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Abstract—In Open Multi-Agent Systems (OMAS), heteroge-
neous agents in varying environments or models can transition
from one system to another, retaining their attributes and
knowledge. This migration process results in an augmented
development complexity compared to conventional Multi-Agent
Systems. Additionally, the intricacy of this transition arises
from uncertainties and dynamic behaviors associated with the
agents’ changes, necessitating the formulation of techniques to
analyze this complexity and comprehend the system’s overall
behavior. To address these challenges, we employed Docker,
which enables a flexible architecture that accommodates different
programming languages and frameworks for the agents. This
paper introduces a Docker-based architecture that aids OMAS
development, facilitating agent migration between various models
operating in heterogeneous hardware and software setups. To
validate the proposed approach, we conducted simulations using
NetLogo’s Open Sugarscape 2 Constant Growback and JaCaMo’s
Gold Miners. These simulations were executed locally, in the
cloud, and in a hybrid mode to assess the feasibility of the
proposed architecture.

Index Terms—Multi-Agent Systems, Open Multi-Agent Sys-
tems, Agent-Based Simulation, Docker

I. INTRODUCTION

Various domains leverage Artificial Intelligence concepts to
tackle problems, often relying on Shallow Learning techniques
like Gradient Boosting and Random Forest, Deep Learning
approaches, or Heuristics such as Genetic Algorithms. These
solutions excel when the problem is well-defined and the
dataset is large and centralized [1]. However, dynamic prob-
lems involving multiple interacting entities require solutions
with decentralized control that can adapt in real-time [1].

In this context, Multi-Agent Systems (MAS) offer a promis-
ing alternative to Artificial Intelligence. MAS comprises multi-
ple agents, physical or virtual entities with autonomous behav-
ior, capable of acting independently [2], [3]. These agents can
perceive their environment and utilize actuators to influence
it. In Multi-Agent Systems, agents exchange information for
various purposes, aiming to collectively acquire knowledge,
update beliefs, and optimize strategies.
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A particular MAS category, Open Multi-Agent Systems
(OMAS), facilitates interaction among agents participating in
different models. OMAS involves analyzing heterogeneous
agents, each possessing distinct characteristics and operating
within diverse environments or models. These agents can
migrate from one system to another, bringing along their at-
tributes and knowledge [4]. The heterogeneity in OMAS arises
from variations in architecture, objectives, or policies among
the agents and their respective models [5]. However, different
problems arise when developing applications in OMAS when
compared to Multi-Agent Systems [6]. First, there may be
implementation problems where agents and models can be
created by different teams, in other programming languages,
or various platforms/agent architectures. Often, conflicts of
objectives may not guarantee that agents will act cooperatively
and coordinately [7], [8]. Moreover, there is still the difficulty
generated by the uncertainties and the dynamic behavior that
the change of agents entails.

Open Multi-Agent Systems need to deal with problems
not present in closed systems. For example, the migration
of agents between models can occur at runtime, and the
motivation for this migration of an agent from one system
to another can be different, usually of the developer’s choice,
such as execution failures, self-will, or some trigger. In addi-
tion, conflicts of interest may occur between the new agents
when not designed to work in that set [5]. Although the subject
has been known for a long time [9], there is still research in
the area, as in [10]–[15].

The concept of openness reduction is related to the model’s
overload from the perspective of the possibility of agents
entering and exiting the system without changing the de-
sign of many components. Thus, the greater the degree of
openness, the smaller the number of changes to a model to
receive or send agents [4]. In this way, a perfect open system
would not need transformations (0 steps) to accommodate new
components, while on the other side, there are systems that
would require a complete redesign when new agents arrive [4].
Therefore, given the context presented, it is necessary to make
a research effort to reduce the complexity of Open Multi-Agent
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Systems regarding the cited problems.
In this context, Docker has the potential to address these

issues effectively. Docker is an open-source tool that automates
the development of applications in the form of containers.
Containers can run different programming languages and
frameworks, holding the code and all the requirements.

