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Abstract—Existing crowd counting techniques have achieved
significant progress with the emergence of deep learning. During
development, emerging crowd counting methods have generally
become more and more complex and enormous, enabling them
to understand and process more prior knowledge from input
data. However, they suffer from two major drawbacks: 1)
they generally require a significant amount of labeled training
samples, which is labor-intensive, and 2) they require increasing
computational hardware resources, making it luxurious and
impractical to apply directly in small-scale scenes. To address
these issues, we formulate crowd counting as a classification
problem and leverage least squares model with a novel semi-
supervised strategy. Technically, we construct the least squares
model based on only two regularization terms: a regression term
and a discriminative relaxation term. Moreover, we propose a
semi-supervised soft label correcting strategy incorporated in
the model. As a result, a fast and accurate crowd counting
method is achieved. Experimental results on five small-scale
benchmarks demonstrate the proposed method outperforms the
other competitors in terms of both regression metrics and
consumed time.

Index Terms—crowd counting, least squares model, classifica-
tion, semi-supervised

I. INTRODUCTION

Crowd counting aims to estimate the number of pedestrians
in a static image or a video frame. Towards growing demands
of social security, it has been a crucial video surveillance
technique [1]. Nevertheless, the development of crowd count-
ing techniques benefits to bring meaningful insights to other
counting tasks since they share similar task structure, e.g., step
counting [2], finger counting [3], and tree counting [4].
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Existing crowd counting methods essentially learn a map-
ping model from a set of labeled images to estimate the crowd
count [5], [6] or density map [7], [8]. Despite the continuous
improvement in the accuracy of crowd counting, most existing
crowd counting models heavily rely on a large number of
labeled samples during the learning phase, especially those
based on deep learning techniques [7], [8]. In practice, the task
of annotating a large number of crowd videos is expensive and
time-consuming, which hinders the deployment of supervised
learning-based methods in real-world scenarios. Therefore, it
will safe a lot of annotating labors to derive a semi-supervised
crowd counting method.

Until now, crowd counting has achieved significant devel-
opment particularly in mid-to-large-scale scenarios due to the
emergence of deep learning models. These models require
abundant computational resources for training in order to
achieve more powerful capabilities. However, such models
are too elaborate to directly apply in small-scale scenarios.
Additionally, small-scale scenes suffer from a lack of training
samples, which may result in serious performance degradation
of deep learning methods. Therefore, deriving a small-scale
scenario-oriented crowd counting method would be benefi-
cial, as it could save a significant amount of computational
resources.

Recently, some researchers have found that formulating
crowd counting as a classification problem benefits to achieve
very accurate results than those based on conventional philos-
ophy towards small-scale scenarios [5], [6], [9], [10]. Specif-
ically, sparse representation and random projection (SRRP)
[9] is the pioneer work being the first to formulating crowd
counting as a classification problem and obtain very accurate
counting results than those of conventional types of methods.
Inspired by SRRP, Zhang et al. [5] proposed that continual
frames of small-scale crowd seances lie in a low-dimensional
manifold, and exploring such information helps to improve

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 270



the counting performance. Towards the low-efficient l0 and l1
constraints used in SRRP, Liu et al. [10] proposed to replace
such time-consuming constraints by a linear transformation,
and proposed a linear dictionary learning model, achieving
faster classification-based crowd counting than SRRP. Wang
et al. adopted a class-specific structured to formulate a linear
dictionary model to capture salient features in a pedestrian
frames, resulting in higher results.

The above-discussed methods all formulate crowd counting
as a classification problem and obtain more accurate counting
results than those of conventional methods. However, they
either include complex regularization terms or stacking class-
specific structures, which are time-consuming and there is
still room for improvement in speed. In addition, excessive
pursuit of formulating a complex model may lead to over-
fitting. To address the above issues, we propose to formulate
a very simple yet effective classification-based least squares
model with a proposed semi-supervised soft label correcting
strategy. As a result, the proposed method is qualified to
achieve more accurate and faster results than conventional
classification-based methods. The major contributions of this
paper are summarized as follows.

