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Abstract—The promising results of machine learning in time
series classification, along with the rise in sensor data-driven
use cases, have led to the increasing deployment of models
in IoT environments, on edge devices. Since these devices are
typically resource constrained, they cannot always execute large
and complex models, so they often offload (part of) their tasks
to remotely located models. This synergy however introduces the
need to transfer a large amount of sensor data to the cloud,
which can be detrimental to bandwidth cost and inference speed
of the application, and energy utilization of the device. Although
techniques such as early classification can limit the data that has
to be transferred, there are still unexplored opportunities when it
comes to input filtering. A recent versatile early-exit framework,
extending early classification and adapting it to multivariate time
series, has investigated this potential. In this work, we propose a
variation of this method, creating a more flexible, reinforcement
learning-enabled framework that can adapt the input variables
(channels) considered for classification across time, aiming for
maximizing accuracy while minimizing the input data necessary.
Extensive testing on synthetic data and real datasets shows
that our method can, in multiple cases, achieve better accuracy
for a similar percentage of input filtering, both compared to
the baseline framework, as well as to the conventional early
classification approach.

Index Terms—multivariate, time series, classification, rein-
forcement learning, input sampling, edge intelligence

I. INTRODUCTION

Nowadays, machine and deep learning methods have
demonstrated increasingly recognized achievements in appli-
cations such as image classification and time series analysis.
Together with the widespread adoption of sensor-enabled
systems in Internet of Things environments, this has led to an
emergence of use cases where these models are deployed on
smaller, portable platforms that are in the immediate vicinity of
the data-generating sources. This paradigm is known as edge
intelligence [1], [2]. A characteristic of these edge systems
is that they are often more resource-limited compared to
traditional computational platforms. Therefore, in the edge
intelligence realm, there is often a shift in the importance
of metrics that were previously not considered, such as the
energy consumption of devices and sensors, or the computa-
tions required for a task, while metrics such as classification
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accuracy acquire a proportionally adjusted, lower importance
[1].

Due to the usually limited resources of the edge devices,
some tasks often require cloud-edge collaboration [3]. In this
setup, a remote, more complex model supports the local, usu-
ally smaller, edge model, or there is even complete offloading
of the data to the cloud, potentially after some prepossessing
on the edge device. Although this synergy can improve the
classification result, it introduces some constraints to the edge
intelligence application, such as the bandwidth required to
transfer data from the edge environment to the cloud, and
additional latency for the classification.

Since this issue is evident with the image and video data
inputs, due to the larger volume of data for even a single
sample, some works in this field have already tried to achieve
data efficiency, by filtering the input and offloading to the
cloud only part of it [4]–[6]. For time series data, a traditional
approach that can be translated to data efficiency in the same
context is early classification [7], where a classifier makes
a prediction only after observing a few early timesteps. The
main goal of early classification, as the name suggests, has
been to decrease the classification time, rather than limit
the data transfer. However, as the IoT use cases employ
increasingly more data-generating sources, the data volume
issue is manifesting with time series data as well [8].

In a recent work [9], we introduced the CHARLEE frame-
work, placed in an edge-cloud synergy context with the clear
goal of achieving data efficiency by extending the early
classification paradigm specifically to the multivariate time
series data, i.e. data with multiple variables (channels) as
input. In this work, we aim to take this effort further, address
the limitations of CHARLEE, and create a framework that
can filter the input data across time and channels in a more
versatile manner before they are transferred to the cloud.

Thus, we propose RELEVANT, for Reinforcement
Learning-Enabled Variable Adaptation iN Time, a framework
adapted to the multivariate time series modality specifically,
inspired by the concepts of video analytics data efficiency
methods. Our framework operates on a per-sample basis,
flexibly excluding and including channels across time in order
to maximize the classification accuracy while minimizing the
amount of input data used, obviating the need for offloading
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it from edge to cloud.
An illustrative example highlighting the value of our frame-

work can be observed in the following use case within an
Industry 4.0 setting [8]: An industrial hydraulic pump can
be fitted with sensors measuring variables such as pressure,
water flow, temperature, and so forth, in order to monitor it for
faults. In a given time series sample, which may correspond to
data from a work cycle of the pump, it may become apparent
within a few time steps that a fault exists. However, the precise
nature of the fault may become evident in a later part of
the cycle, and with information based only on the pressure
and temperature variables, with the intermediate timesteps not
being useful for classification. In this scenario, a conventional
early classification approach, treating the input channels in a
unified manner, would be unable to terminate the inference
at an early stage without sacrificing accuracy, thus processing
the data from all channels unnecessarily, potentially sending
them to the cloud, until the later part of the sample. On
the other hand, CHARLEE would be able to abandon some
channels at the beginning, but it would not be able to skip the
intermediate steps of the pressure and temperature variables,
similarly processing all their data until the end of the sample.
In contrast, RELEVANT would allow both early termination
of uninformative channels and skipping of the uninformative
steps in the middle of the useful variables, only focusing on
their part that is necessary for classification.