This paper presents a Docker-based model to aid in develop-
ing Open Multi-Agent Systems and to facilitate the migration
of agents between different models that can run in heteroge-
neous hardware and software scenarios, different development
environments, and tools for MAS or other operating systems.
Since the architecture is based on Docker, it can be run on
cloud services, allowing the architecture to build simulations
using the host machine resources, on the cloud, or even
both (hybrid). In general, the approach aims to advance the
generalization of OMAS, simplifying the opening process.

By implementing specific agent registration and routing
modules to define system steps as the criteria for determining
where agents will go, the original models only need to
describe how they will send and receive agents, decreasing
transaction complexity within the model. In addition, agents
that move between models will transfer knowledge, carrying
their attributes with them.

We organized this paper as follows. First, we present related
work in Section II. Then, Section III presents details of
the proposed approach, flow, implementation details, and the
schedule of activities. Then, Section IV explains the platforms
and models used to verify the feasibility of the implemen-
tation. Next, Section V shows the results obtained from the
simulations using local, remote, and hybrid scenarios. Finally,
Section VI presents the final considerations of the study.

II. RELATED WORK

The first perspective from most of the related work considers
Open Multi-Agent Systems from an architecture/organization
point of view, as in [4], [6], [12], [16]–[21]. These studies
differ from the approach of this work, mainly because, among
all OMAS problems, we focus on the openness part, allowing
the agents to move between models. The effects of the conflicts
of interest that could come with the agents moving between
models are something model-related, requiring to be resolved
by the model using any technique, such as the ones described
in this study and others. We aim to provide mechanisms
to simplify the agents’ movement between models, reducing
changes in the model’s original code. Furthermore, [1], [5],
[22]–[24] present similar aspects with some parts of our
approach.

In [22], the authors propose a model that uses both NetLogo
and Jason agents in an especially complex model for cognitive
agents, a Disaster-Rescue simulation. The approach to bring
those two different architectures of agents, connecting Jason
to NetLogo, is to either include part of NetLogo’s internal
classes inside the Jason code or do the opposite, including
Jason’s internal classes inside the NetLogo code since both
applications use Java code. Even though this study considers
a closed multi-agent model (not an open one), it is similar

to our research in that they communicate between agents with
different architectures. The main difference is that, in this case,
both applications use Java code. We point out a limitation
of this work if some agent programmer wants to use this
approach to communicate, for instance, NetLogo, to another
agent platform that uses another language. Our approach
creates a platform that runs isolated code (inside containers)
that allows completely different programming environments,
allowing the developer to run any code (Java, Python) through
our API (Application Programming Interface) service.

The authors in [5] propose a methodology for specify-
ing open multi-agent systems. The structure uses two main
ideas: the independent modeling of each of the dimensions
of the system (agent, environment, and organization); and
the specification of edge concepts, providing information
at design time that helps include at runtime the elements
of the dimension open. Furthermore, the authors designed
elements targeting code for the JaCaMo framework in the
implementation. In addition, the study has two case studies,
which allow viewing the results throughout the development
phases. The main difference between this study and our
approach is that the programmer must adapt the model and
architecture to the solution. In contrast, our architecture can
be adapted to the current running implementation that the
programmer has, just using the I/O mechanisms that the agents
must have to communicate with our solution. Compared to
the parameters analyzed in the study, our platform works
on the agent dimension and the implementation phase (the
study deals with agent/environment/organization dimensions
and analysis/project/implementation phases). We deal with the
agent dimension because our primary focus is to transport
agents between models, even though extending our platform to
transport parts of the environment is possible, like artifacts. On
the other hand, we focus the approach on the implementation
phase because we want the programmer only to rebuild part of
the model to the platform. In this way, the programmer needs
to include the mechanisms to communicate with our platform.
That way, the primary usage of our platform is in a model
already built (implementation phase).