1) We propose a very simple yet effective least squares
model and propose to formulate crowd counting as a
classification problem.

2) We propose a semi-supervised strategy to progressively
correct soft labels during iterations towards imbalanced
crowd samples.

The remainder of this paper is arranged as follows. The
overall structure and the idea of the proposed method is
detailed in section II. The experimental results and relevant
analysis are presented in III. Conclusions, remaining problems,
and future works are described in section IV.

II. PROPOSED METHOD

A. Basic Least Squares Terms
Denote X ∈ Rd×n as training data matrix, where d is the

size of dimension and n is the number of training samples.
Dentoe H = [h1, h2, · · · , hn] ∈ RC×n as the one-hot binary
label matrix with its column h = [0, · · · , 1, · · · , 0]T ∈ RC ,
where C is the number of classes. The basic least squares
model is formulated as Eq. (1).

min
Q

∥QX −H∥2F + λ ∥Q∥2F , (1)

where Q ∈ RC×d is the objective weight matrix to be learned,
the first term enables the training samples to be projected onto
the class space, and the second term ensures the computing is
stable and avoids over-fitting. Typically, the weight Q can be
computed through a closed-form least square method as Eq.
(2).

Q = HXT
(
XXT + λI

)−1
. (2)

With the weight Q learned, the class of a new test sample
y in the same distribution with X can be predicted by Eq. (3).

class (y) = argmax
k

([Qy]k) , (3)

where [Qy]k denotes the k-th element of the vector Qy, and
the computed index k denotes the predicted class of y.

However, the above model is not qualified to tackle crowd
counting problem regarding the following two reasons.

1) Crowd counting especially in small-scale scenarios suf-
fers from an extremely imbalanced number of samples
of different pedestrians, which is unfavorable to a clas-
sification model.

2) The one-hot label matrix H is too hard to be a regression
target, since a pedestrian frame with the same number
of people might have large spacial variations due to the
space shift of a pedestrian.

Towards the above issues, a least squares model with a new
semi-supervised strategy is proposed in the next subsection.

B. Least Squares Model with Semi-Supervised Soft Label
Correcting

To alleviate the negative influence of the hard regression
constant imposed by H , we propose to introduce a relaxation
term to learn a more flexible regression target, and incorporate
this term into the objective function as Eq. (4).

min
Q,T,W

∥QX − T∥2F +η ∥WT −H∥2F +λ
(
∥Q∥2F + ∥W∥2F

)
,

(4)
where T ∈ RC×n and W ∈ RC×C are two newly-introduced
matrices to be learned and η is a user-defined hyper-parameter.
Specifically, T is the relaxed regression target and W is the
weight matrix to project T onto the class space. Since the
regression target is relaxed, it benefits to tackle the negative
influence from the variations of the pedestrian frames, which
results in a complete difference with the basic least squares
model as Eq. (1). Next, the class of a given test sample y can
be predicted by Eq. (5).

class (y) = NN (QWX,QWy) , (5)

where NN (·) denotes the nearest-neighbor classifier.
Since a crowd counting samples are extremely imbalanced

in terms of the number of people as shown in Fig. 1, it will lead
to a performance degradation if we train our model using the
conventional supervised manner. Based on this considerations,
we propose a novel semi-supervised strategy to correct the soft
label progressively. Specifically, suppose the training process
contains T +1 stages, where the first stage corresponds to Eq.
(4) that trains with the labeled data matrix X , and the remained
T stages jointly train with X = [X,Xu], where Xu ∈ Rd×m

is the unlabeled data matrix with m samples. In the first stage,
we start training with Eq. (4), then the soft label vector of a
given test sample y can be computed by Eq. (6).

Soft (y) = QWy. (6)

Please note that, here we define the soft label vector QWy
with its each element being a probability to each class varying
from 0 to 1, instead of a one-hot label vector. This benefits to
generate a stable augmented results, and can be corrected pro-
gressively with iterations going on. Then, given the unlabeled
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Fig. 1. Distribution of each class (number of pedestrians). The number of
samples of each class is extremely imblanced, which might lead to negtive
influence to a classification model. It will be beneficial if we adopt all samples
for training with semi-supervised learning.

test data matrix Xu ∈ Rd×m, its pseudo label matrix Yu in
the t-th stage can be computed using Eq. (7).

