose a new swarm intelligence numerical
optimization algorithm that represents individuals as dynamic
graphs in the Euclidean search space. We call it Graph Building
Optimization Algorithm or GBO. The unique point of GBO is
that an individual is represented by a dynamic graph whose
nodes have coordinates (search points) in the Euclidean search
space. Due to this unique point, we can draw a GBO’s search
process as a generation-transition of a feature of a graph. It is
expected that we can obtain better understandings on a given
problem by comparing the generation-transition for the given
problem to the baseline for the simplest unimodal problem. We
assume the maximum node degree in the best individual as the
feature and the generation-transition of the feature for F1 in the
CEC’13 test problems as the baseline. We demonstrate that we
can guess the characteristics of other 27 problems in the CEC’13
test problems by comparing their generation-transitions to the
baseline. In addition, we evaluate GBO using the same problems
and show that GBO is capable of finding good solutions for
various problems.

Index Terms—dynamic graph, graph building, swam intelli-
gence optimization, numerical optimization

I. INTRODUCTION

Recently, swarm intelligence optimization algorithms in-
spired by intelligent behaviors of biological swarms have been
actively studied. The ant system [1] inspired by a colony of
ants which are social insects, the particle swarm optimization
algorithm [2] inspired by movement of a swarm of birds or
fishes, and the artificial bee colony algorithm [3] inspired by a
colony of bees which are also social insects are representatives
of swarm intelligence optimization algorithms.

A common point among a variety of swarm intelligence op-
timization algorithms is that individuals equivalent to solution
candidates move around in a search space according to given
rules. Differences among swarm intelligence optimization al-
gorithms are basically in rules for individual movement. How-
ever, there has not been any swarm intelligence optimization
algorithm which introduces some structure such as a graph
into an individual. The reason for that would be that under
the purpose of optimization, it is not easy to discover a merit
to introduce a structure into an individual.

Some spiders take food using webs and spider webs can
be represented by graph structures. Two swarm intelligence

optimization algorithms inspired by characteristics and be-
haviors of social spiders have been proposed. One is Social
Spider Algorithm or SSA [4] and the other is Social Spider
Optimization or SSO [5]. Both of SSA and SSO regard an
entire search space as a web and also regard a position of
each spider on the web (a point in the search space) as an
individual. Thus, SSO and SSA do not represent individuals
as graphs.

We previously proposed an optimization algorithm for bi-
nary problems which represents not an individual but an
entire population of individuals as just one dynamic graph
[6]. Each node represents a pair of position and value in a
binary string of solution candidate. The topology of the graph
keeps changing during the search. The algorithm generates
new solution candidates through random walk on the graph.
Therefore, if change in features of a graph representing a
population can be observed, it could lead our understandings
on problems to be solved.

Similar to our previous idea above, in the paper we propose
a swarm intelligence numerical optimization algorithm in
which individuals are represented by dynamic graphs whose
nodes have coordinates, that is, search points, in the Euclidean
search space, toward understandings on problems to be solved.
We call the proposed algorithm Graph Building Optimization
Algorithm or GBO. The objective of this paper is to demon-
strate that GBO enables us to visualize the search process
as change in the features of graphs of individuals and the
visualization brings the understandings on problems to be
solved to us. It is also the objective to demonstrate that GBO
is capable of finding good solutions for various test problems.

There have not been evolutionary algorithms or swarm in-
telligence optimization algorithms for numerical optimization
which represent individuals as dynamic graphs in a seaech
space so far. However, apart from evolutionary algorithms and
swarm intelligence optimization algorithms, an optimization
method using a graph structure has been proposed. The opti-
mization method is based on a dynamical model of behaviors
of true slime molds and can find the shortest path for a given
maze [7] [8]. When food is placed at two different points, a
true slime mold can connect the two food sources with the

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1201

shortest path. The mechanism for finding the shortest path is
represented by differential equations regarding materials’ flow
at nodes in the graph. In the optimization method, an entire
maze is represented as a true slime mold in a from of graph,
and calculations of virtual materials’ flow using the differential
equations at each node bring the shortest path of the maze.