In [1], the authors present the development of a Java-based
framework for the development of adaptive open multi-agent
systems. The framework developed by the authors, named
AMAK, uses three fundamental classes based on object-
oriented principles: AMAS (Adaptive Multi-Agent System),
Agent, and Environment. Whoever uses the framework must
implement these abstract classes, adapting to the model.
Furthermore, the authors use developing a socio-technical
environmental system as a case study to bring environmental
well-being. The architecture proposed in this study is mainly
diverse from ours because it is almost a new programming
language since the authors compare their results with other
agent programming languages (such as Jade, NetLogo, and
GAMA). However, our approach does not require the pro-
grammer to remake its model into something new. Instead,
the programmer must insert the code to allow the agents to
communicate with the architecture, which leads to less effort
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to allow the agents to move between the models.
In [24], the authors propose a multi-agent system to monitor

and manage container-based distributed systems. Their system
allows users to observe and verify the quality and progress
of the application over time, improving parameters such as
QoS (Quality of Service). This study is unrelated to OMAS
but has concepts similar to those we used in our approach.
Furthermore, they encourage the connection between MAS
and DevOps, using DevOps tools such as Docker. The main
difference is that we do not use Docker to monitor MAS
systems. Instead, we run our system in a container-based
approach on Docker.

In the work [23], the authors use MAS in the IoT (Internet of
Things) field since both share similarities (distributed devices,
cooperation). They mainly use MAS in IoT to build large-
scale and fault-tolerant systems. They propose a cloud-native
MAP (Multi-Agent Platform), named cloneMAP, to use cloud-
computing techniques to enable fault-tolerance and scalability.
This approach is related to MAS rather than to OMAS. It is
similar to our study using DevOps tools associated with MAS,
such as Docker. Still, the study’s primary goal is not related
to openness and allowing agents to move between models.
Also, similarly to [1], this study compares results directly
to agent programming platforms, such as JADE (Java Agent
DEvelopment Framework), which differs from our approach.
In our approach, we keep the model similar to before the
openness, making changes to insert the mechanisms to allow
the model to communicate with our platform.

Table I summarizes the similar studies found, indicating
if it is focused on the organization aspect of OMAS, if it
uses some DevOps tools, and deals with more than one MAS
platform. The DevOps aspect is important because it is a
way to implement multiple parts of the systems that could
run different languages and OS, making using all kinds of
different MAS tools possible. The last aspect is how many
MAS platforms/tools are being used. This aspect is essential
to making the tool as embracing as possible.

TABLE I
SUMMARIZATION OF RELATED WORK.

Approach Year Org-related DevOps Tools Platform
[4] 2013 Yes – Single
[6] 2010 Yes – Single

[16] 1996 Yes – Single
[17] 2006 Yes – Single
[18] 2012 Yes – Single
[19] 2003 Yes – Single
[20] 2009 Yes – Single
[21] 2021 Yes – Single
[12] 2020 Yes – Single
[22] 2017 Other – Multiple
[5] 2018 Other – Single

[23] 2021 Other Docker & Kubernetes Single
[24] 2021 Other Docker Single
[1] 2018 Other – Single
Our 2022 Other Docker Multiple

From the 15 studies analyzed, the main focus of 9 of
them is to deal with organizational problems that come with

the openness from OMAS. Of the other 6, 3 are language
dependent, not allowing the usage of MAS/OMAS tools that
run in a different development/usage environment, as another
tool that uses another language. Lastly, besides ours, only one
study deals with more than one MAS platform. This study
is only MAS, not OMAS-related, so it does not deal with
the problem of transporting agents between models. Also,
this study connects two MAS platforms that run in the same
language (Java), not considering other tools that might use
different languages.

In conclusion, our approach contributes to the state of
the art of how the programmer will use the platforms. For
example, some studies propose new approaches that require
the programmer to rebuild their models according to the
proposes. The programmers would not have to change their
entire model in our architecture. Instead, they will add the
structures needed to their models to communicate with our
architecture, allowing an easier transition from a closed MAS
to an open MAS. Another work already used container/cloud-
based approaches related to the MAS system, showing that
this approach is promising. Also, some studies have tested the
communication between NetLogo and Jason agents.

