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Abstract—The uncertainty in actual manufacturing systems of-
ten manifests as uncertain processing times, especially in flexible
manufacturing systems. This work proposes a Decomposition-
based Evolutionary Algorithm with Local Search (DLSEA) to
solve flexible scheduling with fuzzy processing times by mini-
mizing makespan and total machine workload. Considering the
different scales of objectives, two normalization methods are
employed on subpopulations, respectively, aiming to mitigate the
potential detrimental effects of a single normalization method.
This work also introduces a local search method to enhance
the performance of DLSEA. The proposed DLSEA is compared
with four state-of-the-art algorithms on two series of cases. The
experimental results show that DLSEA exhibits superior search
capabilities.

Index Terms—Fuzzy flexible job shop scheduling, Normaliza-
tion, Local search, Multi-objective evolutionary algorithm

I. INTRODUCTION

In practical manufacturing systems, some inevitable situa-
tions cause fluctuations in job processing time within a certain
range [1], presenting uncertainty [2]. Triangular fuzzy numbers
[3]–[5] have attracted widespread attention due to their ability
to simulate uncertain processing time in flexible job-shop
scheduling problems (FJSPs) [6]–[8]. It predicts the most likely
processing time through fuzzy membership function.

FJSPs need to specify a suitable processing machine for
each task to minimize or maximize a certain objective. It is
considered as an NP-hard problem, which makes it challenging
to solve in polynomial time [9]. Consequently, a large number
of approximation algorithms have been proposed to tackle the
FJSPs, such as genetic algorithm [10], ant colony optimization
[11], artificial bee colony algorithm [12], grey wolf optimizition
[13], differential evolution [14], brain storm optimization
algorithm [15] and teaching-learning based optimization [16].

Most of the aforementioned work only considers a single
objective, such as makespan, and energy consumption. However,
in actual manufacturing systems, it is often necessary to
simultaneously consider multiple conflicting objectives [17].
Consequently, the research focus shifts to the multi-objective
flexible job shop scheduling problems with fuzzy processing
time (MFFJSPs) [18]–[20].

Zhong et al. [8] propose a modified artificial bee colony
algorithm (MABC) to solve MFFJSP that minimizes makespan,
weighted agreement index and maximum machine workload.
In MABC, three-point satisfaction-degree model and local
search based on variable neighborhood search are employed to
enhance the performance of MABC. Wang et al. [19] develop a
fast non-dominated sorting genetic algorithm II (NSGA-II [21])
embedded with local simulated-annealing operators to solve
MFFJSP. A bi-population evolutionary algorithm that adjusts
the size of subpopulations through a feedback mechanism
(FBEA) is proposed in [22]. Li et al. [23] propose an improved
artificial immune system algorithm to handle MFFJSP consid-
ering makespan and energy consumption. In it, six local search
approaches and a simulated annealing method are embedded to
enhance its exploration abilities. In addition, a novel population
diversity heuristic is presented to eliminate antibodies with high
crowding values. Piroozfard et al. [24] develop an improved
multi-objective genetic algorithm to minimize total carbon
footprint and total late work criterion in MFFJSP. From an
evolutionary mechanism perspective, the above algorithms can
be divided into the same kind of algorithms, that is, dominance-
based multi-objective evolutionary algorithm. However, these
algorithms often require the calculation of diversity evaluation
indicators to maintain population diversity. This may not apply
to MFFJSPs. Decomposition-based multi-objective algorithm
(MOEA/D) [25] maintains population diversity through preset
reference vectors in the objective space without using diversity
indicators. Li et al. [26] propose a hybrid adaptive parameter
evolutionary algorithm based on decomposition (HPEA) to
solve MFFJSP, considering makespan and total workload.
A reinforcement learning based MOEA/D (RMOEA/D) is
developed in literature [27]. In it, a parameter adaptive strategy
based on Q-learning is employed to assist the algorithm in
choosing the best parameters. Liu et al. [28] propose an
improved MOEA/D embedded with neighborhood search to
minimize makespan, total machine load, and maximum machine
load in MFFJSP.

Although the aforementioned work demonstrates promising
performance in addressing MFFJSP, the scales of different
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objectives often varies. It may cause the algorithm to have
different levels of attention to different objectives. This work
proposes a decomposition-based evolutionary algorithm with
local search (DLSEA) to solve MFFJSP. The main contributions
are as follows:

1) Two normalization methods are separately used for two
co-evolutionary subpopulations to balance the impact of
different objective scales on the algorithm.