Our framework differs from other works that focus on spe-
cific parts of the input, utilizing e.g. attention mechanisms [10]
or shapelet methods [11], in the aspect that these approaches
do not translate to data efficiency. Although some parts of
the input sample may be more valuable and attended to for
the classification task, the whole sample still needs to be
processed, which would entail transferring it to the cloud in
an edge-cloud synergy context. In contrast to that, we have
designed our framework with this explicit scenario in mind,
constructing it to completely skip the unnecessary input parts,
based on its gathered context. By placing it on an edge device,
it can achieve data efficiency both in terms of bandwidth
and energy savings in the sensors, since a crucial factor in
sensor networks is the energy consumed to collect and transmit
the data [12], [13]. Revisiting the example we presented
above, the edge device running RELEVANT could instruct
all but the necessary sensors (pressure and temperature) to
stop gathering and/or sending data, conserving data collection,
radio transmission, and data processing energy, as well as
bandwidth.

Our contributions with RELEVANT are:
• We introduce the concept of spatio-temporal input filter-

ing for multivariate time series classification, inspired by
similar approaches in video data research.

• We formulate this concept as a Partially Observable
Markov Decision Process and adapt a reinforcement
learning approach presented in a previous work [9] to
address it.

• We verify the behavior of our framework on a synthetic
dataset and 26 real datasets. We demonstrate its capability

and we also compare it against a different reinforcement
learning-based framework [9], as well as a simplistic,
time-only input filtering solution, showcasing its ability
to surpass these alternatives in multiple cases.

II. RELATED WORK

A. Spatial- and Temporal-wise Input Filtering

In the extensive survey on dynamic neural networks of Han
et al. [10] we note that there are multiple approaches for video
and text data that focus on a subset of the input data, using a
variety of techniques, either in the spatial dimension (for image
data), temporal dimension, or both. Regarding the spatial
dimension, which applies to image data, some approaches
perform computation either in selected pixel-level (e.g. [14]) or
region-level (e.g. [15]) locations of the image, thus achieving
computational efficiency by skipping a part of the input. When
it comes to the temporal dimension, there are works that can
learn to skip specific words when processing text data, such
as LSTM-Jump [16], which reads the first few tokens and
then, based on a hidden state, ”jumps” ahead, skipping words.
In video data, this concept translates to skipping frames when
processing a video, such as the architecture in [17] that decides
which frames to observe and when to emit a prediction.

In both modalities there are works that incorporate early
stopping, classifying the data after observing a small early part
of the tokens or frames. Early stopping has also been widely
researched for time series data, with numerous approaches and
applications of early classification [7].

In the video processing field, some works try to combine
spatial and temporal input selection, with a characteristic
example being the AdaFocus+ method [18]. This method si-
multaneously skips uninformative frames, while also focusing
on specific patches of the frames that are not skipped.

RELEVANT transfers the above concepts of combined spa-
tial and temporal input selection, together with early stopping,
to the data format of multivariate time series classification.
We adapt the concepts presented in some related works, such
as sequential decision-making, partially-observable Markov
Decision Process formulation, and end-to-end training [16],
[17], [19] to the unique needs and format of this task.

