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Abstract—Artificial intelligence (AI) reasoning and explainable
AI (XAI) tasks have gained popularity recently, enabling users
to explain the predictions or decision processes of AI models.
This paper introduces Forest Monkey (FM), a toolkit designed
to reason the outputs of any AI-based defect detection and/or
classification model with data explainability. Implemented as
a Python package, FM takes input in the form of dataset
folder paths (including original images, ground truth labels,
and predicted labels) and provides a set of charts and a text
file to illustrate the reasoning results and suggest possible
improvements. The FM toolkit consists of processes such as
feature extraction from predictions to reasoning targets, feature
extraction from images to defect characteristics, and a decision
tree-based AI-Reasoner. Additionally, this paper investigates the
time performance of the FM toolkit when applied to four AI
models with different datasets. Lastly, a tutorial is provided to
guide users in performing reasoning tasks using the FM toolkit.

Index Terms—Morphological analysis, AI-Reasoner, defect
characteristics, explainable AI.

I. INTRODUCTION

Object detection and classification tasks using artificial in-
telligence (AI) are popular in industry applications and beyond.
The outputs of AI models need to be explained to foster trust
in the results during decision making. Explainable AI (XAI)
techniques offer solutions for explaining and reasoning the
outcomes of AI models, leading to the development of various
XAI toolkits. One such toolkit is XAI360 [1], published by
Arya et al. of the International Business Machines Corpora-
tion (IBM) in 2020, which integrates 14 diverse XAI methods.

In 2023, Ali et al. [2] conducted a survey on a set of
XAI techniques and proposed four XAI taxonomies: scoop-
based, model-based, complexity-based, and methodology-
based, along with their corresponding use cases. Scoop-based
XAI techniques, also known as data explainability meth-
ods [3]–[5], analyse the features extracted from the data to
establish the relationship between the input and output of
the AI model. Model-based XAI techniques, such as model
explainability methods [6]–[8], break down the AI model into
steps and provide explanations for each step. Complexity-
based XAI techniques, such as intrinsic interpretable models
(e.g. decision trees, Bayesian models, linear models, and k-
nearest neighbours), offer explanations with varying levels
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of detail based on the model’s complexity. Methodology-
based XAI techniques, referred to as post-hoc explainability
methods [9]–[11], interpret the AI models by analysing the
model’s backpropagation routes or perturbation signals. Zhang
et al. [12] developed an AI reasoning framework that enables
reasoning capabilities for the outputs of an AI-based detection
and/or classification model. The framework incorporates a
proposed feature extraction method known as defect charac-
teristics (DefChars) and an ensemble decision tree (DT).

In this paper, a toolkit named Forest Monkey (FM) is
introduced, which implements Zhang et al.’s [12] framework
using the Python programming language. The FM toolkit
provides reasoning for predictions made by an AI-based
detection and/or classification model. The FM toolkit takes
as input images, ground truth labels, and predicted labels
from the AI model. Subsequently, the toolkit converts the
predicted labels into reasoning targets and transforms the
images into a DefChars matrix. Then, the toolkit generates the
AI reasoning results, which include a set of charts and text-
based improvement suggestions. By examining the reasoning
results, users can gain a deeper understanding of their dataset
and make improvements to their AI model.

In this paper, Section II provides an overview of the
structure of the FM toolkit. Section III explains the im-
plementation details of the toolkit. Section IV applies the
toolkit to four different AI-based models using diverse datasets
and discusses the performance in terms of execution time.
Finally, Section V presents a tutorial on using the toolkit
and provides an explanation of the output generated by the
toolkit. The code for the FM toolkit and tutorial is provided
in https://github.com/edgetrier/AI-Reasoner.

II. TOOLKIT OVERVIEW

The FM toolkit is a Python-based package library. Figure 1
illustrates the architecture overview of the FM toolkit. Zhang
et al.’s [12] AI-Reasoner serves as the foundation for the FM
toolkit, which is a post-hoc and model-agnostic framework
with data explainability. As a result, the toolkit only requires
input images, ground truth labels and predicted labels from the
AI model. The outputs of the toolkit are a set of charts and
text-based improvement suggestions, which are stored as png
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Fig. 1. FM toolkit structure overview.

and txt formatted files, respectively. The FM toolkit comprises
three stages to perform an AI reasoning task:

• Feature extraction from predictions to reasoning targets:
This stage converts all predictions into a set of reasoning
target vectors based on the AI model’s prediction tasks,
such as detection, classification, or joint detection and
classification. The reasoning targets include labels such
as “detected”, “undetected”, “correctly classified”, and
“misclassified”. Additionally, this stage standardises the
mask-based labels to maintain consistent mask maps and
contours of the defect regions.