III. THE PROPOSED APPROACH

Our approach aims to develop an environment that facil-
itates the development of Open Multi-Agent Systems using
Docker [25] as a basis, allowing the migration of agents
between models that can run in heterogeneous scenarios. The
structure allows code to run inside containers that contain the
same operation structure where they were developed, avoiding
problems like programs that run in the development stage
but in the production stage have problems. In our approach,
each image is generated based on a description file, called
DockerFile, containing information on the structures needed
in the container, such as the operating system, programming
languages, and code to be executed. In addition, Docker has an
image bank, the Docker Hub Container Image Library, which
contains the images frequently used by developers, extending
the approach’s applicability.

The containers are responsible for executing each essen-
tial block of the architecture structure. Therefore, they can
be easily replaced or added, making the architecture more
modularized and adaptable to new scenarios not foreseen
in the conception, making it more robust. If any part of
the architecture has sensitive data, it is possible to create
separate virtual networks; that way, each container has a partial
view of the system, which leads to limited access to certain
information. Finally, our approach can use online platforms
such as Amazon’s (AWS Docker) to run code in the cloud due
to the entire structure being developed based on Docker, which
enables high application portability, expanding the universe of
applications in the architecture.

Figure 1 presents a general description of the proposed ar-
chitecture in a block diagram format. In the Docker-compose
block, we have the generation of images and services based
on the docker-compose.yaml file and the Dockerfile of each
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service. Each Dockerfile contains the sequence of instructions
needed to assemble the image with all the requirements that
each service needs. Then, based on the images, Docker-
compose uses the parameters of each service (container name,
exposed ports, network, volumes, command/file to be exe-
cuted) and builds them. Finally, when we define all services
on the Docker-compose, they can be executed using just one
command.

Fig. 1. Organization of the proposed architecture.

The M1, M2, . . ., Mn blocks represent the containers
responsible for running the models. The designer can define a
parameter auto run in the main configuration file. When we set
this parameter to True, the models are executed automatically
when the container is mounted. If it is False, we must start the
execution of the templates by a trigger container. T1, T2, . . .,
Tn are execution trigger containers, responsible for sending a
message to the models to start their execution. We use these
containers when necessary to implement a more robust logic
to start executing the models. For example, they can run code
that reads a sensor, wait for measurement, or run a particular
model only when agents are assigned.

The Application Programming Interface (API) block is
the container responsible for managing access to the database.
This container acts as an intermediary when any system
part must write, read, update, or delete information from the
database. Currently, the API is implemented in Python, using
the Flask framework [26]. All the methods are accessible via
HTTP, using JSON (JavaScript Object Notation) format on
every message, as a standard for APIs.

The Database (DB) block represents the container respon-
sible for the database where we store, for each model, all
agent arrival/departure information to be accessed by other
containers that may need this information. It is important to
note that we do not implement business rules in the DB.
Also, this container is responsible for carrying out database
operations (read, write, update, and delete). How containers
must manipulate the information before or after involving the
database is their responsibility, which will only pass the final
command to this one.

The Database Management System (DBMS) block repre-
sents the container that facilitates access to the DB. It provides

a Web interface (by default exposed to the host machine)
that can import/export SQL (Structured Query Language) con-
tent/files and view the information in real-time. This container
can help with debugging and making logs of the application.
Also, the DBMS must be chosen according to the DB because
they must be compatible.

The Register block is a container responsible for managing
all agents on the platform. Every agent must have an identi-
fication to be used by the architecture, so the first insertion
requests for new agents coming from any model containers
need a unique identification. So, the Register is responsible
for generating a unique identification for every agent then
forwarding them back to the environments.

The Router block is the model responsible for receiving
all agents that left a given model, analyzing and judging
which model to send the agent. This step specifies the agent’s
entry and exit protocols from different containers/models. This
block is an essential part of the proposal because models
delegate to the Router the distribution task of the agents
among the models. When the simulation environment does
not share (or only partially) information about the world, the
Router can handle several problems related to the absence
of this information. Judgment can occur differently, such as
analyzing the most promising agents, machine learning codes,
and executing a new MAS model that retrains agents. In
the simulation scenario, there are two judgment options that
the Router can make of the list of agents to be processed:
i) randomly choose the agent and the target model (random
mode), and ii) process agents in a single queue, considering all
models and randomly defines the destination model (general
sequential mode).