B. Reinforcement Learning-based Early Stopping

There are multiple early classification solutions that can be
regarded as input filtering, due to not observing the full time
series sample before stopping and emitting a prediction [7].
Some works that specifically utilize reinforcement learning
methods are [20] and [21], where the authors encode the goals
of earliness (i.e. input filtering) and accuracy in the reward
function of a deep Q-network [22] agent. The Stop&Hop
framework introduced in [23] uses two policies, a Stopping
policy for deciding whether to stop the input processing and
classify the sample and a Hopping policy that decides whether
to ”jump” to future values of the sample. Although all the
above solutions could translate to input filtering, they do not
explicitly address the variables dimension of the multivariate
time series format.
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As we discussed, the CHARLEE framework [9] extends the
early classification paradigm in both dimensions of multivari-
ate time series, early exiting both across the time and channel
dimensions. This is made possible with the introduction of
specific constraints, i.e. ordering of the channels in terms of
usefulness for the classification and monotonic decrease of
the number of channels across time. Although CHARLEE
achieves its intended flexibility, it still suffers from some
limitations of the early classification approach. For example, if
a channel has useful patterns in its initial and final timesteps,
but not in the intermediate ones, CHARLEE is forced to either
keep it included until the last timestep, thus reducing the
achieved input savings, or it can abandon it early on, but with
a negative impact on accuracy.

With RELEVANT, we aim to redefine the multidimen-
sional early classification paradigm and shift it to even more
versatile multidimensional input filtering. Drawing parallels
between the dimensions of video data (time,image patches)
and the multivariate time series (time, variables), we identify
an opportunity for developing a solution for the latter, similar
to AdaFocus+ mentioned above. We want our solution to
be able to skip uninformative time slices and exclude/re-
include variables across time flexibly during inference, without
necessarily abandoning channels in an irreversible manner, or
keeping them needlessly until the point where they have useful
information. Thus, we remove the CHARLEE constraints, we
re-design the reinforcement learning reward and we change
the variable selection mechanism to serve the implementation
of this new paradigm.

III. PROPOSED FRAMEWORK

A. Time Slicing and Channel Grouping

In order to achieve the multidimensional early classification
paradigm, we have introduced a number of heuristics in [9].
Two of those heuristics are processing the input in groups of
timesteps, called time slices, and grouping the channels of the
input. These heuristics help to 1) reduce the computational
burden of the framework (since it gets executed after every
several timesteps instead of every timestep) and 2) reduce the
search space of the reinforcement learning agent, since the
decision to early exit or not can be taken for multiple channels
of a single group together. We find these heuristics valid and
useful for the RELEVANT framework as well, so we keep
them in our design.

B. POMDP Formulation and Framework Structure

Following the CHARLEE framework design in [9], as well
as related work [19], [21], [23], [24], we express the task
of adapting the variables across time as a Partially Observ-
able Markov Decision Process (POMDP), defined by a tuple
{S,A,T,R,γ}, where S is the state space, A is the action space,
T is the transition model, R is the reward function and γ
is the discount factor of rewards. In Fig. 1, we can see the
structure and pipeline of the RELEVANT framework. The
framework functions as follows: First, it receives a group of
timesteps, termed a time slice, from the raw input. When the

processing begins, this slice always includes all channels. The
hidden state encoder, constructs or updates the states ∈ S,
utilizing a 1-d convolutional network and features extracted
from it. The hidden state also includes positional information
and the history of the policy decisions. Both for the creation
of the hidden state, as well as the data propagated to the final
classifier, a ”filtered” channel means that its raw values are
replaced with a mask value (in our case 0).

Based on this state, the policy either decides to stop the
processing or select a subset of channels (including none)
for the next time slice, an action designated α = αstop ∪
αadapt,∈ A. The adaptation (selection) policy is implemented
as a Bernoulli distribution for each channel (or group of
channels) parametrized by a fully-connected network (FCN),
resulting in the action vector αadapt. The result of a channel
inclusion/exclusion depends on the stochastic outcome of this
distribution. The stopping policy is implemented as an FCN
with a sigmoid output.

Our transition model T, akin to related work [21], is as
follows: The action α either leads to a new state, s′ ∈ S,
created by the hidden state encoder from the appropriately
filtered next slice, or to a terminal state, either because the
input is over or the policy performs a stopping action αstop.
When the processing episode terminates, all filtered time
slices are sent to the final model for classification. Similar
to [9], we make RELEVANT classifier-agnostic, and we test
it with InceptionTime [25] and ResNet [26], as characteristic
examples of classification models.