2) An adaptive local search method is designed to enhance
the convergence ability of the algorithm.

Fuzzy operators and problem statement are given in Section
II. The proposed DLSEA is developed in Section III. Section
IV shows the experimental results. Conclusions and future
work are given in Section V.

II. FUZZY OPERATORS AND THE MFFJSP

A. Fuzzy operators

Triangular fuzzy number (TFN) [29] is used to simulate
uncertain processing times in this work. For two TFNs z̃ =
(z1, z2, z3) and t̃ = (t1, t2, t3), addition and rank operator are
defined as follows.

1) Addition operator:

z̃ + t̃ = (z1 + t1, z2 + t2, z3 + t3) (1)

2) Rank operator:

I1(t̃) =
t1 + 2t2 + t3

4
(2)

Condition 1: if I1(z̃) > I(t̃), then z̃ > t̃. Otherwise z̃ < t̃.
Condition 2: when I1(z̃) = I1(t̃), I2(t̃) = t2. If I2(z̃) >

I2(t̃), then z̃ > t̃. Otherwise z̃ < t̃.
Condition 3: when I2(z̃) = I2(t̃), I3(t̃) = t3−t1. If I3(z̃) >

I3(t̃), then z̃ > t̃. Otherwise z̃ < t̃.

B. Problem Description

MFFJSP requires allocating appropriate processing machines
for tasks to minimize or maximize a certain objective. Assume
a set of n jobs, J = {J1, J2, . . . , Jn}, and a set of m machines
M = {M1,M2, . . . ,Mm}. And Ji = {Oi,1, Oi,2, . . . , Oi,hi

},
where hi represents the operations number of Ji. The pro-
cessing time of operation Oi,j on machine Mk is a TFN
p̃ = (p1, p2, p3). In this work, makespan and total workload
are considered. Makespan refers to the maximum completion
time of a job and measures production efficiency to a certain
extent. Total workload reflects the degree of machine wear.
Makespan prioritizes allocating operations to machines with
fast processing times, which may lead to an increase in the
total workload. Consequently, there is a conflict between the
makespan and total workload objectives.

Makespan = max{c̃k} (3)

where c̃k is the completion time of the last operation in
scheduling sequence.

Total workload =
∑
k

∑
i

∑
j

p̃i,j,k · di,j,k (4)

where p̃i,j,k is the fuzzy processing time of operation Oi,j .
di,j,k is a 0-1 notation that represents whether the operation
Oi,j is processed on machine Mk.

The details of a mixed integer linear programming model
of MFFJSP can be seen in [26].

III. PROPOSED ALGORITHM

In order to solve MFFJSP, a decomposition-based evolution-
ary algorithm with local search is developed in this section.

The pseudocode of DLSEA is presented in Algorithm 1. In
the initialization stage, the reference vectors are preset in the
objective space, and then population P1 and P2 are initialized.
A two-layer coding scheme [30] is used to represent each
solution. Two normalization methods are utilized in P1 and
P2, respectively. After the offspring are generated, the elite
solutions are retained. Finally, local search is performed on P1

and P2.

A. Initialization

In this work, the solution of two-layer encoding is randomly
initialized in P1, and P2 is cloned from P1.

Initialization steps: Randomly rearrange all operations
and combine them into a scheduling sequence vector. Then,
randomly assign a candidate machine for each operation and
combine them into a machine sequence vector.

B. Evolutionary mechanism

In DLSEA, for a parent solution x, another parent solution
is selected based on the tournament. Afterwards, precedence
operation crossover (POX) [31] and universal crossover (UX)
[31] are used to generate offspring. POX and UX act on the
operation code and machine code, respectively. There are three
types of mutation operators: swap, insert, and inverse. During
algorithm execution, a mutation operator is randomly selected
and executed.

To ensure equal emphasis on each objective, P1 and P2

respectively perform different normalization methods. Among
them, a non-standard normalization method [32] is implemented
in P1. Its definition formula is as follows:

f
′

i (x) = fi(x)− z∗ (5)

where z∗ = min(f1i (x), f
2
i (x), . . . , f

m
i (x)), m is the number

of objectives. z∗ is the ideal point. fi is the objective vector,
and i = 1, 2, . . . , N .

