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Abstract—A number of the genetic network inference meth-
ods have been proposed. These methods have been basically
designed to analyze gene expression data of bulk cells. Recently,
on the other hand, researchers have been capable of using gene
expression data measured at single-cell resolution. The existing
inference methods are however incapable of analyzing time-
series of single-cell data because of high cell-to-cell variation
in gene expression. This study therefore proposed the new
inference method that has an ability to analyze steady-state
and pseudo time-series of single-cell gene expression data.
The pseudo time-series data are obtained through the pseudo-
temporal ordering analysis. As the precise information about
the measurement time is unavailable in pseudo time-series data,
our method infers a genetic network using the signs of time
derivatives of gene expression levels, that can be estimated from
the given data. Through the numerical experiments, we finally
confirmed the effectiveness of the proposed method.

I. INTRODUCTION

High-throughput technologies, such as RNA-seq using
next generation sequencers, enable us to measure expression
levels of more than hundreds of genes. In order to extract
useful information from these data, several researchers have
focused on the inference of genetic networks. Many kinds of
mathematical models have been proposed to describe genetic
networks, and numerous inference methods based on individ-
ual models have been developed [2], [4], [9], [12], [16]. The
inferred models, for example, can be used to identify genes
that relate to a disease. In this study, we focus only on the
inference methods based on ordinary differential equations.
While these methods often require high computational costs
to infer genetic networks, they obtain reasonable models
capable of capturing various dynamics in gene expression.

Most of the existing inference methods have been designed
to analyze gene expression data of bulk cells. Recently, on
the other hand, gene expression data measured at single-cell
resolution have been available for researchers. The inference
methods capable of analyzing steady-state gene expression
data of bulk cells are also capable of analyzing steady-state
data measured at single-cell resolution. On the other hand,
time-series datasets of single-cell gene expression levels, that
are measured in different series of experiments, often show
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qualitatively different trends from each other because of high
cell-to-cell variation in gene expression. Even when we apply
the existing methods developed for analyzing time-series data
of bulk cells to those measured at single-cell resolution,
therefore, it is difficult to extract useful information.

In the single-cell data analysis, instead, we can use pseudo
time-series of gene expression data. The pseudo time-series
data are obtained through the pseudo-temporal ordering anal-
ysis that arranges measurements of single-cells according to
their similarities [18]. The pseudo time-series data consist of
the measurements of individual cells that are ordered along
the pseudo time. The pseudo time reflects the progression
of a cellular process, such as proliferation, differentiation,
and so on. Note here that, although pseudo time-series of
gene expression data are similar to time-series ones, they
contain no precise information about the measurement time.
As the existing inference methods capable of analyzing time-
series data of bulk cells generally require the information
about the measurement time, therefore, they are unable to
analyze pseudo time-series data. Some inference methods
that obtain ordinary differential equations from pseudo time-
series data have been already proposed [11], [13]. These
methods implicitly assume that the pseudo time defined
through the pseudo-temporal ordering analysis is almost
linearly proportional to the actual time. However, there is
no guarantee that this assumption is always satisfied. When
the assumption is unsatisfied, it is unclear that these inference
methods are capable of producing reasonable results.

This study proposes a new method that has an ability to
infer a genetic network from steady-state and pseudo time-
series of single-cell gene expression data. While a lot of
the existing methods capable of analyzing time-series data
of bulk cells use time derivatives of the gene expression
levels to infer genetic networks, the proposed method uses
their signs. The estimation of the time derivatives requires
the precise information about the measurement time. As
mentioned previously, on the other hand, the pseudo time-
series data consist of the measurements of individual cells
that are ordered along the progression of a cellular process.
Even when no precise information about the measurement
time is available, therefore, we can estimate the signs of the
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time derivatives of the gene expression levels. Because of the
feature of using the signs, thus, the proposed method has an
ability to analyze pseudo time-series data. The performances
of the random-forest-based inference methods, that were
basically designed to obtain ordinary differential equations
from gene expression data of bulk cells, are reportedly good
[5], [6], [7], [10], [14]. The inference method proposed in
this study is therefore designed based on two of them, i.e.,
GENIE3 [5] and its extension proposed by the author and
colleagues [7]. Through numerical experiments with several
artificial genetic network inference problems, we finally
check the performance of the proposed inference method.

II. GENIE3 AND ITS EXTENSION

The basic concept of the proposed method comes from
the model used in the random-forest-based inference method
proposed by the author and colleagues [7]. On the other hand,
the method proposed in this study repeatedly executes GE-
NIE3 [5]. First, thus, this section will describe the random-
forest-based inference method [7] that is an extension of
GENIE3. Then, we will explain the relation between the
inference method [7] and GENIE3 in the section II-D.