Based on the classification result and the percentage of
input saved, a reward Rfinal is generated for all the policy
actions throughout the episode, so R(s, α) = Rfinal for all
states s in the episode. We want to encode the amount of
input saved in the reward [9], [20], [21], [27], but contrary
to CHARLEE, we want to push the default network behavior
towards saving as much input as possible without sacrificing
accuracy, if possible. Thus, we formulate the reward as:

Rfinal =

{
1 +Rsavings, if correct classification
−2, otherwise

(1)

In Eq. 1, Rsavings is a number in the range [0, 1], resulting
from the linear mapping of the input savings achieved in the
range from minimum savings (no savings) to maximum (only
utilization of first time slice). We set the discount factor γ of
the rewards to 1, since, for our problem formulation, we want
all filtering actions across time to contribute equally to the
result.

C. Training and Inference Process

We train all parts of the framework by minimizing the sum
of their respective losses. We utilize the typical cross-entropy
loss Lacc for the classifier model, as well as an auxiliary loss
Laux only for the incorrectly classified samples. This Laux

is the cross-entropy loss between the sample label and the
unfiltered raw input data and is meant to help the classifier
”see” the full data, even when the policy has excluded multiple
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Fig. 1. Structure of RELEVANT framework (adapted from [9])

channels, so that future classification is better informed. The
adaptation policy includes non-differentiable sampling from
the Bernoulli distributions, so we use the REINFORCE algo-
rithm [28] to estimate the gradients to update its parameters,
with the loss being [29]:

Ladapt = −E
[N−1∑
n=0

C−1∑
c=0

logπθa(Acn |Sn)
(
R− b(Sn)

)]
(2)

In Eq. 2, N corresponds to the number of checkpoints and
C to the number of channels (or channel groups). Acn is the
channel inclusion/exclusion action for channel c at checkpoint
n by the policy πθa . R is the final reward and Sn is the state
created by the hidden state encoder network at checkpoint n.
From the reward R we subtract a baseline value term b(Sn), in
order to reduce the variance of the gradient estimation. This
value is estimated by a baseline network that has the same
input and structure as the adaptation policy and is trained by
minimizing the mean squared error loss Lbaseline between
the value and the reward.

The stop policy is trained differently. We calculate a reward
Rstop, similar to R, for each checkpoint, based on the classi-
fication result and the input savings up to it. If this Rstop is
higher at a checkpoint than all the future ones, it means the
framework should stop at that, since it could not obtain better
results by continuing. The stop policy can then be trained by
minimizing the binary cross-entropy loss Lstop between this
binary criterion (stop or not) and the action of the policy. By
using this method, we can train the stop policy without actually
stopping episodes during training. This benefits the channel
adaptation policy by avoiding the issue of the framework not
observing the later parts of the time series due to excessive
stopping [21], [23]. Thus, the total loss of the framework is:

Ltotal = Lacc + Laux + Ladapt + Lbaseline + Lstop (3)

IV. EXPERIMENTS

In order to explore the performance and behavior of RELE-
VANT, we run extensive experiments: Firstly, we compare its

classification accuracy to that of CHARLEE, on both synthetic
and real data, for similar input percentage utilization.

Although RELEVANT is designed to maintain accuracy
while filtering the input, different dataset patterns may not
be suitable for that, and the framework may converge to a
result that sacrifices some of the accuracy in favor of input
savings. In addition, its novel approach to spatiotemporal input
filtering and its design details, such as the classifier-agnostic
endpoint, make it impractical to meaningfully compare with
other seemingly associated methods, such as early classifi-
cation ones. Thus, we use the same comparison approach
as multiple related works [9], [21], [30] and for the real
datasets we compare the accuracy of RELEVANT against deep
learning baselines trained on a fixed percentage of the input.
For example, if RELEVANT reaches average input savings
of 30% across runs, a point of reference would be the deep
learning classifier trained at the dataset truncated at 70% of its
timestep length. We refer to this method as Time-Only Input
Filtering (TOIF).

A. Datasets

1) Synthetic dataset: We utilize the synthetic dataset intro-
duced in [9], which has been constructed so that parts of the
input can be skipped without affecting classification accuracy.
It is comprised of 4 channels and 96 timesteps, with signal
information split across 4 slices (so segments of 24 timesteps).
Below we describe the parts of the dataset that are necessary
for the correct classification of the pairs of 8 classes:

• Classes 1,2: This pair of classes can be correctly classified
utilizing the information of all channels only in the 1st
slice, so no processing is necessary beyond that point.

• Classes 3,4: This pair of classes can already be distin-
guished from all others from the 1st slice. However, the
4th slice of the 4th channel is necessary to differentiate
between the two classes of the pair.