Another widely adopted normalization method [33] is
implemented in P2. This approach is grounded upon the notion
of ideal and nadir points, and its definition formula is as
follows:

f
′

i (x) =
fi(x)− z∗

zn − z∗ + ε
(6)

where zn = max(f1i (x), f
2
i (x), . . . , f

m
i (x)) is the nadir point.

ε is a sufficiently number, it is set to 1e− 6 in this work.
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A tchebycheff decomposition method [25] is employed to
transform MFFJSP into multiple single objective problems. It
maintains population diversity through preset reference vectors
and is defined as follows:

g(x | λ) = max
1≤i≤m

{λi | fi(x)− z∗ |} (7)

where λi is a reference vector. And the size of reference vector
is N .

Algorithm 1 The pseudocode of proposed DLSEA.

Input: Population size: N ; Mutation rate ρ; Maximum number
of function evaluations (Fes max);

Output: Non-dominant solutions;
1: Initialize: Reference Vector (λ);
2: P1 ← Random initialization;
3: P2 ← P1;
4: while Fes < Fes max do
5: % Generate offspring;
6: for j = 1 : N/2 do
7: x1j and x2j from P1 and P2, respectively;
8: xk and xl ← by binary tournament from P1

9: and P2 respectively;
10: y1 ← by cross and mutation operators (x1j ,xk);
11: y2 ← by cross and mutation operators (x2j ,xl);
12: Update ideal point and nadir point;
13: % Population P1 evolution;
14: g(x1j ) ← max{λj | f(y1)− z∗};
15: Similarly, g(y1) and g(y2) are obtained by Eq.(7);
16: if min[g(x1j ), g(y1), g(y2)] = g(y1) then
17: x1j = y1
18: else if min[g(x1j ), g(y1), g(y2)] = g(y2) then
19: x2j = y2
20: end if
21: % Population P2 evolution;

22: g(x2j ) ← max{λj |
f(x2j )− z∗

zn − z∗
};

23: Similarly, g(y1) and g(y2) are obtained by Eq.(7);
24: if min[g(x2j ), g(y1), g(y2)] = g(y1) then
25: x2j = y1
26: else if min[g(x1j ), g(y1), g(y2)] = g(y2) then
27: x2j = y2
28: end if
29: Fes = Fes+ 2
30: end for
31: Local search for P1 and P2 by Algorithm 2
32: end while

C. Local search

In this section, an adaptive local search method is proposed.
This method is embedded with three local search operators,
which are applied to the current solution to enhance the
convergence ability of the algorithm. The local search operators
are adaptively selected based on success and failure rates. The
details of the three local search operators are given as follows:

operator 1: Determine the last completed operation and
assign it to the fastest processing machine.

operator 2: Randomly select an operation and move it to
the fastest processing machine.

operator 3: Determine the machine M with the highest load
and randomly move an operation processed by M to other
machine.

The execution details of local search are shown in Algorithm
2. The number of successes and failures of each operator in each
iteration are recorded in S and F , respectively. S and F only
record data from the last L twenty iterations, where L = 10.
Then the probabilities pi are calculated. Finally, an operator is
adaptively selected and executed according to roulette wheel
selection method. Note that local search is executed in the
later stage of DLSEA, and a triggering condition is defined as:
Fes ≥ 0.8 · Fes Max [34].

Algorithm 2 The pseudocode of local search.

Input: Population: P1 and P2;
Output: Population: P1 and P2;

1: % Calculate the probability of each operator
2: if size(S,2)≥ L then
3: p(i) =

sum(S(i, :))

sum(S(i, :)) + sum(F (i, :))
4: S and F records the most recent L times of data;
5: else
6: p(i) = 1/3, i = 1, 2, 3;
7: end if
8: p(i) =

p(i)∑
p(i)

, i = 1, 2, 3;

9: for j = 1 : N/2 do
10: κ ← Roulette (p(1), p(2), p(3)) ;
11: u1j and u2j from P1 and P2, respectively;
12: v1 ← operator κ (u1j )
13: v2 ← operator κ (u2j )
14: g(v1) and g(u1j ) are obtained by Eq.(7) and (5);
15: if g(v1) < g(u1j ) then
16: u1j = v1
17: S(κ, t) = S(κ, t) + 1; %Record Success Times
18: else
19: F (κ, t) = F (κ, t) + 1; % Record failures Times
20: end if
21: g(v2) and g(u2j ) are obtained by Eq.(7) and (5);
22: if g(v2) < g(u2j ) then
23: u2j = v2
24: S(κ, t) = S(κ, t) + 1; %Record Success Times
25: else
26: F (κ, t) = F (κ, t) + 1; % Record failures Times
27: end if
28: end for

IV. EXPERIMENTAL STUDIES

In this section, the performance of DLSEA is empirically
examined on two widely used benchmark case FMk [26] and
remanu [12]. DLSEA is compared with two widely-accepted
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TABLE I: HV values obtained by DLSEA, HPEA, MOEAD M2M, NSGA-II and MOEA/D.