A. Model for describing genetic networks

The inference method proposed by the author and col-
leagues [7] assumes that a genetic network is represented as
ordinaly differential equations of the form

dXn

dt
= Fn (X−n)−βnXn, (n = 1,2, · · · ,N), (1)

where X−n = (X1, · · · ,Xn−1,Xn+1, · · · ,XN), Xm is the expres-
sion level of the m-th gene, N is the number of genes
contained in the target network, βn (> 0) is a constant
parameter, and Fn is a function of arbitrary form.

The method [7] divides an inference problem of a genetic
network consisting of N genes into N subproblems, each
of which corresponds to each gene. By solving the n-th
subproblem, the method obtains a reasonable approximation
of the function Fn and a reasonable value for the parameter
βn. The method then computes the confidence values of
the regulations of the n-th gene from the other genes by
analyzing the obtained approximation of the function Fn.
The sections II-B and II-C will describe ways to solve
the n-th subproblem and to compute the confidence values,
respectively.

B. Solving the n-th subproblem

The inference method [7] accomplishes the acquisition
of an approximation of Fn and a value for βn by using a
weighted least-squares method. The method thus defines the
n-th subproblem as the optimization problem of the following
one-dimensional function.

Sn(βn) =
KT

∑
k=1

wT
k

βn

[
dXn

dt

∣∣∣∣
tk

− F̂n

(
X−n|tk ;βn

)
+βn Xn|tk

]2

+
KS

∑
k=1

wS
k

βn

[
dXn

dt

∣∣∣∣
sk

− F̂n

(
X−n|sk

;βn

)
+βn Xn|sk

]2

, (2)

where X−n|tk = (X1|tk , · · · , Xn−1|tk , Xn+1|tk , · · · , XN |tk),
X−n|sk

= (X1|sk
, · · · , Xn−1|sk

, Xn+1|sk
, · · · , XN |sk

), and Xm|tk
and Xm|sk

are the expression levels of the m-th gene at
the k-th measurements of time-series and steady-state
experiments, respectively. dXn

dt

∣∣∣
tk

and dXn
dt

∣∣∣
sk

are the time

derivatives of the expression levels of the n-th gene at
the k-th measurements of the time-series and steady-state
experiments, respectively. We can estimate dXn

dt

∣∣∣
tk

’s directly

from the measured time-series of the gene expression levels
using some smoothing technique. On the other hand, all of
the values for dXn

dt

∣∣∣
sk

’s can be set to zeros because the data

were measured under steady-state conditions. KT (≥ 2) and
KS (≥ 0) are the numbers of measurements performed in
the time-series and steady-state experiments, respectively.
wT

k and wS
k are weight parameters for the k-th measurements

in the time-series and steady-state experiments, respectively.
Our earlier study [7] showed that the performance of the
random-forest-based inference method is improved by
assigning appropriate values to the parameters wT

k ’s and
wS

k’s. The author and colleagues have thus proposed the
techniques to determine these values [7], [8].

F̂n ( · ;βn) is an approximation of the function Fn trained
under the given βn. The computation of a value for the
objective function (2) requires an approximation of the
function Fn, i.e., F̂n. As the approximation of the function
Fn, the inference method [7] uses the random forest [1] that
is trained on the basis of the training data consisting of the
following set of input-output pairs,{(

X−n|tk ,
dXn

dt

∣∣∣∣
tk

+βn Xn|tk

)∣∣∣∣∣k = 1,2, · · · ,KT

}

∪

{(
X−n|sk

,
dXn

dt

∣∣∣∣
sk

+βn Xn|sk

)∣∣∣∣∣k = 1,2, · · · ,KS

}
.

Note that, when the method [7] trains the random forest, it
considers the weight parameters wT

k ’s and wS
k’s in order to

keep consistency with the objective function (2). On the other
hand, the training data described above contain the parameter
βn whose value must be determined. Note however that, when
trying to compute a value for the objective function (2), a
value for the parameter βn is always given.

The random-forest-based inference method [7] uses the
golden section search [15] to minimize the function (2).

C. Assigning confidence values to regulations

By analyzing the random forest obtained through the
optimization of the function (2), the inference method [7]
computes the confidence values of the regulations of the n-
th gene from the other genes. The method assigns the con-
fidence values to the regulations using the standard variable
importance measure [1]. In order to compute the degree to
which each of the input variables contributes the prediction
of the output, this measure uses the total reduction of the
variance of the output values due to the split. The method
thus computes the confidence value of the regulation of the
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n-th gene from the m-th gene, Cn,m, according to

Cn,m =
1

Sqw0

1
Ntree

Ntree

∑
i=1

∑
ν∈Vi(m)

I(ν), (3)

where

Sqw0 =
KT

∑
k=1

wT
k (ytk − yw0)

2 +
KS

∑
k=1

wS
k(ysk − yw0)

2, (4)

yw0 =
1

Nw0

[
KT

∑
k=1

wT
k ytk +

KS

∑
k=1

wS
kysk

]
, (5)