• Feature extraction from images to DefChars: In this stage,
all defect images are processed to generate a DefChar
matrix. This is achieved by reading and processing the
hue, saturation, and brightness (HSV) values and mask
maps of the images.

• AI reasoning stage: This stage takes the DefChar matrix
and reasoning target vectors as input to analyse the
importance of each DefChar in causing correct or incor-
rect predictions by the AI model. It involves six steps:

plant forest, validate forest, climb forest, analyse forest,
summarise forest, and explain forest. Finally, this stage
generates improvement recommendations in the form of
text and visualisations to explain the results and provide
reasoning to users.

III. IMPLEMENTATION

The FM toolkit is implemented using various packages,
including scikit-learn, OpenCV, NumPy, tqdm, matplotlib,
shapely, pillow, and polygenerator.

• NumPy for processing array-based and matrix-based data.
• OpenCV and pillow: image data processing, including

computing the mask map and contours.
• Shapely and polygenerator: converting polygon contours

into shape-based DefChars.
• scikit-learn: DT model implementation that is utilised for

the AI reasoning functionalities.
• matplotlib: generating the reasoning result charts.
The hardware requirements for running the FM toolkit

include at least 8 gigabytes of RAM and any Intel/AMD CPU;
a GPU is not required.

520



Original Images Ground Truth Labels Prediceted Labels

Background Type 1 Type 2

Fig. 2. Example of input data for FM toolkit, the real values in the highlighted
area are the categories of defects C ∈ {1, 2}.

A. Data Preparation

A classic dataset usually consists of pre-processed images
and their corresponding mask-based ground truth labels (stored
in png format) when applied in an AI model. Once the
detection and/or classification tasks are performed by the AI
model, its prediction results need to be converted into mask-
based labels, mirroring the format of the ground truth labels.
Figure 2 provides an example of the input data structure. The
images, ground truth labels and predicted labels should be
stored in three separate folders.

B. Feature Extraction: From Predictions to Reasoning Targets

def process_dir(imgs_path,gt_masks_path,
predicted_masks_path,contain_type,only_type):

...
return label_data={"mask map":[...],

"contours":[...],
"reasoning_targets":{...}}

This stage involves the extraction of reasoning target vectors
from AI predictions, as well as the mask map and contours
from the ground truth labels. This can be accomplished by
calling the process dir() function; the required inputs for this
function are:

• The path to the images folder.
• The path to the ground truth labels folder.
• The path to the predicted labels folder.

Additionally, two Boolean values, contained type and
only type, are required to specify the extraction of reasoning
target vectors for different tasks, such as a detection task
(contained type = False, only type = False), a classifica-
tion task (contained type = True, only type = True), or a
joint detection and classification task (contained type = True,
only type = True). The output of the function is a dictionary
that contains the mask maps, contours, and reasoning target
vectors for all ground truth defects.

C. Feature Extraction: From Images to DefChars

def checkImage(imgs_path):
...

def readLabel(label_dict):
...

def loadData():
...

def featureExtract():
...
return defchar={"defect_1":{...},

"defect_2":{...},...}

This stage involves a sequence of four functions: checkIm-
age(), readLabel(), loadData(), and featureExtract(). The
checkImage() function is responsible for loading the images,
while the readLabel() function loads the labels, which include
mask maps and contours. The loadData() function reads
the images and labels and creates a dictionary with basic
information about the images and labels. The featureExtract()
function is utilised to extract the DefChars and stores them in
the dictionary. These functions are called in order to extract
the DefChars from the images.

D. Pre-processing before AI Reasoning

def convert2List(defchar,feature_list,
label_dict):

...
return id_list=[defect_id,...],

feature_list,
data=[[defchar 1],[defchar 2],...],
targets={"detected":[...],

"undetected":[...],...}
def load_feature_data(data):

...
def load_target_data(targets,target_name):

...