DLSEA HPEA MOEAD M2M NSGA-II MOEA/D

remanu01 3.1047E-02(2.87E-03) 3.2657E-02(2.13E-03)= 2.4414E-02(6.82E-03)+ 2.9646E-02(2.55E-03)+ 3.2280E-02(2.49E-03)=
remanu02 1.6377E-01(2.93E-03) 1.6471E-01(3.79E-03)= 4.1653E-02(2.10E-02)+ 1.4510E-01(6.12E-03)+ 1.6126E-01(4.65E-03)+
remanu03 1.5002E-01(2.32E-03) 1.4757E-01(2.33E-03)+ 4.8529E-02(1.20E-02)+ 1.4218E-01(4.94E-02)+ 1.4320E-01(1.95E-03)+
remanu04 2.0753E-01(4.15E-03) 1.9730E-01(7.81E-03)+ 6.2824E-02(7.01E-03)+ 1.6825E-01(6.17E-03)+ 1.9542E-01(3.80E-03)+
remanu05 1.8433E-01(5.26E-03) 2.0262E-01(6.75E-02)- 2.6496E-02(9.36E-03)+ 1.6336E-01(5.70E-02)+ 1.9850E-01(7.49E-02)=
remanu06 1.9860E-01(4.19E-03) 1.8894E-01(6.14E-03)+ 1.7290E-02(1.04E-02)+ 1.5411E-01(1.16E-02)+ 1.8753E-01(3.38E-03)+
remanu07 2.4793E-01(6.80E-02) 2.2776E-01(4.96E-03)+ 2.1772E-02(9.39E-03)+ 2.0704E-01(6.49E-02)+ 2.3783E-01(7.04E-02)+
remanu08 3.8976E-01(4.09E-03) 3.5793E-01(1.39E-02)+ 5.1467E-02(8.97E-03)+ 3.2661E-01(1.21E-02)+ 3.6868E-01(1.34E-02)+
FMk01 6.7863E-02(2.09E-03) 7.2144E-02(1.90E-03)- 5.5340E-02(8.55E-03)= 6.5029E-02(3.63E-03)+ 7.3928E-02(2.58E-03)-
FMk02 1.3058E-01(4.82E-03) 1.3746E-01(2.93E-03)= 5.7249E-02(8.34E-03)+ 1.2440E-01(2.75E-03)+ 1.3124E-01(2.00E-03)=
FMk03 1.4850E-01(8.18E-03) 1.5364E-01(1.18E-02)= 3.2915E-02(1.31E-02)+ 1.8599E-01(2.02E-01)- 1.5862E-01(8.87E-03)-
FMk04 1.4213E-01(4.61E-03) 1.5155E-01(3.76E-03)= 1.2417E-01(6.30E-03)+ 1.0655E-01(1.26E-02)+ 1.5733E-01(3.61E-03)=
FMk05 6.2399E-02(7.30E-02) 4.3837E-02(1.74E-03)+ 3.2524E-02(2.21E-03)+ 3.8230E-02(2.52E-03)+ 4.3892E-02(1.40E-03)+
FMk06 2.5036E-01(4.00E-03) 2.7169E-01(6.09E-03)= 6.9637E-02(2.33E-02)+ 2.4694E-01(8.51E-03)= 2.6628E-01(6.36E-03)=
FMk07 1.3597E-01(2.94E-03) 1.1288E-01(8.68E-03)+ 3.6276E-02(1.19E-02)+ 9.7071E-02(4.45E-03)+ 1.1253E-01(5.19E-03)+
FMk08 1.2580E-01(2.04E-01) 3.0768E-02(1.81E-03)+ 1.7824E-02(2.34E-03)+ 7.4384E-02(1.53E-01)+ 3.2624E-02(1.94E-03)+
FMk09 7.3529E-02(5.15E-03) 8.0654E-02(5.82E-03)= 6.5149E-02(5.15E-03)= 6.6212E-02(3.84E-03)+ 7.9750E-02(2.27E-03)-
FMk010 8.1381E-02(3.40E-03) 8.7675E-02(4.57E-03)- 6.0396E-02(6.34E-03)+ 7.0363E-02(5.59E-03)+ 8.5126E-02(2.39E-03)=

+/=/- 10/5/3 16/2/0 16/1/1 9/6/3

TABLE II: GD values obtained by DLSEA, HPEA, MOEAD M2M, NSGA-II and MOEA/D.