In addition, apart from optimization, ways of spider web
building are used for analyzing or modeling data. An image
segmentation method in medical images based on spider
web building has been proposed [9]. A community detection
method in social networks based on spider web building
has been proposed [10]. A clustering method for nodes in
wireless sensor networks based on spider web building has
been proposed [11]. These studies seek to model target data
for analysis as a spider web or growth of a spider web.

The paper is organized as follows. We propose GBO in
Section II. Section III demonstrates that GBO brings the
understandings on problems to be solved to us. In Section IV,
we evaluate GBO using test problems. Section V describes the
conclusions and future work.

II. GRAPH BUILDING OPTIMIZATION ALGORITHM

A. Design
The main strategies of our proposed algorithm, GBO, are

below. The strategies are simple and reasonable for meta-
heuristics.

• GBO makes its graph (individual) larger when the graph
obtains better fitness values and makes it smaller or
moves to other place when the graph does not obtain
better fitness values.

• GBO reforms its graph based not on a big picture but on
local rules.

First, we regard the area of a graph as the number of nodes
in a graph. We then consider that graphs with better fitness
values can increase their nodes, which means that graphs
with worse fitness values decrease their nodes, on the other
hand. Furthermore, at every generation, the worst graph in a
population of graphs is randomly initialized. This procedure
is realized as steps 5) and 6) in the proposed algorithm flow
described in the following section. Also, IncreaseDecreaseN-
odesGraph and MoveGraph functions in the sixth and the
seventh lines of the pseudocode shown in Algorithm 1 match
this procedure.

Second, we can consider a variety of local rules for refor-
mation of a graph. We herein roughly devise two rules.

The first rule is that a new tentative node equivalent to a new
search point is generated on an enlarged edge of the graph and
if the tentative node’s fitness value is better than the node’s
at one end of the original edge, the original node is replaced
by the tentative one. This procedure does not cause change in
topology of the graph, but causes change in positions of nodes
in the search space. This procedure is realized as step 2) in
the proposed algorithm. Also, SearchPointGeneration function
in the third line of Algorithm 1 matches this procedure.

The second rule is that nodes make edges to ones with better
fitness values. This procedure causes change in a topology of

the graph, which results in that more tentative search points are
generated around nodes with better fitness values. This pro-
cedure is realized as step 3) in the proposed algorithm. Also,
TopologyReformation function in the forth line of Algorithm
1 matches this procedure.

Exploration of GBO is undertaken by the random initializa-
tion of the worst graph in the first rule and generation of new
search points on enlarged edges of the graph in the second
rule. Exploitation of GBO is undertaken by the increase of
nodes for better graphs in the first rule and the increase of
edges for better nodes in the second rule.

B. Algorithm
It is assumed in the proposed algorithm that multiple graphs

coexist in a search space and are represented as positions in
the space. A graph is generated in a hyper rectangle. The area
of a graph is represented as the number of nodes in the graph.
Reformation of a graph is conducted according to local rules.
All graphs initially have a constant number of nodes. After
the initialization of graphs, the areas of the graphs increase or
decrease depending on their obtained returns, that is to say,
fitness values.

The algorithm flow is as follows. Also, the pseudocode of
the algorithm is shown in Algorithm 1.

1) Initialization of a set of graphs
This step randomly generates N graphs. Each graph
consists of G nodes and each node has E directed
edges to other nodes. More precisely, positions in a
search space are randomly generated, and then a graph
is randomly generated in a length of R hyper-square
centered at each position.

2) Generation of search points and movement of graphs
This step repeats sub-steps a) to d) below for each of N
graphs.

a) Randomly select a node, v, to start random walk
from among G nodes if the number of times of the
selection has not reached G. Otherwise go to step
3).

b) Randomly select a directed edge from among E
directed edges generated by the current node and
move to the node, w, to which the selected directed
edge is connected (see the center of Figure 1).

c) A line segment connecting the nodes v and w is
enlarged α times by adding α/2 times length of
the line segment connecting the nodes v and w to
those nodes, and then a tentative node is randomly
generated on the α times enlarged line segment
(see the center of Figure 1) and a fitness value
of the generated node, which is a point in the
search space, is calculated. If the fitness value of
the tentative node is better than the node v’s, then
the node v is replaced by the tentative one (see the
right of Figure 1). This node replacement can also
be regarded as node movement.

d) If the currently visited node, w, is the H-th node
excluding the start node, then the random walk

1202

ends and the procedure goes to step 2a). Otherwise
return to step 2b).

