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Abstract—The understanding of the functional aspects of 

objects and tools is of paramount importance in supporting an 

intelligent system in navigating around in the environment and 

interacting with various objects, structures, and systems, to help 

fulfil its goals. A detailed understanding of functionalities can 

also lead to design improvements and novel designs that would 

enhance the operations of AI and robotic systems on the one 

hand, and human lives on the other. This paper demonstrates 

how a particular object – in this case, a frying pan – and its 

participation in the processes it is designed to support – in this 

case, the frying process – can be represented in a general 

function representational language and framework, that can be 

used to flesh out the processes and functionalities involved, 

leading to a deep conceptual understanding with explainability 

of functionalities that allows the system to answer “why” 

questions – why is something a good frying pan, say, or why a 

certain part on the frying pan is designed in a certain way? Or, 

why is something not a good frying pan? This supports the re-

design and improvement on design of objects, artifacts, and 

tools, as well as the potential for generating novel designs that 

are functionally accurate, usable, and satisfactory. 

Keywords—functional understanding, functional 

representation, knowledge representation for function and 
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I. INTRODUCTION 

While an intelligent autonomous system (IAS) navigates 
around and interacts with the environment and the objects 
within it, there are at least two aspects of intelligent processing 
that feature prominently in its activities. Firstly, it has to 
recognize the structures and objects in the environment, and 
secondly, it has to understand what they afford it – i.e., the 
functions of these structures and objects that may support its 
activities and problem solving processes. Currently, the field 
of computer vision concerns primarily the former – i.e., object 
or structure recognition: labeling an object (e.g., a cup) or 
structure (e.g., a wall) as belonging to a known class [1]. Much 
less work in computer vision in particular and in AI in general 
has been devoted to the second aspect – function 
understanding [2]–[9]. This paper proposes a general 
knowledge representation language and framework that 
allows an IAS to characterize and understand the functions of 

objects, structures, and systems, hence supporting its 
intelligent activities such as problem solving processes to 
satisfy its goals and needs. 

There have been some attempts at recognizing the 
functionalities of objects and tools [4], [6]–[9]. Functionalities 
can be represented in a shallow [8] or a deeper level. In Ho [4] 
and Wu [9], the detailed constructions of the objects involved 
are represented, and interactions between objects and humans 
are considered and simulated to elicit the functionalities 
involved, going one step further than [8] in characterizing the 
understanding of the functions. However, there is still no 
deeper level of understanding such as being able to explain 
why certain constructions are present in the object/tool, and 
there is also no general framework proposed to unify all kinds 
of situations involving functioning and functions of 
objects/artifacts/tools. 

Ho [10] laid out a unified and general framework for 
characterizing functions, using a representational language 
that employs a fixed, limited, and general set of concepts and 
links for representing functional concepts in general situations 
(the CD+ representational framework). In this paper, this 
framework is applied to answer specific “why” questions 
concerning the functionalities of a cooking tool – the frying 
pan.  

Currently there are generative AI systems that can 
generate many novel variations of objects, structures, and 
designs [11], [12]. Our proposed method would take these 
generated forms as starting point and evaluate the suitability 
of these novel forms for certain functionalities. As a result, the 
design of objects could be improved accordingly, and novel 
objects could be identified as well. 

II. MOTIVATION AND BACKGROUND 

Unlike the process of recognition, where the end result is 
usually a label attached to a certain structure or object, the end 
result of the process of function understanding involves some 
descriptions of the function and functioning of the system, 
structure, and object involved. For example, to characterize 
the functioning of a kettle, we might say, “a kettle works by 
employing some electrical heating elements placed in its 
interior, which, when electricity is passed through them, they 

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 121



heat up, and the heat is transferred to the water that is also 
placed in the kettle’s interior in contact with these heating 
elements. After some time of heating the water, it reaches the 
boiling point and boils.”   

In order for a machine or IAS to really understand the 
function and functioning involved, the “meaning” or the deep 
structures of the sentences above have to be encoded, 
elucidated, and represented in some machine processable 
computational structures. Meaning representation is usually 
addressed by the fields of linguistic semantics [13]–[16]  and 
computational linguistics [17]–[19]. 