Nw0 =
KT

∑
k=1

wT
k +

KS

∑
k=1

wS
k , (6)

ytk =
dXn

dt

∣∣∣∣
tk

+β
∗
n Xn|tk , (7)

ysk = β
∗
n Xn|sk

, (8)
I(ν) = Nw(ν)Sqw(ν)−Nw(νL)Sqw(νL)

−Nw(νR)Sqw(νR), (9)

Sqw(ν) = ∑
k∈T (ν)

wT
k
[
ytk − yw(ν)

]2
+ ∑

k∈S(ν)
wS

k
[
ysk − yw(ν)

]2
, (10)

yw(ν) =
1

Nw(ν)

[
∑

k∈T (ν)
wT

k ytk + ∑
k∈S(ν)

wS
kysk

]
, (11)

Nw(ν) = ∑
k∈T (ν)

wT
k + ∑

k∈S(ν)
wS

k , (12)

Ntree is the number of trees in the random forest F̂∗n , and
Vi(m) is a set of nodes that use the expression levels of the
m-th gene to split the training examples in the i-th decision
tree of F̂∗n . F̂∗n and β ∗n are the approximation of the function
Fn and the value for the parameter βn, respectively, that are
obtained through the optimization of the function (2). νL
and νR are the left and right children nodes of the node ν ,
respectively, and T (ν) and S(ν) are sets of indices of the
training examples generated from time-series and static gene
expression data, respectively, and allocated to the node ν .

D. Relation to GENIE3

The inference method [7] was designed based on GEINE3.
GENIE3 proposed by Huynh-Thu and colleagues [5] is the
first method that uses the random forests for the genetic
network inference. GENIE3 is capable of analyzing the
steady-state gene expression data only. Under the condition
that the steady-state data are only given, the model (1)
corresponding to the n-th gene can be described as(

dXn

dt
=

)
0 = Fn (X−n)−βnXn. (13)

By dividing both sides of the equation (13) by βn and
replacing Fn (X−n)/βn by Gn (X−n), we have

0 = Gn (X−n)−Xn. (14)

Note here that the inference method [7] computes the con-
fidence values of the regulations of the n-th gene from the
other genes by analyzing the approximation of the function
Fn. On the other hand, the equation (14) indicates that
the confidence values can be obtained also by analyzing a
good approximation of the function Gn. GENIE3 obtains the
approximation of the function Gn by training the random
forest on the basis of the following set of input-output pairs.{(

X−n|sk
, Xn|sk

)∣∣∣k = 1,2, · · · ,KS

}
,

where X−n|sk
= (X1|sk

, · · · , Xn−1|sk
, Xn+1|sk

, · · · , XN |sk
),

Xm|sk
is the expression level of the m-th gene at the k-

th measurement of a steady-state experiment, and KS is
the number of measurements performed in the steady-state
experiment. Here, we should note again that GENIE3 infers a
genetic network only from steady-state gene expression data.

While the inference method [7] uses time derivatives of
gene expression levels to infer a genetic network, GENIE3
does not use them. GENIE3 is therefore capable of analyzing
single-cell gene expression data whenever they are measured
under steady-state conditions.

III. INFERENCE METHOD FOR SINGLE-CELL DATA

In this section, we propose a new method that infers a
genetic network from steady-stare and pseudo time-series
of single-cell gene expression data. Similar to the random-
forest-based inference method [7] described in the previous
section, the method proposed in this study also divides an
inference problem of a genetic network consisting of N
genes into N subproblems, each of which corresponds to
one gene. The remainder of this section will describe the
n-th subproblem corresponding to the n-th gene.

A. Data for analysis

As described previously, in order to obtain the confidence
values of the regulations of the n-th gene from the other
genes, the inference method [7] solves the n-th subproblem.
In the n-th subproblem, the method [7] uses the following
data. {(

X|tk ,
dXn

dt

∣∣∣∣
tk

)∣∣∣∣∣k = 1,2, · · · ,KT

}

∪

{(
X|sk

,
dXn

dt

∣∣∣∣
sk

)∣∣∣∣∣k = 1,2, · · · ,KS

}
,

where X|tk = (X1|tk , X2|tk , · · · , XN |tk), X|sk
= (X1|sk

, X2|sk
,

· · · , XN |sk
), and Xm|tk and Xm|sk

are the expression levels of
the m-th gene at the k-th measurements in the time-series
and steady-state data, respectively. dXn

dt

∣∣∣
tk

and dXn
dt

∣∣∣
sk

are the

time derivatives of the expression levels of the n-th gene
at the k-th measurements in the time-series and steady-state
data, respectively. While dXn

dt

∣∣∣
sk

’s are all set to zeros, dXn
dt

∣∣∣
tk

’s

are directly estimated from the measured time-series gene
expression data.