DLSEA HPEA MOEAD M2M NSGA-II MOEA/D

remanu01 9.0273E-03(1.32E-02) 5.1969E-03(5.27E-03)- 6.0197E-02(6.60E-02)+ 3.1459E-02(3.61E-02)+ 7.7946E-03(9.63E-03)-
remanu02 1.8325E-02(1.07E-02) 2.2725E-02(1.52E-02)+ 1.8170E-01(4.50E-02)+ 6.2016E-02(1.35E-02)+ 2.5299E-02(9.21E-03)+
remanu03 1.9004E-01(4.20E-02) 1.4257E-01(2.61E-02)- 2.3206E-01(4.27E-02)+ 1.2642E-01(4.89E-02)- 1.4735E-01(3.77E-02)=
remanu04 5.9238E-03(2.52E-03) 2.1511E-02(1.89E-02)+ 1.7936E-01(3.46E-02)+ 4.7464E-02(9.43E-03)+ 2.0481E-02(5.12E-03)+
remanu05 1.7150E-01(3.05E-02) 1.5034E-01(6.02E-02)= 3.6993E-01(6.93E-02)+ 1.8210E-01(4.62E-02)+ 1.6151E-01(8.27E-02)=
remanu06 1.1256E-02(7.32E-03) 2.3461E-02(7.18E-03)+ 2.1566E-01(6.97E-02)+ 5.8138E-02(7.04E-03)+ 2.2186E-02(7.54E-03)+
remanu07 1.5357E-01(6.63E-02) 1.2706E-01(2.08E-02)- 3.1046E-01(6.26E-02)+ 1.3472E-01(3.69E-02)= 1.3109E-01(6.16E-02)=
remanu08 5.3272E-03(4.34E-03) 1.6622E-02(4.84E-03)+ 2.2492E-01(2.27E-02)+ 3.1691E-02(4.02E-03)+ 1.8987E-02(4.07E-03)+
FMk01 2.2214E-02(2.36E-02) 2.7186E-02(1.02E-02)+ 6.3507E-02(1.16E-02)= 3.3933E-02(1.89E-02)= 1.2793E-02(7.34E-03)-
FMk02 1.0339E-02(5.07E-03) 1.0639E-02(5.22E-03)+ 1.1620E-01(1.60E-02)+ 3.3933E-02(1.04E-02)+ 1.1160E-02(3.35E-03)+
FMk03 2.4849E-01(2.48E-02) 2.3062E-01(3.62E-02)= 5.5056E-01(7.78E-02)+ 2.5865E-01(9.31E-02)= 1.9788E-01(1.36E-02)-
FMk04 6.0294E-03(1.61E-03) 2.3968E-03(6.81E-04)- 2.1918E-02(3.02E-03)+ 6.7856E-03(7.42E-03)+ 2.4726E-03(4.28E-04)+
FMk05 1.5632E-01(5.63E-02) 1.5919E-01(1.92E-02)+ 2.2518E-01(1.45E-02)+ 1.7283E-01(1.91E-02)+ 1.6668E-01(1.98E-02)+
FMk06 2.5923E-02(5.91E-03) 9.8300E-03(6.17E-03)- 1.8133E-01(4.71E-02)+ 4.0396E-02(6.87E-03)+ 1.5400E-02(5.61E-03)=
FMk07 1.7201E-01(1.40E-02) 1.3678E-01(1.71E-02)= 2.4568E-01(3.98E-02)+ 1.4725E-01(9.59E-03)- 1.2966E-01(1.57E-02)-
FMk08 2.7365E-01(1.46E-01) 3.9236E-01(5.78E-02)+ 5.2340E-01(1.03E-01)+ 2.8018E-01(1.01E-01)= 2.9143E-01(4.55E-02)+
FMk09 1.7250E-02(8.09E-03) 5.1320E-03(4.06E-03)- 6.9721E-02(1.11E-02)+ 3.0936E-02(9.99E-03)+ 1.1196E-02(3.63E-03)=
FMk010 8.2372E-03(2.29E-03) 1.0396E-02(7.43E-03)+ 1.0307E-01(1.38E-02)+ 2.9284E-02(3.75E-03)+ 1.1422E-02(6.07E-03)+