In this section, there are three utility functions (i.e. con-
vert2List(), load feature data(), and load target data()) im-
plemented in the Model.py file. The convert2List() function
returns several array-based lists derived from the feature
extraction stage, including an id list, a feature list, a DefChars
matrix and reasoning target vectors. The load feature data(),
and load target data() functions are utilised to correspond-
ingly load and prepare the feature and reasoning target data
for the AI-Reasoner model. These functions are responsible
for converting the dictionary-based data into array-based data
and loading it into the AI-Reasoner model.

E. Plant Forest

def plant_forest(n_tree=200):
...
return model=[DT_1,DT_2,...]

The plant forest() function is responsible for building and
training multiple DT models using the loaded data. The func-
tion allows for an optional input to specify the desired number
of DT models, which determines the number of decision rules
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generated. By invoking the plant forest() function, the DT
models are constructed and trained using the loaded data.

F. Validate Forest

def val_forest(model, feature_list):
...
return good_learned=bool(),

eval_=[learning_score, TPR, TNR],
error_feature=[...]

The val forest() function is responsible for evaluating the
learning capability of the AI-Reasoner. It computes the overall
learning scores, including true positive rate (TPR) and true
negative rate (TNR), by averaging the learning scores of each
trained DT model. Additionally, the function provides a set
of DefChars where these DefChar made mistakes during the
reasoning task.

G. Climb Forest

def climb_forest(model,feature_list):
...
return path=[...],node=[...],route=[...]

The climb forest() function is responsible for parsing all
decision nodes and paths from the trained DT models. It stores
the parsed information in three lists: decision paths, routes,
and decision nodes. Additionally, the list of DefChars names
is required for the parsing process; the list can be accessed by
calling FeatureExtraction.feature list.

H. Analyse Forest

def analyse_forest(path,node,error):
...
return analysed_node=[...]

The analyse forest() function takes the parsed decision
nodes and paths as input. It then computes a set of values for
each node, which helps analyse the importance of the node
in reasoning the AI predictions. The function outputs a list
that extends the input node list with the computed values;
this extended list provides additional information and insights
about each node, allowing for a more in-depth analysis of the
reasoning process.

I. Summarise Forest

def summary_forest(analysed_node,feature_list,
route,feature_range):

...
return summary={"defchar 1":{...},...},

route_to_1=[...],
route_to_0=[...]

The summary forest() function computes the importance
for each DefChar to reflect the importance of each DefChar
in influencing the AI predictions. It takes several inputs,
including the analysed nodes list, parsed route, DefChars

Fig. 3. Average execution time of the FM toolkit for different datasets. The
black dots represent the average execution time, indicated on the right axis.
The bars represent the dataset size, indicated on the left axis, and the colours
of the bars correspond to the dataset’s image size, as shown in the legends.

list, and value ranges. The function outputs a dictionary that
contains the computed scores for each DefChar to provide a
comprehensive overview of the importance of each DefChar.

J. Explain Forest

def explain_forest(report,feature_list,
save_path,route_plot=None):

...

The explain forest() function is responsible for generating
a set of charts and providing improvement suggestions based
on the summarised overviews from the previous stage. The
input includes the generated dictionary from summary forest()
function, DefChars list and folder path where the reasoning
results will be saved. Furthermore, a set of important decision
routes can be optionally plotted by setting route plot as true.
The reasoning result charts are saved in the png format, while
the improvement suggestions are stored in a txt format file.

IV. PERFORMANCE

In this section, the FM toolkit was applied to four different
AI-based defect detection and classification models using
different datasets. The models include a COVID-CT-mask-
net trained on a chest CT image dataset [13], a lightweight
fully convolutional network trained on a heatsink defect im-
age dataset [14], a deep residual U-Net++ trained on the
Kvasir-SEG dataset [15], and an image-enhanced mask R-
CNN trained on a wind turbine blade defect image dataset
[16]. Table I presents the defect distributions of these four
datasets, providing an overview of the reasoning targets and
quantities of defects present in each dataset. Additionally, the
running time in each step of the FM toolkit was recorded to
analyse its performance. This allows for an assessment of the
toolkit’s efficiency and provides insights into potential areas
for improvement. A computer with an AMD 16-core CPU
and 32 gigabytes RAM was used to evaluate performance in
execution time.