Among the various attempts in linguistics and 
computational linguistics, it has been identified in [10] that 
conceptual dependency (CD) theory of Schank [20]–[23] is 
the most suitable deep meaning representational framework to 
be applied to the characterization of functionality. The main 
reason for this is that an adequate functional characterization 
of any system, structure, or object calls for a representational 
systems that can deal with specifications of complex 
causalities between events, objects, and structures, and CD 
provides just such a causal framework. Ho [10] extended the 
original CD framework to CD+, incorporating new constructs 
that provide for a more complete framework for the 
representation of functionality. 

Another relevant domain of AI research is the recent work 
on recognizing and characterizing human activities in various 
environments [24]–[31]. These works can be supplemented by 
CD+ to capture the complex causal structures inherent in the 
characterizations of many complex functional concepts. 

III. THE REPRESENTATIONAL FRAMEWORK 

It is instructive that we first describe the basic 
representational constructs of CD+ [10]. 

            (a)                                                 (b) 

                                             (c) 

Fig. 1. CD+ representations for illustrating the basic CD+ constructs. (a) 

“Person pushes the door open.” (b) “Person moves the large box from the 

chair to the table with a pair of tongs. (c) Person wants something. 

Fig.1 provides three examples of CD+ representations. In 
Fig. 1(a), the event represented is “Person pushes the door 
open.” In CD+, an event is a “conceptualization” linking a 
subject and an action. In this event, “Person” is the subject, 
and “PUSH” is the action. The link linking them is a 
“conceptualization” link (a double arrow). The object of 
PUSH in this case is Door - an object (“o”) link is used. There 

is actually a causality present in this statement that is not 
explicit, that is, the pushing of the door causes the door to 
acquire the state of “Open.” A causal link is the downward 
arrow with a vertical line going down its center. The double 
arrow with a line going down its center is the “state” link. 

In addition, there are two kinds of constructs that elaborate 
on the symbols in this representation. The Structure Anchor 
(SA) is a structural specification of symbols that are objects. 
Person and Door are both symbols pointing to certain real 
world physical constructs through SA. These structures are 
detailed models that could be represented by using, say, 
vectoral constructs. Another kind of elaboration is called the 
CD+ Elaboration (CD+E). This kind of link elaborates 
actions, and points to a specification of how the action 
involved is executed. This elaboration could in turn be 
specified in the form of a CD+ representation.  

Fig. 1(b) is a representation of the event “Person moves 
the large box from the chair to the table.” The Dir link 
specifies the direction of movement. The SIZE of the box, 
LARGE, can be specified using a “property” link. “I” is an 
Instrument (I) link.  

Fig. 1(c) is the representation of the conceptualization 
“Person wants something.” When a person wants something, 
the person CONCePtualizes (CONCP) that if that something, 
which could be an event, represented as another 
conceptualization (shown as the usual double arrow bounded 
by a box), were to come true in the future, the person is 
“Pleased.” In the figure, “c” stands for “if” (conditional), and 
“f” stands for “future.” 

Having described the basic representational constructs, we 
next turn to the fleshing out of the function of a frying pan. 

IV. THE REPRESENTATION OF FRYING AND THE FUNCTION OF 

A FRYING PAN 

In this section, we describe the processes of cooking and 
frying using CD+. 

Given any activity, whether it is those of more immediate 
current concern such as baking, frying, cooking, or all other 
activities that are associated with human day-to-day 
functioning, there is usually background knowledge 
associated with it. The background knowledge “sometimes 
people like to eat cooked food” puts cooking in the context of 
certain human needs. We begin with a discussion on this. 

A. Basic Functioning and Process of Cooking and Eating – 

Background Knowledge 

Fig. 2(a) shows the representation for the 
conceptualization of “Person wants to eat well-cooked food.” 
(Of course, a person may also want to eat raw food at some 
other times.) This is the same representational structure as that 
of Fig. 1(c). The state of “well-cookedness” is represented as 
COOKED(WELL). Note that the state of “well-cookedness” 
(W) determines in a fuzzy way, Person’s satisfaction (S). This 
in turn determines the degree of being “Pleased” (P). 

In a number of places in this paper we use predicate-like 
representations such as COOKED(WELL), In(Spatula, 
Frying-Pan), Centered-On(Frying-Pan, Burner), etc. and we 
often omit the first argument if it is clear, such as Centered-
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On(Burner) in Fig. 3(a) because this is part of the elaboration 
of the main concept Frying-Pan. 