Because pseudo time-series of single-cell gene expression
data, that are produced by the pseudo-temporal ordering
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analysis [18], do not contain the precise information about
the measurement time, we cannot estimate time derivatives
of gene expression levels from these data. This is a reason
why we cannot use the inference method [7] to analyze
pseudo time-series data. As the pseudo-temporal ordering
analysis arranges measurements of individual cells along the
progression of a cellular process, on the other hand, we can
estimate signs of time derivatives of gene expression levels
from pseudo time-series data. In the n-th subproblem, in
order to obtain the confidence values of the regulations of
the n-th gene from the other genes, therefore, the proposed
method uses the following data.{(

X|ptk , Yn|ptk

)∣∣∣k = 1,2, · · · ,KPT

}
∪
{(

X|sk
, Yn|sk

)∣∣∣k = 1,2, · · · ,KS

}
,

where X|ptk = (X1|ptk , X2|ptk , · · · , XN |ptk), X|sk
= (X1|sk

,
X2|sk

, · · · , XN |sk
), and Xm|ptk and Xm|sk

are the expression
levels of the m-th gene at the k-th measurements in pseudo
time-series and steady-state data, respectively. Yn|ptk and
Yn|sk

are class labels that represent the signs of the time
derivatives of the expression levels of the n-th gene at the
k-th measurements in the pseudo time-series and steady-
state data, respectively. KPT and KS are the numbers of
the measurements contained in the pseudo time-series and
steady-state data, respectively.

This study assigns ‘+’, ‘−’ or ‘0’ to Yn|ptk according
to the sign of the slope of the expression level of the n-
th gene at the k-th measurement in the pseudo time-series
data (see Fig. 1). Specifically, we assign ‘+’ to Yn|ptk if
the slope of the expression level of the n-th gene at the k-
th measurement is obviously positive in the pseudo time-
series data. If the slope is obviously negative, we assign
‘−’ to Yn|ptk . If we can determine that the slope is almost
0, we assign ‘0’ to Yn|ptk . If it is difficult to assign either
‘+’, ‘−’ or ‘0’ to the measurement, we remove it from
the training data. We think that the examples erroneously
labeled are harmful for inferring a genetic network. Since
steady-state gene expression data are measured under steady-
state conditions, on the other hand, we always assign ‘0’
to Yn|sk

. For convenience of explanation, this study divides
the data for the n-th subproblem, mentioned just above, into
three subsets, i.e., D+

n , D−n and D0
n, that consist only of the

measurements labeled ‘+’, ‘−’ and ‘0’, respectively.

B. Concept

The proposed method also assumes that the model (1)
represents a genetic network. Similar to the section II-D,
we focus on the equation corresponding to the n-th gene in
the model (1). By dividing both sides of this equation by βn
and replacing Fn (X−n)/βn by Gn (X−n), we have

dXn

dt

/
βn = Gn (X−n)−Xn. (15)

Note here that the parameter βn is positive. The equation (15)
therefore suggests that, if we know the function Gn, we can
estimate the sign of the time derivative of the expression

 0

 0.5

 1

 1.5

 2

 2.5

 3

pseudo time

progression of a cellular process

g
en

e 
ex

p
re

ee
si

o
n
 l

ev
el

Yn pt k
Yn pt k

Yn pt k

= ‘−’= ‘+’

= ‘0’

Not in use

Fig. 1. Assignment of class labels to Yn|ptk
from pseudo time-series data.

× symbols indicate measurements in the pseudo time-series data. Solid line
represent the smoothed expression data of the n-th gene.

level of the n-th gene from the expression levels of all of
the genes. Specifically, when values for Gn (X−n)−Xn are
positive, negative and zero, we can conclude that the signs
of the time derivative of the expression level of the n-th
gene are positive, negative and zero, respectively. Note also
that GENIE3 mentioned in the section II-D [5] is capable
of obtaining an approximation of the function Gn only
from steady-state gene expression data. Therefore, we could
estimate the sign of the time derivative of the expression
level of the n-th gene using Ĝn (X−n)−Xn, where Ĝn is the
approximation of the function Gn, and this study obtains it
using GENIE3.

The method proposed in this study uses the idea mentioned
above to infer a genetic network from steady-state and
pseudo time-series of single-cell gene expression data.

C. Algorithm

In this study, we propose a new inference method based
on the concept described just above. Specifically, in the n-
th subproblem, the proposed method executes GENIE3 only
using the subset D0

n, and then obtains the random forest that
approximates the function Gn. Note that the random forest
obtained by GENIE3 consists of multiple regression trees,
each of which is also an approximation of the function Gn.
From the regression trees in the random forest obtained,
then, our method selects the most consistent one with the
examples of the subsets D+

n and D−n . By repeating the
procedure described above, the method tries to construct a
tree ensemble that is consistent with all of the examples
in the given data. Note that, although the tree ensemble is
constructed through the algorithm slightly different from that
of the random forest, its structure is identical to that of the
random forest. By analyzing the tree ensemble obtained, thus,
the proposed method computes the confidence values of the
regulations of the n-th gene from the other genes.