3) Reformation of graph topologies
Steps (i) and (ii) below are conducted.

(i) Cycle times to change directed edges for all nodes
are determined. If the fitness value of a node is
better than the average fitness value over all nodes’,
the cycle time of the node is randomly chosen from
between 1 and C/2, where C is an even number
and more than or equal to 2. If it is worse than or
equal to the average, the cycle time of the node is
randomly chosen from between C/2+1 and C.

(ii) At every time during the time period from 1 to TR,
the following operations are executed for all nodes.
When the cycle time of a node, v, is a divisor of the
current time t, the node becomes a target to change
its directed edge. Then, random walk starts from
the target node v as in the search point generation
of step 2), the node v obtains K visited nodes. The
node with the best fitness value among the K nodes
is taken.
If the target node v has already made ME or larger
edges to the take node r, the node v does nothing.
Otherwise, the node v finds a node with the worst
fitness value, w, among nodes to which it has made
E directed edges. Then, the node v deletes the edge
to the node w and makes a new directed edge to
the node r (see Figure 2).

4) Assignment of fitness values to graphs
The best fitness value among all nodes’ in each graph
is assigned to the fitness value of the graph.

5) Increase of decrease of nodes
The following operation is conducted N times. Two
graphs are randomly selected from all graphs, and one
graph with better fitness value increases a node and the
other graph with worse fitness value decreases a node.
There are the maximum number of nodes in a graph, G+,
and the minimum number, G−. The number of nodes in
a graph cannot exceed the maximum and the minimum
numbers. When a graph increases a node, the new node
and its directed edges are randomly generated. When a
graph decreases a node, the node with the worst fitness
value and its directed edges are deleted. Nodes which
had made directed edges to the deleted node first delete
those edges, and then, newly make new edges of the
same number of deleted ones to randomly chosen nodes
from among existing nodes in the graph. The number of
edges from a node has to be less than or equal to ME .

6) Movement of the worst graph and reformation of the
graph
The graph with the worst fitness value among all graphs
is randomly re-generated in terms of nodes and edges.
The number of nodes is the same as before the re-
generation.

7) Judgement of end of run

x1

x2

Node
Directed edge
between nodes

Start node

Position of a new node
Path of random walk

Range for a new node

End node

Intermediate node

Fitness of position 2 is better
than the intermediate nodeʼs,
so the intermediate node moves
to position 2

Start node

Intermediate node

Pos. 1
Pos.2

Fitness of position 1 is better
than the start nodeʼs,
so the start node moves
to position 1

Fig. 1: Search point generation and node movement.

Start node

End node

Intermediate
node

Nodes of better fitness can
frequently be a start node

Path of random walk

1. The worst fitness among fitness of nodes to which the start node is
connected by directed edges is set to be f1

2. The best fitness among fitness of nodes to which random walk
reached is set to be f2

3. If f2 is better than f1, the directed edge to the node with f1 from the
start node is removed and a directed edge to the node with f2 from
the start node is newly generated

f1

f2

Start node

End node

x1

x2

Intermediate
node

Fig. 2: Graph topology reformation.

If the number of fitness evaluations has reached the max-
imum number given in advance, the run ends. Otherwise,
return to step 2).

The pseudocode of Graph Building Optimization Algorithm
(GBO) is shown in Algorithm 1. GraphInitialization function
in the first line of Algorithm 1 corresponds to step 1) in the
algorithm flow described above. The second line of Algorithm
1 corresponds to step 7) in the algorithm flow. When the
number of function evaluations, nfe, reaches the maximum
number of function evaluations, MAX NFE, the algorithm
stops running. SearchPointGeneration function in the third line
of Algorithm 1 corresponds to step 2) above. TopologyRe-
formation function in the fourth line corresponds to step 3).
GraphAssignFitness function in the fifth line corresponds to
step 4). IncreaseDecreaseNodesGraph function in the sixth line
corresponds to step 5). Finally, MoveGraph function in the
seventh line corresponds to step 6).