For a human being to determine that something has been 
“cooked” or “well-cooked”, she has internal sensing criteria 
in her gustatory system to define what is meant by something 
being “cooked” or “cooked-well,” Humans also often 
experience and learn the association of certain visually 
identifiable attributes (externally or internally) and the degree 
of being cooked. Thus COOKED(WELL) can be determined 
by a human or AI through vision. 

               (a)                                              (b) 

 

                    (c)                                               (d) 

Fig. 2. Background knowledge on cooking and eating. (a) Person wants to 
eat well-cooked food. (b) Person wants to eat a Satisfactory Quantity (SQ) 

of well-cooked food when hungry at mealtime. (c) When hungry at 

mealtime, Person wants to eat a Satisfactory Quantity (SQ) of food, and 
Person also wants to start eating within a Satisfactory amount of Time (ST, 

typically, say, about 30 minutes) of feeling hungry. (d) A typical cooking 

process. Here we introduce an “enable” link – the cause arrow topped with 

a horizontal line [10]. 

Fig. 2(b) shows the representation for the 
conceptualization of “Person wants to eat a Satisfactory 
Quantity (SQ) of well-cooked food when hungry at 
mealtime.” Given a certain quantity of food (Q), the degree of 
satisfaction (S) is a fuzzy function of Q, and 
HUNGRY(MEAL-TIME) is also a fuzzy function – above a 
certain degree of hunger, the want to eat food is (strongly) 
triggered (the cause link on top). Pleased is now a function of 
COOKED(WELL) and SQ. 

There could be situations in which a smaller quantity of 
food is first cooked and served, and then as the person is 
eating, more is cooked and served (e.g., the Japanese dining 
style known as Omakase). But the above is one satisfactory 
situation. 

Fig. 2(c) shows the representation for the 
conceptualization of “When hungry at mealtime, Person 
wants to eat a Satisfactory Quantity (SQ) of food, and Person 
also wants to start eating within a Satisfactory amount of Time 
(ST, typically about 30 minutes) of feeling hungry.” 

 

                                     (a) 

 

                                     (b) 

Fig. 3. (a) FRYING PREPARATION process. (b) FRYING process. 

In Fig. 2(d) we show the representation for a typical 
cooking process. The first step of the process is Physically 
TRANSfering (PTRANS) the food to be cooked from the 
Storage area to the Cooking Tool (Frying pan for frying, oven 
for baking, etc.). A new kind of link, “temporal,” is introduced 
here in which the first conceptualization flows to the next one 
after some time.  

How are the various causal links in Figs. 2(a) – (d) 
learned? A causal learning process which is not explored in 
this paper but which has been extensively studied elsewhere 
[32]–[37] identifies certain temporal associations (first, put 
well-cooked food in mouth, then experience pleasure) as 
causal relations.  

B. Observed Functioning and Process of Frying 

Assume that there is a process similar to that described in 
prior work such as that in [24]–[26], in which human daily 
activities in a house, say, are observed, learned, and encoded. 
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A possible CD+ encoding of the frying process is shown in 
Fig. 3. 

In Fig. 3, we divide the process into FRYING-
PREPARATION and FRYING proper (in reality these stages 
are contiguous). Fig. 3(a) shows that the FRYING 
PREPARATION process consists of first PTRANSing the 
Frying-Pan from the Storage to the Burner on a Stove. It is 
positioned Right-Side-Up, Centered-On the Burner, and is 
oriented with the Handle facing the Outside of the Stove. The 
meaning of these spatial terms are pre-defined as grounded 
concepts or near-ground concepts as articulated in [10], [38].  

In this first step, the details of the PTRANS action is 
described in a CD+E which is the “Action Plan for (Optimal) 
PTRANSing of Frying-Pan from Storage to the top of the 
Burner, positioned accordingly.” This Action Plan can be 
learned from observation, or obtained from a motion planning 
process, such as described in [39], [40]. 

The other steps are self-explanatory, and the process ends 
with Burner changing state from Cold to Hot. 

After the process of FRYING-PREPARATION, the 
process of FRYING begins (Fig. 3(b)). Typically, for a right-
hander, Person would use Left-Hand to GRASP 
Handle(Frying-Pan) and Right-Hand to GRASP 
Handle(Spatula). 