Y (t)
u = NN

(
Q(t)W (t)X,Q(t)W (t) 1

t

T∑
t=1

Xu

)
. (7)

Next, we update the one-hot label matrix of the unlabeled
test data H

(t)
u using the last iteration pseudo label Y (t)

u , and we
augment it with the one-hot label matrix of the labeled samples
H being H(t) =

[
H,H

(t)
u

]
. Then, the t-stage optimization

variables can be computed with Eq. (8).

min
Q(t),T (t),W (t)

∥∥∥Q(t)X (t) − T (t)
∥∥∥2
F
+ η

∥∥∥W (t)T (t) −H(t)
∥∥∥2
F

+ λ

(∥∥∥Q(t)
∥∥∥2
F
+
∥∥∥W (t)

∥∥∥2
F

)
.

(8)

C. Optimization

There are 3 optimization variables needed to update, i.e.,
Q(t), T (t), and W (t). Since it is non-convex to jointly opti-
mize these variables, we adopt the alternative convex search
(ACS) [11] algorithm to alternatively update each variable.
By dividing the optimization process into 3 sub-problems
respectively regarding to each of 3 optimization variables, it is
easy to solve their closed-form solutions using the least square
method. Specifically, we obtain the corresponding closed-form
solutions of Q(t), T (t) and W (t) with Eq. (9), Eq. (10), and
Eq. (11), respectively.

Q(t) = X (t−1)X (t−1)T
(
Q(t−1)Q(t−1)T + λI

)−1

. (9)

T (t) =
(
ηW (t−1)TW (t−1) + ηI

)−1

(
ηW (t−1)TH(t−1) +Q(t−1)X (t−1)

)
.

(10)

W (t) = ηT (t−1)T (t−1)T
(
ηW (t−1)W (t−1)T + λI

)−1

. (11)

The overall optimization procedure of the proposed method
is summarized in Algorithm 1.

Algorithm 1: Least squares model with semi-
supervised strategy for crowd counting
input : Training samples X , one-hot label matrix H ,

hyper-parameters η and λ, number of
semi-supervised training stages T .

output: Predicted Label of Xu.
1 Initialize W (0) using the unit Frombenius norm, t = 0,

compute the first-stage pseudo label H(0) using the
weight Q(0) solved by Eq. (2), augment
X = [X,Xu];

2 while t < T do
3 t = t+ 1;
4 while not converged do
5 Update Q(t) by Eq. (9);
6 Update T (t) by Eq. (10);
7 Update W (t) by Eq. (11);
8 end
9 Update the pseudo label of Xu by Eq. (7).

10 end
11 Predict the label of test data by Eq. (5).

Fig. 2. Some representative samples on UCSD [12], Fudan [13], and three
real-scene datasets [14]

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Benchmarks and experimental configuration

To evaluate the effectiveness of the proposed method, five
small-scale scenarios benchmarks are selected, i.e., UCSD
[12], Fudan [13], and three real-scene datasets [14]. Some
representative samples of these datasets are presented in Fig.
2. Specifically, the UCSD dataset includes 2000 video frames,
with crowd counts ranging from 11 to 46. In our experiments,
we adopt 800 frames for training and the remaining 1200 for
testing. The Fudan dataset contains 1500 frames, with 500
frames used for training and the remaining 1000 frames used
for testing. For the three real-scene datasets, three different
subsets called Bus, Canteen, and Classroom datasets are
included, which consist of 3000, 6000, and 4000 video frames,
respectively. In the following experiments, we strictly follow
the protocol proposed by [14], i.e., half of them is used for
training and the rest for testing. Detailed information for these
datasets are summarized in Table I. By following [5], we
adopt the Gist [15] feature as the input feature for all datasets
used in our experiments. All experiments are implemented by
MATLAB R2021a on a PC with AMD R9 5900HX CPU and
16-GB RAM.
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TABLE I
DETAIL INFORMATION ON UCSD [12], FUDAN [13], AND THREE