Specifically, the proposed method solves the n-th subprob-
lem corresponding to the n-th gene according to the following
procedure.

1) Step 1 (Initialization): As input data, receive a set
of pairs of single-cell gene expression data and their class
labels, i.e., D+

n ∪D−n ∪D0
n. As mentioned in the section II,

on the other hand, our earlier study [7] showed that the
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performance of the existing random-forest-based inference
method is improved by assigning appropriate values to the
weight parameters. The proposed inference method therefore
introduces them. We represent the weight parameters for the
k-th measurements in the subsets D+

n , D−n and D0
n as w+

k , w−k
and w0

k , respectively. The proposed method also requires to
have their values. In order to determine these values, we can
use the technique proposed by the author and colleagues [8].
If the user does not want to use the weight parameters, on
the other hand, set the values to 1.0. Finally, compute

W+
n =

|D+
n |

∑
k=1

w+
k , W−n =

|D−n |

∑
k=1

w−k .

2) Step 2 (Execution of GENIE3): Run GENIE3 [5] using
the subset D0

n. Note that we can construct the training dataset
for GENIE3 from the subset D0

n. The number of trees in the
random forest of GENIE3 is represented as Nsubtree. Note
also that, while the original GENIE3 does not consider the
weight parameters, GENIE3 used in this study analyzes the
given data considering the weight parameters w0

k’s.
3) Step 3 (Selection of examples): Select Kexample exam-

ples randomly from the subset D+
n if W+

n ≤W−n . Otherwise,
select Kexample examples randomly from the subset D−n . Note
that, if Kexample exceeds the number of the elements in
the subset, select all examples from the subset. Compute
the sum of the weight values corresponding to the selected
examples. Here, we represent its value as Wexample. Then,
select examples randomly from the opposite subset while
the sum of the weight values corresponding to the selected
examples is less than Wexample. The sets of indices of the
examples selected from the subsets D+

n and D−n are denoted
by S+ and S−, respectively.

4) Step 4 (Selection of regression tree): The random forest
constructed by GENIE3 in the step 2 consists of Nsubtree
regression trees, denoted here by Ĝ1

n, Ĝ
2
n, · · · , Ĝ

Nsubtree
n . Select

the best tree among these trees, and remove the others. The
goodness of the tree Ĝi

n is evaluated using

Tn(Ĝi
n) = ∑

k∈S+
w+

k ×max
{
−[Ĝi

n(X−n|+k )− Xn|+k ],0
}

+ ∑
k∈S−

w−k ×max
{
[Ĝi

n(X−n|−k )− Xn|−k ],0
}
, (16)

where X−n|+k = (X1|+k , · · · , Xn−1|+k , Xn+1|+k , · · · , XN |+k ),
X−n|−k = (X1|−k , · · · , Xn−1|−k , Xn+1|−k · · · , XN |−k ), and Xm|+k
and Xm|−k are the expression levels of the m-th gene of the
k-th measurements in the subsets D+

n and D−n , respectively.
Note that, as mentioned in the section III-B, the good
approximation of the function Gn enables us to estimate the
sign of the time derivative of the expression level of the
n-th gene. A value for the function Tn thus represents the
degree of the misclassification done by the tree. The best
tree is therefore the one having the minimum value for the
function Tn. If there are multiple trees having the minimum
value for the function Tn, choose one randomly from them.

5) Step 5 (Conditional branch): If the total number of the
regression trees selected in the previous step reaches Ntree,
proceed to the next step. Otherwise, return to the step 2.

6) Step 6 (Computation of confidence values): An ensem-
ble of the selected regression trees has a structure equivalent
to that of the random forest. Therefore, we can compute the
confidence values of the regulations by the means identical
to that of the random-forest-based inference method [7].
Specifically, the proposed method computes the confidence
value of the regulation of the n-th gene from the m-th gene
according to the equation (3). Note however that the proposed
method only uses the gene expression data in the subset D0

n
to train the regression trees. When computing the confidence
values, therefore, we do not use the gene expression data in
the subsets D+

n and D−n .

D. Remarks

As the inference method proposed in this study uses
GENIE3, we must give gene expression data labeled ‘0’.
Although a small amount of these data might be constructed
from pseudo time-series data, most of them will be generated
from steady-state data. When using the proposed inference
method, therefore, we should give a sufficient amount of
steady-state gene expression data. As described previously,
however, our earlier study [7] suggests that, even when
we give measurements similar to each other, they do not
contribute to improve the quality of the inferred genetic
network. Thus, it is desirable if these data contain gene
expression data of different gene knockout cells, cells took
from different patients, or the like.

While the proposed method does not work without gene
expression data labeled ‘0’, on the other hand, the method is
capable of inferring a genetic network without those labeled
‘+’ or ‘−’. Note however that, when gene expression data
labeled either ‘+’ or ‘−’ are unavailable, the proposed
inference method is equivalent to GENIE3. The inference
method proposed in this study can be thus regarded as yet
another extension of GENIE3.