• Classes 5,6: This pair of classes can be distinguished from
all others based on the information in the 1st slice and
on the information of any single channel in the 2nd slice.
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Moreover, the 4th slices of the 3rd and 4th channels are
necessary to differentiate between the classes in the pair.

• Classes 7,8: Similar to the pair above, this pair of
classes can be distinguished from all others based on the
information in the 1st slice and on the information of any
channel in the 2nd slice. In addition, all channels in the
4th slice are necessary to differentiate the two classes.

In Fig. 2 we can see a sample of the pair of classes 3 and
4, and the segmentation points that have been used for the
dataset construction, to better understand the synthetic data
logic. This example is characteristic for the applicability of
RELEVANT, since it is demonstrated that the intermediate
slices do not have useful information and could be completely
skipped, while only the 4th channel is useful in the 4th slice
for the classification task.

2) Real datasets: We utilize the same set of 26 datasets
as [9], comprised of a subset of the UEA collection [31]
and the CWRU [32] and MAFAULDA [33] datasets, so that
we can easily compare the performance of RELEVANT with
the CHARLEE framework. We also process the datasets in
the same manner: For each dataset, we train the base deep
learning model on 5,10,15,...,95% of its length and get its test
set accuracy. If at any percentage this accuracy is similar to
that of the DL model trained on the full length, we truncate
the dataset to that timestep percentage. In this way, we try
to ensure that the input savings are mainly attributed to our
framework, rather than trivial early classification due to the
dataset properties. With this large collection of datasets, we
can more safely ascertain the performance of RELEVANT,
and establish the use cases where it is successful and the ones
where more exploration or fine-tuning is necessary.

B. Experimental Setup

All experiments were run on the DAS-6 infrastructure
[34], on nodes with 24-core AMD EPYC-2 (Rome) 7402P
CPUs, NVIDIA A6000 GPUs, and 128 GB of RAM. We
implement the framework using PyTorch [35], and we use the
implementations of the tsai package [36] for InceptionTime
and ResNet. We repeat all experiments 5 times with different
random seeds, and we present the averages of the metrics. We
use 20% of each training set as a validation set, and we use
the weights that result in the best validation score for testing.

We have employed a uniform number of checkpoints (4)
across all datasets, and the number of channel groups has been

TABLE I
F1 ACHIEVED BY RELEVANT, CHARLEE AND TIME-ONLY INPUT

FILTERING FOR SIMILAR INPUT SAVINGS

RELEVANT CHARLEE TOIF

F1 Average
Savings F1 Average

Savings F1 Average
Savings

IncTime 0.895 0.506 0.797 0.519 0.618 0.519
ResNet 0.918 0.502 0.780 0.534 0.632 0.534

set to the minimum value between the number of channels in
each dataset and 10. Although these fixed hyperparameters
may not yield optimal results for all datasets, they aim to pro-
vide a general evaluation of the performance of RELEVANT.
For practitioners, hyperparameter fine-tuning based on specific
datasets is likely to improve the accuracy-input savings result.
The code for the experiments and the detailed metrics are
publicly available at https://github.com/lpphd/RELEVANT to
facilitate reproducibility and future work on the topic.

V. RESULTS

A. Synthetic Dataset

In Table I we can examine the F1 score and input savings
achieved by RELEVANT, as well as the F1 achieved by
CHARLEE and the Time-Only Input Filtering method for
approximately similar input savings. These results confirm that
the design of RELEVANT and its added flexibility compared
to CHARLEE is beneficial to the classification task, as REL-
EVANT can select to skip channels for the intermediate slices
and include them again in the final slice, when they contain
useful information. In contrast to that, CHARLEE performs
irrevocable early exiting for channels, so it either has to keep
the useful channels throughout the time slices, lowering the
input savings, or it can abandon them but with a degradation
in accuracy. Finally, as expected, both solutions perform better
than Time-Only Input Filtering, which offers the least flexibil-
ity, following the conventional early classification paradigm,
and misses the information contained in the second half of the
dataset.