REAL-SCENE DATASETS [14]

Dataset #Frames #Training #Test Min Max #Instance

UCSD 2000 800 1200 11 46 49885
Fudan 1500 500 1000 3 18 10308
Bus 3000 1500 1500 0 39 46273
Canteen 6000 3000 3000 0 19 66864
Classroom 4000 2000 2000 24 37 125637

B. Evaluation metrics

Following other crowd counting methods, two standard
metrics are adopted, namely Mean Absolute Error (MAE) and
Mean Square Error (MSE) fomulated as Eq. (12) and Eq. (13),
respectively.

MAE =
1

N

N∑
i=1

|Prei −GTi|, (12)

MSE =
1

N

N∑
i=1

(Prei −GTi)
2
, (13)

where N is the number of test samples, and Prei and GTi

represent the prediction pedestrian number and ground truth of
the i-th sample, respectively. While MAE relects the accuracy
of the evaluated method, MSE evaluates the robustness of the
evaluated algorithm.

C. Comparison experiments

In this section, we report the experimental results on five
widely-used datasets in terms of MAE and MSE. The follow-
ing baselines are chosen: four regression-based competitors
termed GPR [12], SRRP [9], MOG-LDL [14], and CSRNet
[16],three density map based algorithms termed E3D [17],
BSAD [18],and PaDNet [19], and other six classification-
based methods termed LC-PDL [20], RA-DPL [21], RBD-
DPL [22], PG-DPL [10], SLatDPL [23], and SDR-DPL [6].
Beside MAE and MSE, we also evaluate the consumed time
of our methods and its competitors ranked top three: SlatDPL,
PG-DPL, and SDR-DPL. We report the average results on 10
random trials.

The results of the comparison experiments on the UCSD
datasets are reported in Table II, and that on the Fudan data
and the three real-scene datasets are reported in Table III,
respectively. As reported, the proposed method outperforms
the other competitors in terms of both MAE and MSE on all
datasets except for the Canteen dataset. At the meanwhile, the
proposed method exceeds its top three competitors in terms of
consumed time, which is shown by Fig. 3. These experimental
results demonstrate that the proposed method achieve fast and
accurate crowd counting by formulating it as a classification
problem.

To further investigate our method, we also present the fitting
curves on the used five datasets in comparison of SLatDPL
and SDR-DPL as shown in Fig. 4. Specifically, we randomly
select a specific frame on each corresponding dataset, then we

TABLE II
COMPARISON WITH OTHER REPRESENTATIVE METHODS ON THE UCSD

DATASET, AND THE BOLD REPRESENTS THE BEST PERFORMANCE

Dataset UCSD

Evaluation Metric MAE MSE

GPR [12] 2.24 7.97
SRRP [9] 0.43 3.34
LC-PDL [20] 1.10 3.34
RA-DPL [21] 0.32 0.76
SLatDPL [23] 0.32 0.45
RBD-DPL [22] 0.52 1.28
PG-DPL [10] 0.30 0.37
BSAD [18] 1.00 1.40
E3D [17] 0.93 1.17
PaDNet [17] 0.85 1.06
SDR-DPL [6] 0.27 0.43

Ours 0.24 0.28

TABLE III
COMPARISON WITH OTHER REPRESENTATIVE METHODS ON THE FUDAN

DATASET AND THE THREE REAL-SCENE DATASETS, AND THE BOLD
REPRESENTS THE BEST PERFORMANCE

Dataset Fudan Bus Classroom Canteen

Evaluation metric MAE MSE MAE MSE MAE MSE MAE MSE

GPR [12] 1.01 2.42 3.98 25.70 0.98 1.64 2.17 6.91
SRRP [9] 0.76 3.09 1.65 28.32 0.38 1.10 0.91 3.76
LC-PDL [20] 1.38 4.55 0.70 8.51 0.32 0.90 1.30 4.71
RA-DPL [21] 0.82 2.13 N/A N/A 0.43 1.92 1.42 6.25
SLatDPL [23] 0.76 2.13 1.26 18.64 0.46 1.96 1.17 4.86
RBD-DPL [22] 0.84 3.49 1.01 9.67 0.45 1.60 1.45 5.42
PG-DPL [10] 0.68 1.34 0.80 9.42 0.32 1.03 0.98 3.19
CSRNet [16] N/A N/A 3.84 21.16 0.88 1.19 1.67 4.12
MOG-LPL [14] N/A N/A 3.14 18.49 0.67 0.99 1.78 5.24
SDR-DPL [6] 0.75 2.09 0.65 8.31 0.17 0.62 1.05 4.57