IV. NUMERICAL EXPERIMENTS

In order to check the performance of the proposed method,
this study performs the experiments. However, we do not yet
have any artificial problem that simulates the genetic network
inference using single-cell gene expression data. In this study,
we thus applies the proposed method to five artificial genetic
network inference problems obtained from the DREAM4 in
silico network challenges (http://dreamchallenges.org/). The
DREAM4 problems simulate the genetic network inference
using gene expression data of bulk cells.

A. Construction of training data

In the DREAM4 problems, we can utilize the information
about the measurement time. Note however that the purpose
in this study is to propose a new method capable of inferring
genetic networks from single-cell gene expression data that
contain no precise information about the measurement time.
In this experiments, therefore, we inferred genetic networks
without using this information. For the proposed method,
thus, we constructed the training data that do not contain
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TABLE I
THE AURPCS OF THE PROPOSED METHOD ON THE DREAM4 PROBLEMS. THE PERFORMANCES OF GENIE3 [5] AND THE RANDOM-FOREST-BASED

INFERENCE METHOD [7] ARE ALSO SHOWN. NOTE THAT GENIE3 USES THE TRAINING DATA LABELED ‘0’ ONLY. NOTE ALSO THAT THE
RANDOM-FOREST-BASED INFERENCE METHOD USES THE ESTIMATED TIME DERIVATIVES OF THE GENE EXPRESSION LEVELS. AVG AND STD

REPRESENT THE AVERAGED AURPC AND ITS STANDARD DEVIATION, RESPECTIVELY.

Network1 Network2 Network3 Network4 Network5 Note
AVG AVG AVG AVG AVG
± STD ± STD ± STD ± STD ± STD

The proposed method 0.41431 0.34206 0.37616 0.41877 0.28840 The training data labeled ‘+’, ‘−’ and ‘0’
±0.00272 ±0.00121 ±0.00138 ±0.00162 ±0.00213 are used.

GENIE3 [5] 0.26522 0.23955 0.31216 0.27497 0.20952 The training data labeled ‘0’
±0.00690 ±0.00254 ±0.00412 ±0.00272 ±0.00188 are only used.

Random-forest-based 0.41050 0.28021 0.35255 0.34084 0.29945 The time derivatives of gene expression levels
inference method [7] ±0.00160 ±0.00292 ±0.00429 ±0.00420 ±0.00294 are required as the training data.

TABLE II
THE AURPCS OF THE PROPOSED METHOD WITH Kexample = 2,4,8,16 AND 32 ON THE DREAM4 PROBLEMS.

Network1 Network2 Network3 Network4 Network5
AVG AVG AVG AVG AVG
± STD ± STD ± STD ± STD ± STD

The proposed method 0.43114 0.32482 0.36211 0.38219 0.27491
Kexample = 2 ±0.00181 ±0.00193 ±0.00164 ±0.00214 ±0.00270

The proposed method 0.43111 0.33903 0.36876 0.40670 0.28296
Kexample = 4 ±0.00256 ±0.00213 ±0.00173 ±0.00191 ±0.00197

The proposed method 0.41431 0.34206 0.37616 0.41877 0.28840
Kexample = 8 ±0.00272 ±0.00121 ±0.00138 ±0.00162 ±0.00213

The proposed method 0.39608 0.33514 0.37586 0.41292 0.28604
Kexample = 16 ±0.00217 ±0.00266 ±0.00250 ±0.00194 ±0.00161

The proposed method 0.38696 0.32400 0.37587 0.39650 0.28081
Kexample = 32 ±0.00191 ±0.00184 ±0.00169 ±0.00115 ±0.00109

the time derivatives of the gene expression levels but contain
their signs, as described below.

The target networks in the DREAM4 problems consisted
of 100 genes, and were designed based on actual biochemical
networks. Each problem contained both the time-series and
static expression data of all 100 genes. The time-series data
were 10 datasets of time-series of gene expression levels
obtained by solving a set of differential equations on the
target network [17]. Each time-series dataset consisted of
the expression levels at 21 time points, and was polluted
by internal and external noise. A dataset was constructed by
applying a perturbation to the network at the 1st time point
and removing the perturbation at the 11th time point. The
perturbation affected the transcription rates of a different set
of genes in each dataset. To take the perturbations into ac-
count explicitly, we added 10 elements to the gene expression
data, each corresponding to each of the perturbations. The
i-th added element had a value of 1.0 for the measurements
between the 1st and 10th time points in the i-th time-
series dataset generated by adding the i-th perturbation, and
a value of 0.0 for the other measurements. The number
of elements, N, was therefore 100 + 10 = 110. The local
linear regression [3] was used to smooth the given time-
series data and to estimate the time derivatives of the gene
expression levels. For the n-th subproblem corresponding to
the n-th gene, we then assigned the class label to each of
the measurements according to the following rule: if the
estimated value for the time derivative of the expression level
of the n-th gene at the k-th measurement, i.e., dXn

dt

∣∣∣
tk

, is larger

than 0.0004, we set the class label of the measurement to ‘+’;

if dXn
dt

∣∣∣
tk
< −0.0004, we assign ‘−’ to the measurement; if∣∣∣∣ dXn

dt

∣∣∣
tk

∣∣∣∣ ≤ 0.0001, we set its class label to ‘0’; otherwise,

we did not use the measurement in the n-th subproblem.
Note therefore that, although the time-series data in each of
the DREAM4 problems consisted of 10×21 = 210 measure-
ments, our method did not use some of them.