Also, typically, when a person is frying something, she 
would sometimes stir the food pieces around to mix them and 
sometimes flip the food pieces so that different sides of the 
food pieces get cooked. These two actions may take place in 
any sequence, but they each may be executed, say, roughly 
equally often. At the beginning of each action, the person 
usually forms some thoughts about which food-piece should 
be “operated on” next (e.g., “that piece looks uncooked, let’s 
target to flip it next…”, or “these pieces are not well mixed, 
let’s target to stir them around, ” etc.). This is an MBUILD 
(Mental reasoning to BUILD some internal mental 
representations) process in CD+ [10], [20], which could 
determine whether STIR or FLIP is to be executed as shown 
in Fig. 3(b). 

A typical end-process test would be when “all food pieces 
in the frying pan are cooked AND all food pieces in the frying 
pan are evenly (well) mixed.” Having the food well mixed is 
a basic “want” of a typical person. 

The criteria of “COOKED(WELL)” and 
“MIXED(EVENLY)” are also fuzzy functions. The definition 
of “MIXED(EVENLY) is described in Section 4.7. These 
terminating conditions could be inductively derived through 
many instances of observation, or through background 
knowledge such as that in Fig. 2(a). 

Fig. 4 shows the processes of STIRring and FLIPping. 
These are self-explanatory. Longish objects have a long axis 
and two short axes [38]. (Fig. 6(a) illustrates the positioning 
of the spatula in the STIRring mode.)  

One thing to note is that in the FLIPping process, the 
spatula has to be inserted underneath the food pieces in a 
“fast” insertion process, otherwise, Blade(Spatula) would just 
push the target food-pieces around and not be positioned for 
the FLIPping step. Also, after LIFTing the food, a Rapid-

FLIPping action is executed, otherwise, instead of flipping the 
food-piece(s), they may just fall back to the frying pan with 
the respective faces still facing in the same directions. We 
made assumptions on the various angles indicated in Fig. 4 
but they are supposed to be derived from real-world 
observations. 

 

(a) 

 

(b) 

Fig. 4. (a) STIRring process. (b) FLIPping process. 

There could yet be other ways to STIR and FLIP Food-
Piece(s) and these could be added to the processes in Fig. 4 as 
disjunctive processes to achieve the same ends. 
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C. Cooking/Frying Success Condiitions 

 There are two further conditions that must be tested 
before the success of the cooking/frying process could be 
ascertained. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. (a) Satisfaction from the time taken to cook and the amount of food 

that is retained in the frying pan. (b) Conditions in (a) plus the conditions in 

Fig. 3(b). (c) The contrapositive of (b).. 

As stated in Fig. 2(c), a person typically wants to start 
eating a sufficient quantity (SQ) of food within a certain time 
(ST) of beginning to feel hungry. Let’s assume that this time 
is about 30 minutes. The system could infer that completing 
each frying or whatever kind of cooking process within ST is 
a condition of “satisfaction,” and that Person with be Pleased. 
This is stated in Fig. 5(a). 

Now, in whatever cooking process, especially in a frying 
process, food pieces could be lost due to excessive STIRring 
or LIFTing and FLIPping. Hence, another satisfaction 
condition is that the quantity of food pieces at the end of the 
frying process should be, perhaps, typically larger than 95% 
(say, through observation what is typically acceptable) of 
what the frying process started with. The satisfaction with 
regard to this is also a fuzzy function. 

Fig. 5(b) combines all the 4 conditions, including 
COOKED(WELL) and MIXED(EVENLY).  

Fig. 5(c) is a contrapositive of Fig. 5(b), which is that if 
any of the 4 conditions is not met, Person would not be 
Pleased and it would cause Person to HALT the process.  

Later in Section 4.4, Fig. 5(c) would be used to judge if 
certain frying tools (Frying-Pan and Spatula) with certain 
designs can adequately function to support frying.  

D. Understanding the Frying Process 

 With these representations, the temporal links can be used 
to answer “what” questions. If the question is “What happens 
after Food-Pieces are placed inside Frying-Pan?” The answer 
would be “Person then turns on Burner.” (Fig. 3(a)).  Causal 
links could be used to answer “why” questions. For example, 
if the question is “Why Person is not Pleased with the frying 
process?” The answer could be “Because the frying process 
took more than 30 minutes.” (Fig. 5(c)). At this stage, the 
system does not seem to possess the representations for 
answering questions related to the causal functions of the 
frying pan and the spatula, and for that matter, the burner, in 
supporting the cooking process of turning the food pieces 
from uncooked to well-cooked, and also well-mixed in the 
frying pan. If we look at Fig. 3(a), it does show that Burner is 
turned on, and it changes from Cold to Hot, but there is no 
knowledge that it is the heat that is transmitted through the 
frying pan placed on top of Burner, that in turn gets 
transmitted to the food placed in the frying pan that causes the 
food to be cooked. 