Ours 0.47 0.82 0.56 6.20 0.17 0.47 0.93 3.42

present the fitting curves and their corresponding MAE and
MSE placed in each subtitle. As shown, SLatDPL as a ordinary
classification method, does not exhibit enough capability for
crowd counting because it generates bad value on the bus
and the canteen datasets. SDR-DPL is a classification method
specially developed for crowd counting and exhibits competi-
tive results. At last, the proposed method still overwhelmingly
outperforms its competitors in terms of the shape of fitting
curves and the quantitative results, which further verifies the
effective of the proposed method.

D. t-SNE Feature Visualization

Since we have formulated crowd counting as a classification
problem, it is meaningful to visualize the feature space, so
that it can be observed whether the proposed method exhibits
enough linear separability. Based on such considerations, the t-
SNE algorithm [24] is chosen to project the features extracted
by the proposed method to two-dimensional subspaces, as
shown in Fig. 5. As shown, the original raw features of each
crowd dataset lie on different complex manifolds, which is
not suitable for classification. However, after learning by the
proposed method, the learned feature spaces exhibit satisfac-
tory linear separations, which is the key to generate high

273



Fig. 3. Consumed time of each method

(a) UCSD: 0.32/0.42 (b) UCSD:0.28/0.33 (c) UCSD: 0.25/0.28

(d) Fudan: 0.77/1.95 (e) Fudan: 0.73/1.88 (f) Fudan: 0.49/0.78

(g) Bus: 2.18/46.67 (h) Bus: 0.66/9.13 (i) Bus: 0.55/5.92

(j) Canteen: 1.86/9.40 (k) Canteen: 1.05/4.02 (l) Canteen: 0.89/3.23

(m) Classroom: 0.44/1.78 (n) Classroom: 0.21/0.79 (o) Classroom: 0.18/0.54
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Fig. 4. Fitting curves of SlatDPL, SDR-DPL, and ours on different datasets.
The first number in every subtitle indicates MAE while the second denotes
MSE

classification results. Such visualization results further verify
the effectiveness of the proposed method.

IV. CONCLUSION

In this paper, towards crowd counting, we formulated it as
a classification problem and leveraged the philosophy of the
least squares model. Aiming at the issue of extremely imbal-
anced crowd datasets, we proposed a novel semi-supervised
strategy to progressively correct the pseudo label of the
least squares model during each iteration. Experimental re-
sults demonstrate that the proposed method outperformed its
competitors in terms of both accuracy and speed. Moreover,
the visualization of feature spaces of the proposed method
exhibited excellent linear separation, which further proved the
feasibility of building a crowd counting-oriented classification
method. As a result, fast and accurate crowd counting was
achieved.

REFERENCES

[1] H. Li, F. Wang, F. Song, and L. Wang, “Crowd counting method
on sparse scene,” in 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2016, pp. 1–6.

[2] S. S. Khan and A. Abedi, “Step counting with attention-based lstm,”
in 2022 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2022, pp. 559–566.

[3] L. Pecyna, A. Cangelosi, and A. Di Nuovo, “A deep neural network for
finger counting and numerosity estimation,” in 2019 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2019, pp. 1422–
1429.

[4] A. Dokania, N. Varia, and J. Senthilnath, “Eobjcount: An evolving
spectral and spatial approach for tree count using multispectral satellite
images,” in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2018, pp. 1896–1901.

[5] K. Zhang, H. Wang, W. Liu, M. Li, J. Lu, and Z. Liu, “An efficient
semi-supervised manifold embedding for crowd counting,” Applied Soft
Computing, vol. 96, p. 106634, 2020.