The static data, on the other hand, consisted of wild-type,
knockout and knockdown data. The wild-type data contained
the steady-state gene expression levels of the unperturbed
network. The knockout and knockdown data contained the
steady-state expression levels of every single-gene knockout
and knockdown, respectively. When trying to solve the n-
th subproblem corresponding to the n-th gene, however, we
removed the static data of the knockout and the knockdown
of the n-th gene. The number of measurements in the steady-
state data was thus 1+100+100−2 = 199. We assigned ‘0’
to all of the measurements in the steady-state data.

We inferred genetic networks only using the gene ex-
pression levels and their class labels, that were constructed
according to the procedure described just above.

B. Experimental setup

According to the recommended values in the random-
forest-based inference method [7], we set the number of
trees in the tree ensemble, i.e., Ntree, the number of input
variables to be considered in each internal node of each tree,
i.e., Ntest , and the maximum height of each tree, i.e., Nhmax, to
1000,

⌈N−1
3

⌉
, and 32, respectively. Based on the results of our

preliminary experiment, on the other hand, we set the number
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of examples selected in the step 3 of the proposed method,
i.e., Kexample, and the number of trees in the random forest
of GENIE3 used in the proposed method, i.e., Nsubtree, to 8
and 50, respectively. The values for the weight parameters
w+

k ’s, w−k ’s and w0
k’s were determined using the weighting

method [8] (see Appendix). This study applied the proposed
inference method to each of the five DREAM4 problems ten
times.

C. Results

1) Performance: In order to quantify the performance of
the inference method, we used the area under the recall-
precision curve (AURPC). The recall-precision curve of an
algorithm is obtained by checking the recalls and precisions
of the algorithm. The recall and the precision are defined as

recall =
T P

T P+FN
, precision =

T P
T P+FP

,

where T P, FP and FN are the numbers of true-positive,
false-positive and false-negative regulations, respectively.
This study computed the recall and precision by constructing
a network of regulations whose confidence values exceeded
a threshold and then comparing it with the gold-standard
network. Next, we obtained the recall-precision curve of
the algorithm by changing the threshold for the confidence
values. Auto-regulations/auto-degradations were disregarded
in the evaluation of the performance. In addition, although
we inferred the regulations of the 100 genes from these genes
and the 10 additional elements representing 10 perturbations,
we disregarded the regulations of the genes from the addi-
tional elements for the evaluation of the performance.

The AURPCs of the proposed method on the DREAM4
problems are listed in Table I. We compared the performance
of the proposed method with that of GENIE3 [5]. As shown
in the table, our method always outperformed GENIE3 on
the DREAM4 problems. Note here that, while our method is
capable of using the dataset D+

n ∪D−n ∪D0
n, GENIE3 uses the

dataset D0
n only. The experimental results thus indicate that

the use of the training data labeled ‘+’ and ‘−’ improves
the quality of the inferred network.

Table I also shows the AURPCs of the random-forest-
based inference method [7] using the appropriate weight
values [8]. Note that, while the existing inference method [7]
uses time derivatives of gene expression levels, the method
proposed in this study uses their signs. In order to infer
genetic networks, therefore, the proposed method utilizes a
smaller amount of information. Surprisingly, however, the
proposed method outperformed the existing method [7] on
four of the five DREAM4 problems. The poor performance of
the random-forest-based inference method might be caused
by a reason that the erroneously estimated time derivatives
of gene expression levels were given in these problems.

2) Parameter Kexample: The number of training exam-
ples labeled ‘+’ and ‘−’, that are used to find the best
regression tree in the step 4 of the proposed method, is
determined according to the parameter Kexample. When the
regression trees selected are consistent with a large number

of training examples labeled ‘+’ and ‘−’, the tree ensemble
finally obtained would be better. Note however that our
method constructs regression trees without considering any
training examples labeled ‘+’ and ‘−’. Even when we set
the parameter Kexample to a large value, therefore, we do
not always obtain regression trees consistent with many
training examples. In order to find a reasonable value for
the parameter Kexample, thus, we performed the experiments
by changing its value.