Figure 3 illustrates the execution times when applying the
FM toolkit to different datasets. It shows that the execution
time is positively correlated with the dataset size and image
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TABLE I
INFORMATION OF FOUR DATASETS; WHERE N/A REPRESENTS NO SUCH TASKS.

Dataset Image Size Number of Defects for Each Reasoning Target (percentage) Total
detected undetected correctly classified misclassified

Chest CT 512×512 244 147 215 29 391
Heatsink Defect 256×256 804 368 774 30 1172
Kvasir-SEG 256×256 104 3 N/A N/A 107
Wind Turbine Blade Defect 1920×1080 311 55 296 15 366

Fig. 4. Cumulative execution time of each stage in the FM toolkit for reasoning targets of different datasets.

size, indicating that larger datasets or images require longer
execution times. Figure 4 illustrates the cumulative execution
times of each stage for different reasoning targets. Among
the various stages of the FM toolkit, feature extraction from
images to DefChars, climb forest, analyse forest, and explain
forest consumed relatively more time compared to other stages.
In summary, the FM toolkit can complete a reasoning task in
at least 40 seconds. However, the execution time may increase
when dealing with datasets containing large amounts or large-
size images.

V. TUTORIAL

This section provides a tutorial for adopting the FM toolkit
to reason with the outputs of an AI model.
Step 1: Import the FM toolkit.

from ForestMonkey import AIOutputExporter
from ForestMonkey import FeatureExtraction
from ForestMonkey import Model
from ForestMonkey import Plot

Step 2: Set the directory paths of original images, ground truth
labels and predicted labels from the AI model; the related data
preparation is described in Section III-A.

images="/path/.../"
gt_labels="/path/.../"
predicted_labels="/path/.../"

Step 3: Feature extraction: From predictions to reasoning
targets

contain_type=True
type_only=False
label_data=AIOutputExporter.process_bydir(

images,gt_labels,predicted_labels)

Step 4: Feature extraction: From images to DefChars

FeatureExtraction.checkImages(images)
FeatureExtraction.readLabel(label_data)
FeatureExtraction.loadData()
defchar=FeatureExtraction.featureExtract()

Step 5: Pre-processing before AI reasoning

feature_list = FeatureExtraction.feature_list
id_list,feature,data,target=Model.convert2List
(defchar,feature_list,label_data)
Model.load_feature_data(data)

Step 6: Execute AI reasoning task for all reasoning targets
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Fig. 5. An example chart illustrating one of the DefChar’s reasoning results
generated by the FM toolkit; the blue textual boxes represent descriptions of
each element in the chart.

for t in target.keys():
Model.load_target_data(target[t],t)
model = Model.plant_forest()
tree_validated,scores,errors=Model.

val_forest(model,feature)
path,node,route=Model.climb_forest(model,

feature_name=feature)
analysed_node=Model.analyse_forest(path,

node,error)
report,route_t,route_nt=Model.

summary_forest(analysed_node,route,feature,
FeatureExtraction.get_FeatureRange())

Plot.explain_forest(report,feature,
"/directory/path/to/save/"+t)

After completing these six steps, the reasoning results will
be saved in the specified directory. Figure 5 illustrates an
example chart generated by the FM toolkit. The chart allows
users to understand the significance of each DefChar and its
value range in influencing the AI model’s correct or incorrect
predictions in detection and/or classification tasks. Addition-
ally, users can refer to the improvement recommendations.txt
file for improvement suggestions on how to enhance their
dataset and model based on the reasoning results.

VI. CONCLUSION

This paper presents the integration of Zhang et al.’s [12] AI-
Reasoner framework into a toolkit called FM, implemented in
Python. The FM toolkit can be easily used by importing it
as a Python package, and a detailed tutorial is provided to
guide users in utilising the toolkit effectively. Furthermore,
the FM toolkit is evaluated by applying it to four different
AI-based models with diverse datasets to assess its execution
performance. In terms of future work, several enhancements
are suggested for the FM toolkit. Firstly, the implementation
of GPU-enabled parallel computations could be explored to
accelerate the execution speed. Additionally, the development
of interactive interfaces would enhance user experience and
make the toolkit more user-friendly. Furthermore, visualisa-
tions of the DefChars could be incorporated to provide users
with a better understanding of the reasoning process.
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