The Interface block is a container that receives agent move-
ment information through the system and generates reports
exposed and formatted to view metrics of the architecture’s
execution. In the current implementation, this container has
an Apache Webserver running PHP (Hypertext Preprocessor)
code that reads all information from agents that have already
gone through the Router and generates a report with all agents,
attributes, and the path they took. The general form of the
report is through a front-end (HTML (HyperText Markup
Language), CSS (Cascading Style Sheet), and JS (JavaScript)
code), which the host can access by exposing the port that
Apache runs on port 80 (by default). Each tuple contains all
essential attributes for every agent interaction so far. In the end,
it presented the longest path taken by agents. Notably, a search
option exists to filter the results by any of the columns. Also,
it is possible to filter results by agent, model, and whether the
tuple has been processed by the model/router. Finally, each
agent already processed by the Gold Miners model (JaCaMo
container) has a .asl file (AgentSpeak Language) containing
relevant information to the model. So, on this interface, the
user can check the .asl to see its content.

Finally, the Logs block is not a container but a module
responsible for generating logs of the outputs of each container
in the system. We can obtain several types of records from
the simulation, such as regular docker logs (via docker log
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command), DB tuples via SQL export, and prints on txt
files (using terminal operators when running the container on
docker-compose). In addition, some structures have particular
log types, such as JaCaMo’s default log generator (based on
Java’s logging API). These logs can assist in debugging tasks
or generating data for execution analysis.

IV. THE PLATFORMS & MODELS USED

In the proposed simulation scenario, we built containers
to support two different development tools for Multi-agent
systems: NetLogo [27] and JaCaMo [28]. We chose two
models from each tool’s documentation: NetLogo’s Open
Sugarscape 2 Constant Growback [29] and JaCaMo’s Gold
Miners [30], with adaptations. We used three model containers,
running two isolated copies of Open Sugarscape and one of
Gold Miners. The main objective of this simulation scenario
is to validate the approach feasibility, allowing agents to move
between models freely, even though the two tools use different
agent architectures. We have examples of how to adapt and use
our functions on GitHub [31].

The Open Sugarscape model is a simulation used in artificial
societies, simulating a population with limited resources where
we represent each agent with an ant that, to survive, must move
around the environment in search of sugar. Each ant is born
with an amount of sugar (from 5 to 25), metabolism (from 1
to 4), and vision (from 1 to 6). Metabolism defines how much
energy the ant loses when moving. If the ant’s energy reaches
zero, it dies and leaves the model. Vision determines how
many distance positions the ant can see sugar from its initial
position. Figure 2 illustrates the NetLogo interface simulating
the original model.

In Figure 2, we can view the environment, input parameters,
and some metrics. For example, it is possible to configure the
number of agents at startup and the buttons to start, execute,
and pause the code on the left. In the center, we can see
the environment. The red dots represent the agents, while
the others represent the sugar inserted into the environment,
ranging from yellow to white, respectively, from more to less
intensity. Finally, graphs represent simulation output metrics,
such as population, metabolism, and vision averages.

Fig. 2. Sample Sugar Scape Model in NetLogo IDE.

We made another adjustment when the agent returned to
the simulation; instead of using his last information about
food, we generated this parameter randomly, while the other
parameters were the same as the previous simulation. We made
that adjustment because of the way that the original simulation
works. If the agent leaves the simulation when its food is
zero, and we use that same information again when the agent
returns, it would cause a loop because the agent would get to
the simulation with zero food and die again.

The only two attributes added to the NetLogo agents are
agent id and historic. We used agent id to check the agent’s
unique id for the architecture, while the regular id is used just
for the NetLogo’s simulation. The attribute historic shows the
path of what models the agents went through.

The only dependency required is Py NetLogo’s extension
to adapt any NetLogo model to our platform. We need this
extension to send/receive information from the API through
Python code. We have small functions to do so, and all the
programmer has to do is include those functions and use them
whenever the model needs to send/receive information about
the agents.