Although the average F1 achieved by RELEVANT is ∼0.9
for both models, in some runs the framework manages to
achieve almost perfect accuracy (∼0.97) and very high input
savings (∼0.56). We can study the patterns learned by the
framework in those runs for all test samples and we note
that 4 patterns stand out, appearing much more often than
the others. We can express these patterns as a list, with each
element representing the set of channels kept at the corre-
sponding time slice. The first pattern is [{1,2,3,4},{},{},{}]
and the second is [{1,2,3,4},{},{},{4}]. These patterns per-
fectly match the first two pairs of classes of the synthetic
dataset. RELEVANT immediately stops processing the input
for classes 1,2, creating the first pattern, similar to early
classification. For classes 3 and 4, it decides to skip the
intermediate slices and focus on the 4th slice of the 4th chan-
nel. The next two patterns are [{1,2,3,4},{2},{},{1,2,3,4}]
and [{1,2,3,4},{2},{2},{1,2,3,4}]. The former corresponds to
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classes 5 and 6, and we observe that the only deviation from
the ground truth is the inclusion of all channels in the last slice,
while only 2 out of 4 are required. The pattern for classes 7
and 8 is even more precise, with the only deviation being the
inclusion of the 2nd channel in the 3rd slice, where it is not
necessary. Although not perfect, these patterns also capture the
underlying synthetic design with high precision.

B. Real Datasets

In Table II there is an overview of the number of datasets
where RELEVANT is performing better than Time-Only Input
Filtering, and the ones where Time-Only Input Filtering is
the preferred choice. We consider a method to be the better
option if its F1 score is more than 0.01 (1 percentage point)
higher than the alternative. In Table III we have the detailed F1
scores, with the bold font indicating the preferred approach for
the specific dataset and model. These results have been sorted
from best to worst on the InceptionTime column.

We observe that in multiple datasets, the channel adap-
tation across time that RELEVANT offers achieves better
F1 compared to the established time-only early classification
paradigm for equal input savings, while in other cases, the
latter is preferred. This is expected, since our universally-
fixed hyperparameters and the unique data formats make
it unlikely that RELEVANT will be preferable to TOIF in
all cases, especially across such an extended collection of
datasets. However, the number of positive cases demonstrates
the potential of RELEVANT to real-world applications.

Similarly to the synthetic dataset, the average F1 and input
savings for a dataset can sometimes be considerably worse
than individual runs. For instance, for the CharacterTrajecto-
ries (CHAR) dataset, RELEVANT reaches an average F1 score
of 0.886, for input savings of 54.6%. However, in one of the
runs it has achieved F1 score of 0.93, with input savings of
58.3%, which would make it preferable to the TOIF approach.
Although we have used the average metrics for the sake of
fairness, this observation indicates that a practitioner following
the common practice of model selection based on cross-
validation can achieve even better results with RELEVANT.

In Table IV we see the comparison of RELEVANT with
CHARLEE. Since CHARLEE entails the savings factor hyper-
parameter, which can affect the final F1 - input savings result,
for each dataset we use the CHARLEE result which closely
matches the input saving achieved by RELEVANT. If this is
not possible, we choose the CHARLEE result with similar
F1 to that of RELEVANT, and we compare their savings. In
the results table, we highlight the cases where one solution is
performing distinctly better than the other, with a difference of
more than 0.05 either in F1 or input savings. We observe that
the additional flexibility of RELEVANT is indeed beneficial to
the F1 - input utilization pair for multiple datasets. Although
we present only the InceptionTime results, for the sake of
space, the ResNet results point to similar conclusions. We
can also observe some cases where CHARLEE is performing
better. This can be a result of sub-optimal convergence of
RELEVANT due to the higher search space, which could be