Algorithm 1 Graph Building Optimization Algorithm (GBO)
Require: Grp: population of graphs, N: # of graphs, MAX NFE: maximum

of fitness evaluations
Ensure: Grp: population of graphs
1: GraphInitialization(Grp)
2: while nfe is smaller than MAX NFE do
3: SearchPointGeneration(Grp)
4: TopologyReformation(Grp)
5: GraphAssignFitness(Grp)
6: IncreaseDecreaseNodesGraph(Grp)
7: MoveGraph(Grp)
8: end while

In addition, the pseudocode of SearchPointGeneration func-

1203

tion, which is step 2), is shown in Algorithm 2. Although the
seventh line is not described in details, a tentative node, nnp,
is generated on the α times enlarged edge between nodes i and
j. The pseudocode of TopologyReformation function, which
is step 2), is shown in Algorithm 2.

Algorithm 2 Function of SearchPointGeneration
Require: Grp: population of graphs, N: # of graphs, G(i): # of nodes, H: #

of allowed hops
Ensure: Grp: population of graphs
1: for i = 1 to N do
2: for g = 1 to G(i) do
3: j ← RandomChooseNode(G(i))
4: snp ← GetNode(i, j)
5: for h = 1 to H do
6: enp ← RandomChooseNextNode(snp)
7: nnp ← GenerateNewNode(snp, enp)
8: if Fitness(nnp) is better than Fitness(snp) then
9: ReplaceNode(i, j, nnp)

10: end if
11: snp ← enp
12: end for
13: end for
14: end for

Algorithm 3 Function of TopologyReformation
Require: Grp: population of graphs, N: # of graphs, G(i): # of nodes, K: #

of allowed hops
Ensure: Grp: population of graphs
1: for i = 1 to N do
2: for j = 1 to G(i) do
3: c(j) ← AssignCycle(j)
4: end for
5: for t = 1 to T do
6: for j = 1 to G(i) do
7: if t mod c(j) ≡ 0 then
8: snp ← GetNode(i, j)
9: for k = 1 to K do

10: enp ← RandomChooseNextNode(snp)
11: if k = 1 then
12: bn ← enp
13: bf ← Fitness(enp)
14: else k > 1 & Fitness(enp) is better than bf
15: bn ← enp
16: bf ← Fitness(enp)
17: end if
18: snp ← enp
19: end for
20: end if
21: if WorstNodeFitness(j) is worse than bf then
22: wn ← GetWorstLinkedNode(j)
23: DeleteWorstLink(j, wn)
24: MakeLink(j, bn)
25: end if
26: end for
27: end for
28: end for

III. EXAMPLE OF VISUALIZATION FOR SEARCH PROCESS

A. Purpose and Simulation Settings

The good point of GBO is that rough regions that a
population of individuals can produce new search points can
be represented as structures, that is, graphs in a search space.
Also, it is expected that nodes in those graphs are placed in
good regions and their edges are connections between such

TABLE I: Parameter settings of GBO for visualization of
search process.

Parameter Description Value
N the number of graphs 4
G the number of nodes in the initial graph 1000
E the number of directed edges that each node can

generate
50

G− the minimum number of nodes in a graph 500
G+ the maximum number of nodes in a graph 1500
R range for graph generation 1000
α enlargement ratio of an edge for search point

generation
1.0

H the number of nodes visited by a random walker
for generating search points

5

CY the maximum value of cycle time to change
edges

10

K the number of nodes visited by a random walker
for edge change

4

TR the end time of the procedure for edge change 20
ME the number of edges allowed to connect to the

identical node from a node
1

good regions. Therefore, if we follow change in a population
of graphs or change in features of a population of graphs,
we might obtain better understandings on characteristics of a
given problem and how good solutions for a given problem
have been obtained.