Figure 3 illustrates the JaCaMo interface simulating the
Gold Miners model. This model simulates a set of agents
representing miners whose role is to navigate the environment.
For example, when an agent finds a gold node, it stops
his current objective, gets the gold, and brings it back to
the central deposit. In the Figure, it is possible to see the
representation of the agents (blue dots), the deposit (box with
X in the center), the environmental barriers (positions not
accessible to the agents, black boxes), the gold nodes (yellow
boxes), the positions already visited by agents (white boxes)
as well as those not accessed (gray boxes).

Fig. 3. Gold Miners running on JaCaMo GUI (Graphical User Interface).

In the current adaptation of the original model, we use
only one miner agent, along with the architecture’s agents
(check new agents and killer agent) and the leader agent.
So, when the agent joins the simulation, it takes control
of the miner agent. This agent navigates through the map,
brings back his old information (about previous simulations),
navigates through the map, gets gold, brings it back to the
depot, and then leaves the simulation (sends a message to
the killer agent to be removed from the simulation). Finally,
when the agent leaves the simulation, the model checks the
next agent that will join the simulation and takes control of
the miner agent so the simulation can continue its execution.

Some adaptations are needed to adapt any JaCaMo model
to our platform. First, if the project is not already running
via Gradle (which is the default option), we need to adapt
the model to do so. The steps required to achieve this goal are
presented in JaCaMo’s GitHub documentation. After, we need
to include two libraries on the build Gradle file: JSON-simple
(to deal with JSON-format information) and HTTP client (to
deal with HTTP requests). The last step is to include the
killer/checker agents (with their ASL files) who deal with the

846



API. With these steps done, the model is ready to communicate
with the API. Now, the programmer can use the system’s
functions to send and receive agents between the API and
the model.

In the simulation scenario, M1 and M2 containers are run-
ning simultaneously two replicas of the Sugar Scape NetLogo
model, and the M3 container is running the Gold Miners
model, on JaCaMo. All three models run indefinitely and
use the auto-run option when no trigger container starts
the simulation. When an agent dies, the current model is
responsible for sending it to the Router (and then to DB
via API); it will go through a process that will decide which
models the agent will return.

At the beginning of the execution, instead of creating the
agents directly by the model, the models M1 and M2 ask the
Register container to create the agents so that they receive
an identification used in the Open Multi-Agent System. In the
current implementation of the simulation scenario, only the
NetLogo models ask for new agents. The JaCaMo model is
receiving and sending agents but not creating them on the
initialization, even though it is possible.

After the initial step of creating and registering all agents,
the M1, M2 and M3 models continue their execution, along
with the Router processing. Whenever an agent leaves any
models, it goes to the DB container (via API). Once new
information is on the DB, the Router knows that there are
new agents to be processed, so it reads the agents and sends
them to a model according to the routing type (by default,
randomly). Both Log or Interface containers can access the
flow of this information.

It is essential to point out that most adaptations are not sub-
stantial, mischaracterizing the original models to be adapted
to the architecture; instead, they are due because these models
need to be prepared to receive agents from outside, to be able
to do so. We have provided a template of the trigger functions
to send and receive information to the architecture. The users
must add it to their model, adapt to what information they
want to send or receive and use the triggers when they want
the model to send or receive agents. We emphasized that this
feature is important because we aim to reduce the complexity
of the code adaptation. On the documentation, the user can
find all the information needed.

Also, those adaptations show that the architecture allows
completely different agent architectures to communicate. For
example, NetLogo programming uses Logo language, while
JaCaMo uses ASL on BDI (Belief, Desire, Intention) concepts.
Though heterogeneous models, the agent carries all its infor-
mation while moving in the architecture. Thus, it is possible
to adapt information when we create an agent on each model
because we included/excluded from the models in real-time.