[6] T. Wang, H. Luo, K. Zhang, H. Wang, M. Li, and J. Lu, “Salient double
reconstruction-based discriminative projective dictionary pair learning
for crowd counting,” Applied Intelligence, vol. 53, no. 2, pp. 1981–1996,
2023.

[7] T. Wang, T. Zhang, K. Zhang, H. Wang, M. Li, and J. Lu, “Context at-
tention fusion network for crowd counting,” Knowledge-Based Systems,
vol. 271, p. 110541, 2023.

[8] J. Wan and A. Chan, “Adaptive density map generation for crowd
counting,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2019, pp. 1130–1139.

[9] H. Foroughi, N. Ray, and H. Zhang, “Robust people counting using
sparse representation and random projection,” Pattern Recognition,
vol. 48, no. 10, pp. 3038–3052, 2015.

[10] W. Liu, H. Wang, H. Luo, K. Zhang, J. Lu, and Z. Xiong, “Pseudo-
label growth dictionary pair learning for crowd counting,” Applied
Intelligence, vol. 51, p. 8913–8927, 2021.

[11] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimiza-
tion with biconvex functions: a survey and extensions,” Mathematical
methods of operations research, vol. 66, pp. 373–407, 2007.

[12] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, “Privacy preserving
crowd monitoring: Counting people without people models or tracking,”
in 2008 IEEE conference on computer vision and pattern recognition.
IEEE, 2008, pp. 1–7.

[13] K. Chen, C. C. Loy, S. Gong, and T. Xiang, “Feature mining for localised
crowd counting.” in Bmvc, vol. 1, no. 2, 2012, p. 3.

[14] M. Ling and X. Geng, “Indoor crowd counting by mixture of gaussians
label distribution learning,” IEEE Transactions on Image Processing,
vol. 28, no. 11, pp. 5691–5701, 2019.

[15] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International journal of computer
vision, vol. 42, pp. 145–175, 2001.

274



UCSD Fudan Bus Classroom 

Raw 

Proposed 

Fig. 5. The visualization of the raw features (the first row) and the features after the proposed method (the bottom row) on each dataset.

[16] Y. C. Li, “Dilated convolutional neural networks for understanding the
highly congested scenes/y. li, x. zhang, d. chen,” in Proceedings of the
IEEE conference on computer vision and pattern recognition.–IEEE,
2018, pp. 1091–1100.

[17] Z. Zou, H. Shao, X. Qu, W. Wei, and P. Zhou, “Enhanced 3d convolu-
tional networks for crowd counting,” arXiv preprint arXiv:1908.04121,
2019.

[18] S. Huang, X. Li, Z. Zhang, F. Wu, S. Gao, R. Ji, and J. Han, “Body
structure aware deep crowd counting,” IEEE Transactions on Image
Processing, vol. 27, no. 3, pp. 1049–1059, 2017.

[19] Y. Tian, Y. Lei, J. Zhang, and J. Z. Wang, “Padnet: Pan-density crowd
counting,” IEEE Transactions on Image Processing, vol. 29, pp. 2714–
2727, 2019.

[20] Z. Zhang, W. Jiang, Z. Zhang, S. Li, G. Liu, and J. Qin, “Scal-
able block-diagonal locality-constrained projective dictionary learning,”
arXiv preprint arXiv:1905.10568, 2019.

[21] Y. Sun, Z. Zhang, W. Jiang, Z. Zhang, L. Zhang, S. Yan, and M. Wang,
“Discriminative local sparse representation by robust adaptive dictionary
pair learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 10, pp. 4303–4317, 2020.

[22] Z. Chen, X.-J. Wu, and J. Kittler, “Relaxed block-diagonal dictionary
pair learning with locality constraint for image recognition,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 8,
pp. 3645–3659, 2021.

[23] Z. Zhang, Y. Sun, Y. Wang, Z. Zhang, H. Zhang, G. Liu, and M. Wang,
“Twin-incoherent self-expressive locality-adaptive latent dictionary pair
learning for classification,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 3, pp. 947–961, 2020.

275