Therefore, we here demonstrate that change of the features
of graphs representing individuals can be drawn when applying
GBO to test problems with 10 variables. Concretely, we
consider the maximum degree of node in the best individual
(graph) at each generation to be the feature. A degree of node
stands for the number of edges of the node. Nodes with better
fitness values are expected to acquire more edges from other
nodes in GBO. Therefore, if it is easy for many nodes to obtain
better fitness values, many nodes have a chance to obtain more
edges. As a result, high edge concentration to particular nodes
is unlikely to occur. On the other hand, if only a few nodes
can obtain better fitness values, high edge concentration to
particular nodes is likely to occur.

We here use 28 test functions (problems) used in the CEC
2013 Special Session and Competition on Real-Parameter
Optimization [12], which are notated as F1 to F28. The number
of real variables of the test functions can be varied, but we
here used 10. All test functions were minimization problems.
The parameter settings of GBO are shown in Table I.

B. Simulation Results and Discussion

Figure 3 shows the degree distribution of the best individual
(graph) at the last generation of 96 in one run of GBO for
each of the 28 test problems. Figure 4 shows the generation-
transition of the maximum node degree in the best individual
for each of the 28 test problems. The generation-transition
is the average over 51 independent runs of GBO. In Figure
4, the generation-transition for F1, which is the simplest
unimodal function, is drawn in bold line. We here consider
the generation-transition for F1 to be the baseline.

As shown in Figure 3, the degree distributions of the best
individuals after GBO sufficiently conducted search for all test

1204

 1

 10

 100

 100 1000

fre
qu

en
cy

degree

f01
f02
f03
f04
f05
f06
f07
f08
f09
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28

Fig. 3: Degree distribution at the last generation of 96 in one
run of GBO for each test function.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

de
gr

ee

generation

f01
f02
f03
f04
f05
f06
f07
f08
f09
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28

Fig. 4: Generation-transition of the maximum node degree in
the best individual for each test function.

problems are roughly similar to each other. However, we can
observe that the maximum node degrees are quite different
among some problems. In fact, as shown in Figure 4, the
generation-transition of the maximum node degree are also
quite different among some problems. In the case of F1, the
maximum node degree is gradually increased with generations
compared to some other test problems. That would be because
most nodes in a graph can easily improve their fitness values
and therefore high edge concentration to particular nodes
does not occur. Meanwhile, in the case of F8, the maximum
node degree is rapidly increased compared to some other test
problems. That would be because most nodes in a graph cannot
improve their fitness values easily and only a few nodes with
relatively better fitness values at the beginning keep increasing
their node degrees.

Thus, we can guess that for any problems, in the phase
that the maximum node degree is gradually increased as
in F1, most nodes of the best individual keep improving

their fitness values due to some reasons. For example, if a
fitness landscape is unimodal and smooth, new search points
generated on enlarged edges between two nodes would become
better frequently. Meanwhile, in the phase that the maximum
node degree is rapidly increased as in F8, most nodes of the
best individual have stagnation of improvement of their fitness
values due to some reasons. For example, if a fitness landscape
is multi-modal and highly rugged or almost flat, new search
points generated on enlarged edges between two nodes would
not become better frequently.

Furthermore, it is suggested from the results here that
problems with similar generation-transition of the maximum
degree have similar characteristics. For instance, F2, F3, F4,
and F5 are unimodal functions as F1. Then, their generation-
transitions are indeed alike. We can utilize this kind of insights
in the following way. When we have to solve a unknown black-
box problem, we first obtain the generation-transition of the
maximum node degree for the black-box problem by applying
GBO to it. Then, we find a similar generation-transition among
those of the CEC’13 test problems or those of known test
problems and then know its similar test problem. Once we
know its similar problem, we can choose an optimization
algorithm suitable for it.