Those simulations were essential to check the strengths of
the architecture. With these tests, the platform allowed two
MAS models, coming from the original documentation of each
platform (NetLogo and JaCaMo), becoming from a closed to
an open MAS execution with few extra steps. Furthermore,
we could familiarly implement the original models. Instead,

we had to insert the codes and the agents necessary to
communicate with our platform. Finally, it is essential to point
out that both platforms have access to all information from
the agent. For example, JaCaMo’s model could access any
attribute from NetLogo’s agent (sugar, metabolism, and vision)
to make something useful in the simulation. The opposite is
true: NetLogo has access to the .asl file of every agent, making
it possible to use some information, like a belief, for something
useful in the simulation. The data exchange and the openness
with few steps are two key contributions of our work.

We have two videos; the first one1 shows a quick run
on the models using the whole architecture on Docker, and
the last one2 presents how JaCaMo and other platforms can
communicate with the Docker architecture, making it possible
to run applications with GUI.

In the scenarios, after downloading the platform from
GitHub, the programmer starts the simulation with the com-
mand docker-compose up -d. This command will tell Docker
to download and build all images and containers necessary,
according to the docker-compose.yml file. After, all container
logs are accessible via Docker Desktop or Docker CLI (Com-
mand Line Interface). In the API container, it is possible to
check all the requests that the API receives and processes,
while in the JaCaMo container, the user can check all alive
agents, minds, artifacts, and so on. Besides the Docker logs,
the DBMS and Interface blocks are accessible via the browser
(address on docker-file), allowing users to access all agents’
navigation through the models and their parameter values.

V. RESULTS

A. Running Locally

In local mode, the complete architecture is assembled and
executed within the same machine host, through the file
docker-compose-local. All Docker services run locally and
share the resources they need across the isolated network. We
used this mode in the scenarios described above.

B. Running on Cloud – Remote Scenario

We used the Oracle Cloud [32] for the remote and hybrid
scenarios. Besides the paid modality, the user can test the
complete platform for 30 days free of charge or part of the
services contains the always free modality, where we can use
these resources indefinitely. In the remote mode, similarly to
the local way, all services are mounted/executed on the same
host machine. However, instead of the user running it on his
machine, he can run it on a machine in the cloud.

In the tests carried out using the Oracle Cloud service,
the machines provided by the platform were used. To do so,
install Docker on the machine, clone the project from GitHub,
and use the docker-compose-local-arm64 file. This file slightly
adapts some container’s images because the original images
were developed to use x86/x64 architectures, while the ma-
chines used in the Oracle Cloud free trial use arm64 machines

1https://streamable.com/rug2mr
2https://streamable.com/3rct7p
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with different instructions. The change is simple, just indi-
cating the corresponding file with the machine’s architecture
(x86/x64 or arm64). The platform already has files ready to
run on both architectures.

C. Running on Cloud – Hybrid Scenario

Finally, we developed a hybrid test scenario where some
architecture services ran on the local machine and others on
the cloud machine. More specifically, the containers for the 2
NetLogo templates ran locally, and the rest of the architecture
ran in cloud. This division of parts occurs for two reasons: (i)
some structures need to be on the same network, such as the
JaCaMo model and the web Interface, so that we can access
ASL files, and (ii) the NetLogo models, in the cited simulation
scenario, tend to spend more computational resources.

Just like the remote model, to run this scenario, install
Docker on the machine, clone the project from GitHub,
and use the respective machine files host (docker-compose-
hybrid-local ) and the remote server (docker-compose-hybrid-
server). The same adaptations of the images are necessary
since the remote Oracle machine can have a processor with
arm64 instructions. For the two parts of the architecture to
communicate, it is required to indicate that the remote machine
needs to expose the communication port with the API, as
this is where the models will send/receive agents. The only
exposure of the machine is the communication port with the
API (port 5000 by default). Furthermore, it is necessary to
indicate the IP of the remote machine so that the models
know how to communicate with the API. We indicated this in
the docker-compose-hybrid-local file, which runs on the local
machine, through the environment variable host.