TABLE II
NUMBER OF DATASETS WHERE RELEVANT IS PREFERABLE OVER TOIF

WITH EQUAL SAVINGS, OR VICE VERSA

InceptionTime ResNet
RELEVANT TOIF Ties RELEVANT TOIF Ties

10 7 9 9 9 8

TABLE III
F1 ACHIEVED BY RELEVANT COMPARED TO TOIF APPROACH WITH

EQUAL INPUT SAVINGS

Dataset InceptionTime ResNet
RELEVANT TOIF RELEVANT TOIF

NTPS 0.773 0.439 0.761 0.404
FD 0.633 0.55 0.606 0.537

SAD 0.898 0.828 0.905 0.808
BM 0.651 0.607 0.663 0.586
PS 0.26 0.228 0.279 0.198

MIND 0.398 0.376 0.363 0.372
HB 0.696 0.675 0.692 0.686

DDG 0.517 0.501 0.475 0.474
MAF 0.923 0.911 0.947 0.934

MHAR 0.933 0.921 0.884 0.919
ER 0.695 0.686 0.657 0.597
EP 0.876 0.868 0.875 0.861

EMOP 0.676 0.674 0.655 0.71
HMD 0.297 0.295 0.233 0.211
SRS1 0.77 0.769 0.737 0.769

JV 0.912 0.914 0.902 0.908
LSST 0.44 0.445 0.495 0.492

RS 0.766 0.771 0.771 0.768
EW 0.614 0.623 0.563 0.624
HW 0.281 0.317 0.209 0.308

CHAR 0.866 0.907 0.927 0.921
CWRU 0.915 0.967 0.865 0.864

CR 0.888 0.941 0.823 0.913
UW 0.76 0.828 0.65 0.681

AWR 0.808 0.891 0.795 0.857
LIB 0.742 0.831 0.782 0.842

addressed with different policy gradient methods. Moreover,
CHARLEE takes into account the utility of each channel for
the classification, which may lead to better results for some
datasets, even with the reduced adaptability.

VI. CONCLUSION

In this work, we have presented RELEVANT, a framework
for reinforcement learning-enabled variable adaptation in time
for the task of multivariate time series classification. Our
framework processes the input progressively in time slices and
after each one, it decides which channels (if any) it should
keep for the next time slice, or if it could even stop receiving
the input completely. At the end of this procedure, the filtered
input is passed to a deep learning model for classification. The
goal of the framework is to maximize accuracy while minimiz-
ing the amount of input data necessary for the classification.
It improves upon the CHARLEE framework [9] by offering
more flexibility to the input filtering task and thus greater input
savings potential.
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TABLE IV
F1 ACHIEVED BY RELEVANT COMPARED TO CHARLEE WITH SIMILAR

INPUT SAVINGS, USING INCEPTIONTIME

Dataset RELEVANT CHARLEE

F1 Average
Savings F1 Average

Savings
AWR 0.808 0.595 0.798 0.716
BM 0.651 0.639 0.531 0.642

CHAR 0.866 0.546 0.755 0.547
CR 0.888 0.697 0.802 0.705

DDG 0.517 0.517 0.483 0.489
EMOP 0.676 0.778 0.666 0.789

ER 0.695 0.756 0.573 0.764
EW 0.614 0.441 0.629 0.575
EP 0.876 0.668 0.865 0.696
FD 0.633 0.552 0.550 0.584

HMD 0.297 0.422 0.256 0.469
HW 0.281 0.489 0.252 0.565
HB 0.696 0.538 0.674 0.583
JV 0.912 0.654 0.729 0.699

LSST 0.440 0.448 0.450 0.620
LIB 0.742 0.206 0.752 0.196

MIND 0.398 0.769 0.389 0.800
MHAR 0.933 0.718 0.916 0.720
NTPS 0.773 0.525 0.784 0.499

PS 0.260 0.422 0.233 0.666
RS 0.766 0.502 0.738 0.548

SRS1 0.770 0.595 0.709 0.611
SAD 0.898 0.713 0.820 0.737
UW 0.760 0.399 0.763 0.336

CWRU 0.915 0.615 0.944 0.586
MAF 0.923 0.800 0.930 0.800

We verify the behavior of our framework on the synthetic
dataset introduced in [9] and we test it on several multivariate
datasets. We first demonstrate that the higher flexibility of
RELEVANT compared to CHARLEE does indeed translate to
a better ratio of accuracy over input utilized, for both the syn-
thetic and multiple of the real-world datasets. In addition, we
show that RELEVANT can capture the underlying synthetic
dataset patterns with high precision. We also compare the
accuracy of RELEVANT to deep learning classifiers trained
on time-only truncated versions of real-world datasets. The
datasets are truncated so that the input utilization is equal
to the one achieved by RELEVANT. We show that, although
RELEVANT is not the optimal choice in all cases, in multiple
datasets it is beneficial to utilize it over time-only input trunca-
tion, which would correspond to time-only early classification.
Given that we utilize a standard set of hyperparameters over all
datasets, there is also potential for improvement after use-case
specific hyperparameter tuning.

Interesting future research would be to utilize data im-
putation methods as part of the framework, so the filtered
values can be replaced in a more informed manner than a
universal mask value. This could improve both classification
accuracy and potentially increase input savings. Moreover,
a more complex grouping method could be used to cluster
channels of similar patterns per time slice together, so that
there is more efficient utilization or filtering of these channel
groups.
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