IV. SIMULATIONS FOR EVALUATION

A. Purpose

Compared with point-population based search methods,
GBO might be hard to flexibly decide generation regions for
search points. In addition, since GBO allows all nodes equally
to be a start node for random walk to generate new search
points regardless of their fitness values, the search might be
redundant. Therefore, we investigate the search performance
of the present form of GBO. For this purpose, we use well-
known test problems in the evolutionary computation field
and compare GBO with a conventional method that has good
search performance to the test problems

B. Simulation Settings

We here use the same 28 test functions [12] mentioned in
Section III. The number of variables is 10. The test functions
are notated as F1 to F28. All test functions are minimization
problems.

As a method for comparison with GBO, Success-History
based Adaptive Differential Evolution (SHADE) [13] is used.
SHADE was proposed in 2013 and is one of competent
variants of differential evolution (DE) algorithms. SHADE has
been improved [14] [15] since the proposal. In the paper on
evaluation of SHADE [16], SHADE was applied to the same
test functions with 10 variables mentioned above, in which
the maximum number of fitness evaluations for each run was
105 and the number of times of runs for each function was 51
and the best fitness value among the 51 runs was reported for
each function. So, we here also apply GBO to each function 51
times and report the best fitness value among them. However,
we used not only 105 but 2 × 106 as the maximum number

1205

of function evaluations and reported the best fitness values at
105, 106, and 2× 106 function evaluations for each function.

The parameter settings of GBO are the same as in Table I
above. For every test function, we use the same values for the
number of graphs and the number of nodes in the initial graph,
which were 4 and 1000, respectively. The parameter values
including these are not guaranteed to be really appropriate,
but we here use the parameter values that yielded better
results among limited number of combinations of values in
our preliminary simulations. However, since the main purpose
here is to confirm if GBO indeed works as an optimization
method, these settings are enough at this juncture. We need
an exhaustive investigation to know appropriate parameter
settings and also an investigation on the scalability of GBO
regarding the problem size as our future work.

C. Simulation Results and Discussion
The best fitness values of GBO and SHADE among the 51

runs for each test function are shown in Table II. The results
of SHADE are the same as reported in [16].

We can observe from Table II that for F21, F25, and F28 of
composite functions, GBO obtained better fitness values at 105
function evaluations than SHADE and also that for other 25
functions, SHADE obtained better fitness values than GBO.
However, the number of test functions for which GBO had
equal to or better than SHADE at 2×106 function evaluations
is more than that at 105 function evaluations. GBO is equal
to SHADE for F1, F2, F4, F5, F6, F8, and F27 and is better
than SHADE for F7, F9, F10, F11, F12, F13, F16, F18, F20,
F21, F22, F24, F25, and F28.

Thus, GBO requires more function evaluations to obtain
good solutions for most test functions compared to SHADE,
which is a competent variant of DE algorithms. However, since
GBO can reach as good solutions for most test functions as
SHADE with more function evaluations, we can say that GBO
basically works as a optimization method.

The reason for that GBO needs more function evaluations
to obtain good solutions is thought to be that the exploration
procedure of GBO has redundancy. The redundant parts of
GBO would be, as mentioned in the purpose of the simulations
above, the step that the worst graph in a population of graphs is
randomly initialized at every generation and also the step that
all nodes become a start node for random walk to generate
new search points no matter how good or bad their fitness
values are. The degree of this redundancy is expected to
become higher as the number of graphs or nodes increases. So,
for larger-scale problems which should require more graphs
and nodes to reliably find their good solutions, the degree
of the redundancy becomes higher and much more function
evaluations would be necessary.

Meanwhile, as mentioned above, GBO had better fitness
values at 105 function evaluations than SHADE for F21, F25,
and F28. The eight functions from F21 are functions that
composite multiple functions with different characteristics, so
are basically complicated. It is suggested that for some such
problems, GBO’s exploration ability is effective.

TABLE II: The best fitness values of GBO and SHADE for
each test function when applying GBO and SHADE to the
function with 10 variables 51 times.