When executing the two separate parts, the remote structure
was assembled first, and then the local part was executed.
This ordering is because the local structure depends on the
rest of the architecture being ready for use, thus guaranteeing
correct functioning. Since the local machine used on the tests
had a good amount of resources, all the model’s containers
were executed on the local machine, while the other containers
from the architecture were executed on the cloud machine. The
communication between the models and the architecture was
performed through the API container by exposing the port and
IP from the container to the Internet.

The constructed scenarios show how we can extend the
architecture differently, such as migrating from local systems
to multi-agent systems that run on cloud. In addition, the use of
architecture in Docker allows these services to be distributed,
run on several different machines, and scalable in case the
models run robust systems. Adaptations may occur according
to the capacity of the available machines. Finally, it is also
important to point out that when taking the platform to cloud,
the resources used to execute the architecture are those of the
remote machine, not the local one, making it possible to run
part of the architecture on computers with fewer resources.

Finally, another possibility for extending test scenarios is
using models outside Docker. As previously mentioned, once
the structure is assembled and executed in Docker, it is

possible to expose container ports to the host machine. In this
way, it is possible, for example, to run the Gold Miners model
(or any other) on the local machine and still make the model
participate in a structure built in the architecture. To do so,
expose the port of the API container and indicate this new
host to the files that communicate with the architecture (in
this case, the files my create ag and my delete ag). Both files
already have a using docker parameter, where the value true
defines that the use of the files must follow the normal flow
in integration with the platform, while the value false defines
that the host ID is different from the default nomenclature.
This way of executing the architecture makes it possible, for
example, to run models with graphical interfaces, still using
the architecture for the concept of openness.

Regarding architecture drawbacks, two things can be
pointed out: overhead and GUI. While Docker has less over-
head than VMs, it’s not zero. Therefore, the Docker engine
may use some resources compared to native models. However,
in our tests on a resource-scarce cloud machine, the impact
was minimal. Secondly, we designed Docker containers for
command-line use, even though GUI options exist. Simula-
tions requiring GUI must be run locally, with communication
to the architecture via API port exposure, as demonstrated in
one of our simulation scenarios. Refer to our documentation
for an example.

VI. CONCLUSIONS

This paper presented a proposal of architecture to assist
the development of Open Multi-Agent Systems. Similar work
to this proposal was summarized and discussed. Then, we
introduced the proposed approach, methodology, and imple-
mentation details. Finally, we showed the results obtained,
emphasizing the case of the study developed in the architecture
prototype, which is of great importance to verify the feasibility
of the implementation. Our approach presents an environment
that facilitates the development of Open Multi-Agent Systems
using Docker.

This architecture allows the migration of agents between
models that can run in heterogeneous scenarios. Furthermore,
the structure provides code to run inside containers that contain
the same operation structure where they were developed,
avoiding problems like programs that run in the development
stage but have issues in the production stage. In addition, the
architecture acts as the union step between models. Docker
allows models to be executed in different scenarios on various
platforms, using distinct development languages that run on
multiple operating systems. In the presented simulation scenar-
ios, we used containers running NetLogo’s Open Sugarscape
2 Constant Growback and JaCaMo’s Gold Miners with minor
adaptations to validate the approach feasibility.

The prototype presented allowed agents to move freely
between models, sharing all agent information with respective
models and reducing the complexity of the code adapta-
tion, demonstrating that it is sufficient but straightforward
to understand the proposed approach better. The migration
of agents between models occurs at runtime. The motivation
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for this migration of an agent from one system to another
can be different, usually of the developer’s choice, such as
execution failures, self-will, or some trigger. In addition, we
can deal with conflicts of interest between the new agents
when designed to work outside of that model.

In future work, we want to explore new triggers that make
agents switch models, such as geographic boundaries and
parallel models. Geographic boundaries are models where,
when the agent reaches the edge of the environment, it moves
to the other model. Parallel models are models where the same
agent participates in more than one model simultaneously, but
each model evolves particular attributes of the agent. Finally,
the architecture implementation supports two widely used
agent platforms, NetLogo and JaCaMo. However, we want
to go further and support other agent platforms, such as JADE
(Java-based) or Mesa (Python-based).
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