+/=/- 9/3/6 17/1/0 12/2/4 9/5/4

evolutionary algorithm, namely, NSGA-II [21] and MOEA/D
[25], and two state-of-the-art evolutionary algorithm, i.e., HPEA
[26] and MOEAD M2M [20]. The parameters for all compared
algorithms are consistent with the original literature and shown
in Table III.

TABLE III: The parameter settings of all algorithms.

Algorithm Parameter information

MOEA/D [25] mutation rate=0.8, T=10 .
NSGA-II [21] mutation rate=0.8.
MOEAD M2M [20] mutation rate=0.8, K=10.
HPEA [26] Lp=45, T={3, 5, 7, 8, 10, 12},

mutation rate=0.8.
DLSEA mutation rate=0.8, L = 10

For fairness, all algorithms run 20 independent times on
two widely used benchmark cases, and the population size
is set to 100. The maximum calculation number of fitness

values is the termination condition of all algorithms, and
the maximum calculation number of fitness values is set to
10000. The code platform and execution environment of the
algorithms are MATLAB 2020b and Intel(R) Core(TM) i5-
1135G7 @2.40GHz with 16G RAM. Hypervolume (HV) [35]
and Generation Distance (GD) [36] are employed to reflect the
performance of the algorithm.

The HV and GD values obtained by DLSEA, HPEA,
MOEAD M2M, NSGA-II, and MOEA/D are shown in Tables
I and II, respectively. The non-dominated solutions obtained
by all algorithms on FMk04, remanu04, and remanu06 are
presented in Figs 1, 2, and 3, respectively. From the above
figure, it can be seen that non-dominated solutions obtained by
DLSEA have good convergence, but their number is relatively
small. This reflects the shortcomings of DLSEA in maintaining
population diversity.

For HV, it can be seen that the HV values obtained by
DLSEA are superior to HPEA, MOEAD M2M, NSGA-II, and
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Fig. 1: Non-dominated solutions obtained by all algorithms on
FMk08.
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Fig. 2: Non-dominated solutions obtained by all algorithms on
remanu04.

MOEA/D on most cases. Specifically, DLSEA outperforms
other algorithms on 8 out of 18 cases, HPEA outperforms other
algorithms on 6 out of 18 cases, and MOEA/D outperforms
other algorithms on 2 out of 18 cases. Although the performance
advantage of DLAEA is not significant compared to HPEA, it
is still superior to HPEA. In addition, +, =, and − represents
different results of the wilcoxon signed rank test (α = 0.05).
The statistical analysis results also indicate that the performance
of DLSEA is superior to other comparative algorithms.

For GD, it can be seen that the GD values obtained by
DLSEA are superior to HPEA, MOEAD M2M, NSGA-II, and
MOEA/D on most cases. Specifically, DLSEA outperforms
other algorithms on 9 out of 18 cases, HPEA outperforms
other algorithms on 6 out of 18 cases, and MOEA/D outper-
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Fig. 3: Non-dominated solutions obtained by all algorithms on
remanu06.

forms other algorithms on 3 out of 18 cases. Obviously, the
performance of DLSEA is not significant compared to HPEA,
but it is still superior to HPEA. In addition, from the results
of statistical analysis, DLAEA outperformed HPEA on 9 out
of 18 cases, and there is no significant difference on 3 cases
compared to HPEA, only weaker than HPEA on 6 out of 18
cases.

V. CONCLUSION

In this work, a decomposition-based evolutionary algorithm
with local search (DLSEA) is developed to solve MFFJSP,
which aims to minimize makespan and total machine workload.
To account for the different scales of these objectives, two
normalization methods are applied to each subpopulation,
ensuring equal emphasis on each objective. This work also
designs an adaptive local search method that selects a suitable
local search operator based on the evolutionary state, thereby
enhancing the convergence of the DLSEA. To evaluate the
performance of DLSEA, empirical comparisons are conducted
by comparing DLSEA with four state-of-the-art algorithms.
The experimental results demonstrate that the performance of
DLSEA is competitive. In the future, we will expand DLSEA
to address MFFJSP with machine failure.
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