GBO SHADE
Function NFE=105 NFE=106 NFE=2 × 106 NFE=105

F1 6.3277 × 10 0.0000 0.0000 0.0000
F2 2.5652 × 105 0.0000 0.0000 0.0000
F3 3.7889 × 108 1.9847 1.3689 × 10−2 0.0000
F4 3.3560 × 102 0.0000 0.0000 0.0000
F5 2.0284 × 10 0.0000 0.0000 0.0000
F6 1.5165 × 10 0.0000 0.0000 0.0000
F7 2.3300 × 10 3.3255 × 10−2 5.9520 × 10−5 9.5226 × 10−5

F8 2.0205 × 10 2.0144 × 10 2.0120 × 10 2.0120 × 10

F9 6.0472 3.5677 × 10−1 1.2087 × 10−3 1.1600
F10 6.9781 7.3963 × 10−3 7.3960 × 10−3 0.0000
F11 2.6421 × 10 9.9496 × 10−1 9.9495 × 10−1 0.0000
F12 2.9576 × 10 9.9540 × 10−1 9.9495 × 10−1 1.2161
F13 2.9689 × 10 9.9496 × 10−1 9.9495 × 10−1 1.0962
F14 1.0286 × 103 1.8828 × 102 1.8582 × 10 0.0000
F15 4.1661 × 102 6.3101 × 10 5.6739 × 10 1.9595 × 102

F16 7.9135 × 10−1 1.0814 × 10−1 9.6707 × 10−2 3.6202 × 10−1

F17 3.4829 × 10 1.3465 × 10 1.1143 × 10 1.0122 × 10
F18 4.1880 × 10 1.3958 × 10 1.1065 × 10 1.2911 × 10

F19 3.0982 2.8426 × 10−1 2.5625 × 10−1 2.4592 × 10−1

F20 3.3093 1.0625 8.2267 × 10−1 1.4155
F21 3.1412 × 102 1.0007 × 102 1.0000 × 102 4.0019 × 102

F22 1.3235 × 103 4.5995 × 102 2.1781 × 102 2.4467 × 10−6

F23 1.0756 × 103 3.0069 × 102 5.3334 × 102 1.1922 × 102

F24 1.7219 × 102 1.0435 × 102 1.0425 × 102 1.0576 × 102

F25 1.6581 × 102 1.0570 × 102 1.0499 × 102 2.0000 × 102

F26 1.3932 × 102 1.0268 × 102 1.0198 × 102 1.0125 × 102

F27 4.3923 × 102 3.0028 × 102 3.0000 × 102 3.0000 × 102

F28 2.7327 × 102 1.0000 × 102 1.0000 × 102 3.0000 × 102

Therefore, we will consider the future direction of improv-
ing GBO to be that the characteristics of a given problem
is first captured as a form of graphs during search, and
then an appropriate degree of exploration required for the
problem is estimated based on the features of graphs, and the
degree of exploration is dynamically adjusted according to the
estimation.

V. CONCLUDING REMARKS AND FUTURE WORK

In the paper we proposed a new swarm intelligence nu-
merical optimization algorithm that represents individuals as
dynamic graphs in the Euclidean search space. We called it
Graph Building Optimization Algorithm or GBO. The unique
point of GBO is that an individual is represented by a dynamic
graph whose nodes have coordinates (search points) in the
Euclidean search space. Due to this unique point, we can
draw a GBO’s search process as a generation-transition of
a feature of a graph. Then, it is expected that we can obtain
better understandings on a given problem by comparing the
generation-transition for the given problem to the baseline for
the simplest unimodal problem. We assumed the maximum
node degree in the best individual as the feature and the
generation-transition of the feature for F1 in the CEC’13 test
problems as the baseline. We demonstrated that we could
guess the characteristics of other 27 problems in the CEC’13
test problems by comparing their generation-transitions to the
baseline.

We also evaluated GBO using the CEC’13 test problems
with 10 variables. We used SHADE for comparison, which is
one of competent variants of differential evolution algorithms.
The results showed that GBO obtained better solutions for
a few composite problems and that GBO did not obtain as
good solutions as SHADE with the same number of function

1206

evaluations for most problems, but could obtain good solutions
for those problems with more function evaluations. Therefore,
we concluded that GBO is basically capable of finding good
solutions for various test problems.