Table II lists the AURPCs of the proposed method with
different values for the parameter Kexample on the DREAM4
problems. As shown in the table, our setting, i.e., Kexample =
8, made the performance of the proposed method relatively
good. However, the table indicates that the best value for
the parameter Kexample depends on the problem applied. In
addition, we think that the best value for this parameter also
depends on the parameter Nsubtree. In our future work, thus,
we should find a way to determine its value.

3) Direct estimation of time derivatives from pseudo time-
series data: As mentioned previously, it is difficult to
estimate time derivatives of gene expression levels from
pseudo time-series data. In this study, we thus proposed
the new inference method that does not require the precise
estimation of time derivatives of gene expression levels.
If the existing inference method is capable of inferring a
genetic network without using the precisely estimated time
derivatives, however, the proposed method might be useless.

In order to confirm the effectiveness of the proposed ap-
proach, therefore, this study performed another experiment.
In this experiment, we checked the performances of the pro-
posed method and the random-forest-based inference method
[7] on the problem where the estimated time derivatives
of gene expression levels are unreliable. We constructed
unreliable data by multiplying each of the estimated time
derivatives of gene expression levels in the 1st DREAM4
problem, i.e., Network1, by a randomly generated positive
value. Specifically, we multiplied the estimated time deriva-
tive of the expression level of the n-th gene at the i-th mea-
surement by 5rn,i , where rn,i is a random value drawn from
[−1,1]. Note that this transformation of the time derivatives
of gene expression levels keeps their signs unchanged. This
experiment simulates the situation where time derivatives of
gene expression levels are directly estimated from the given
pseudo time-series data.

By applying the inference method [7] to the time-series
and steady-state gene expression data and the unreliable time
derivatives constructed, we inferred a genetic network. We
also inferred a genetic network by applying the proposed
method to the same gene expression data and their class la-
bels that were generated from the unreliable time derivatives
according to the procedure described in the section IV-A.
We performed ten trials by changing the unreliable time
derivatives of gene expression levels. The AURPCs of our
method and the inference method [7] were 0.44339±0.00986
and 0.30198± 0.00713, respectively. This result indicates
that, while the inference method designed for analyzing bulk-
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cell data requires the precise estimation of time derivatives
of gene expression levels, the proposed method does not
always require it. This feature would be preferable since
there is no guarantee that the time derivatives are always
estimated precisely from pseudo time-series data. As men-
tioned previously, the inference methods capable of analyzing
pseudo time-series data have been already proposed [11],
[13]. However, these methods implicitly assume that the
pseudo time is almost linearly proportional to the actual time.
For the reason similar to that described here, therefore, we
think that they do not always infer reliable network models.

V. CONCLUSION

In order to extract useful information from single-cell gene
expression data, this study proposed the new genetic network
inference method. It is difficult to extract information from
time-series of single-cell data because of high cell-to-cell
variation in gene expression. The proposed method there-
fore uses steady-state and pseudo time-series of single-cell
gene expression data. As the precise information about the
measurement time is unavailable in pseudo time-series data,
our method infers a genetic network using the signs of time
derivatives of gene expression levels, that can be estimated
from the given data. Through the numerical experiments, we
showed the effectiveness of the proposed method. However,
this study confirmed its effectiveness only on the artificial
genetic network inference problems. In our future work,
therefore, we should use our method to analyze actual single-
cell gene expression data.

APPENDIX

The performance of the random-forest-based inference
method [7] can be improved by assigning appropriate values
to the weight parameters. In order to determine these values,
the weighting method has been proposed [8]. This method
computes weight values based on the similarities between
measurements. We should note however that this weighting
method was designed not for the inference method proposed
in this study but for the existing inference method [7]. This
section thus describes a way to compute weight values for
the proposed method using this weighting method.

As mentioned in the section III-A, our approach re-
moves some measurements from the observed single-cell
gene expression data. This study performs the removal of
measurements after the computation of weight values. Before
computing weight values, the weighting method normalizes
the given gene expression data so that the expression levels
of each gene range from 0.0 to 1.0. Here, we represent
the normalized measurements as X

∣∣
1 , X

∣∣
2 , · · · , X

∣∣
K , where

X
∣∣
k = (X1

∣∣
k , X2

∣∣
k , · · · , XN

∣∣
k), Xm

∣∣
k is the normalized ex-

pression level of the m-th gene at the k-th measurement,
and K is the total number of measurements. The weighting
method used in this study then computes a weight value
corresponding to the k-th measurement, wk, according to

wk =

[
K

∑
i=1

Sim
(

X
∣∣
k , X

∣∣
i

)]−1

, (17)

where

Sim(x,y) = exp
(
−C |x−y|2

)
, (18)

C =
Cw

median Sall
, (19)

Sall =

{∣∣∣X∣∣i− X
∣∣

j

∣∣∣2∣∣∣∣ i, j = 1, · · · ,K, i < j
}
, (20)

and Cw (> 0) is a constant parameter. The recommended
value for Cw is 15.
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