The results obtained in the paper suggested that problems
with similar generation-transition of the maximum degree have
similar characteristics. In the future work, we will confirm
it with more evidences. If surely confirmed, when we have
to solve a unknown black-box problem, we can find similar
well-known test problems to the unknown one by comparing
the generation-transition of the maximum node degree among
the unknown and well-known ones. Once we know its similar
problem, we can choose an optimization algorithm suitable
for it. In addition, we will improve GBO using the features of
graphs. In the improved GBO, the characteristics of a given
problem is first captured as a form of graphs of individuals
during search, and then an appropriate degree of exploration
required for the problem is estimated based on the features of
graphs, and the degree of exploration is dynamically adjusted
according to the estimation.

ACKNOWLEDGEMENT

This work is supported by the Japan Society for the Pro-
motion of Science through a Grant-in-Aid for Transformative
Research Areas (A) (Publicly Offered Research) (21A402).

REFERENCES

[1] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization
by a colony of cooperating agents,” IEEE Trans. on System, Man, and
Cybernetics-Part B, vol. 26, no. 2, pp. 29–41, 1996.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, 1995,
pp. 1942–1948.

[3] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” in Technical Report-TR06, 2006, pp. 1–10.

[4] J. J. Yu and V. O. Li, “A social spider algorithm for global optimization,”
in Applied Soft Computing 30(2015), 2015, pp. 614–627.

[5] A. Luque-Chang, E. Cuevas, F. Fausto, D. Zaldı́var, and M. Pérez,
“Social spider optimization algorithm: Modifications, applications, and
perspectives,” in Mathematical Problems in Engineering, 2018, pp. 1–
13.

[6] T. Sato and K. Ohnishi, “A metaheuristic relying on random walk on
a graph for binary optimization problems,” in 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 739–
744.

[7] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid
organism,” Nature, vol. 407, no. 6803, p. 470, 2000.

[8] A. Tero, R. Kobayashi, and T. Nakagaki, “A mathematical model for
adaptive transport network in path finding by true slime mold,” Journal
of Theoretical Biology, vol. 244, no. 4, pp. 553–564, 2007.

[9] V. Muneeswaran and M. P. Rajasekaran, “Automatic segmentation of
gallbladder using bio-inspired algorithm based on a spider web con-
struction model,” Supercomputing, vol. 75, pp. 3158–3183, 2019.

[10] H. Yang, J. Cheng, X. Su, W. Zhang, S. Zhao, and X. Chen, “A spi-
derweb model for community detection in dynamic networks,” Applied
Intelligence, vol. 51, pp. 5157–5188, 2021.

[11] J. Wang, Y. Zhang, X. Wang, P. Mao, and B. Liu, “A multi-objective
parameter optimization approach to maximize lifetime of wireless sensor
networks inspired by spider web,” Supercomputing, vol. 79, pp. 1263–
1288, 2023.

[12] P. N. S. J. J. Liang, B. Y. Qu and A. G. Hernández-Dı́az, “Problem
definitions and evaluation criteria for the cec 2013 special session on
real-parameter optimization,” in Technical Report, Nanyang Technolog-
ical University, Singapore, 2013, pp. 1–39.

[13] R. Tanabe and A. Fukunaga, “Success-history based parameter adapta-
tion for differential evolution,” in 2013 IEEE Congress on Evolutionary
Computation, 2013, pp. 71–78.

[14] S. Chakraborty, S. Sharma, A. K. Saha, and S. Chakraborty, “Shade-
woa: A metaheuristic algorithm for global optimization,” Applied Soft
Computing, vol. 113, p. 107866, 2021.

[15] Y. Li, T. Han, H. Zhou, S. Tang, and H. Zhao, “A novel adaptive l-
shade algorithm and its application in uav swarm resource configuration
problem,” Information Sciences, vol. 606, pp. 350–367, 2022.

[16] R. Tanabe and A. Fukunaga, “Evaluating the performance of shade on
cec 2013 benchmark problems,” in 2013 IEEE Congress on Evolutionary
Computation, 2013, pp. 1952–1959.

1207