Similarly, in Fig. 3(b), it is the stirring and flipping actions 
that resulted in the well-mixing and well-cookedness of the 
food pieces, but there is no explicit causal links here. 

There needs to be further background knowledge of 
physics of heat and heat transfer across metal, as well as 
physics of the more mechanical aspects of things such as 
pushing, lifting, flipping, etc. that will elicit the causal 
understanding. 

In the interests of paper length, we assume that this 
knowledge of physics can be learned and encoded in CD+ to 
support reasoning to be discussed. 

E. The Function of the Frying Pan’s Side 

 In this section we begin with the understanding of how 
the frying pan functions to support cooking in general and 
frying in particular, before we present the processes that 
identify what is wrong with certain other designs that cannot 
fulfil the function in a satisfactory manner. 

The title of this section seems a little narrow – we are only 
looking at the function of one part of the frying pan - its Side, 
shown in Fig. 3(a). This is mainly because we will only be 
considering a small sets of physical knowledge related to basic 
physical interactions. For example, to understand the function 
of the base of the frying pan, which is partly to transmit heat 
from Burner to Food-Pieces, we need background knowledge 
on heat. However, the consideration of the function of the 
frying pan’s side provides the paradigm for reasoning about 
the other parts of the frying pan, or for that matter, other 
objects and tools. 

In Fig. 6(a) we show the cross-section of the stirring 
process, which, according to the encoding in Fig. 4(a), 
involves flipping the spatula “upside-down” as shown and the 
edge of the blade is used to touch and push the food pieces 
involved. 

Now, we can set this Fig. 6(a) configuration up in a 
simulator such as the Unity engine (www.unity.com) and have 
it simulate what would happen after executing some stirring 
action. The processes outlined in Fig. 3(b) (of the entire frying 
process) and Fig. 4(a) are used to direct the simulation 
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process. Naturally, the simulator would generate the expected 
consequences: the food pieces staying within the confines of 
the frying pan. 

 

               (a)                                                 (b) 

 

                     (c)                                                 (d) 

Fig. 6. (a) The STIRring situation. (b) The FLIPping situation. (c) A “frying 

pan” with a very low side. (d) A “frying pan” with an excessively high side. 

The handle is omitted here. 

However, the physics reasoning engine of Unity has all the 
physics rules built-in and they are hence implicit and cannot 
be tapped directly for reasoning about causality. This is when 
the explicitly encoded rules physics becomes useful (which 
we have mentioned at the end of Section IV(D) that can in 
principle be encoded in CD+). 

Physics rules dictate that the pushing action would 
transmit forces over some of the food pieces, and ultimately 
the forces would reach some of the food pieces right next to 
and are in contact with the side. Now, as the side is immobile, 
the food pieces right next to it and are contacting it would be 
immobile too and stay within the frying pan. Hence the 
following conclusion can be derived: “The side of the frying 
pan causes the food pieces not to go beyond the confine of the 
frying pan.” 

Ho [10] describes a counter-factual process that can also 
be executed to infer the functions of the various parts of an 
object. In this case, suppose the AI system takes a mental 
action of removing the side of the frying pan, and then execute 
a simulation of the stirring process of Fig. 4(a). If the Unity 
engine is then used to simulate the consequences, it would find 
that the food pieces would spill out of the frying pan’s confine. 
(These processes of mental reasoning and activating 
simulation, termed “MENTAL EXPERIMENTS,” can be 
represented in CD+ format, as shown in (Ho 2022). Therefore, 
the AI system observes that “had the side of the frying pan not 
been there, the food would spill outside the frying pan during 
the stirring process,” (representable in CD+) and concludes 
that “the function of the side of the frying pan is to enable the 
food pieces to stay within the base of the frying pan during the 
stirring process” (also representable in CD+). 

This function of the Side can also be revealed in the 
flipping process shown in Fig. 6(b). 

F. Why is that a Good or Not a Good Frying Pan? 

 We are now armed with the devices that allow an AI 
system to reason about whether certain tool/artifact/object can 
satisfy certain functional requirements, and if not, why not 
(i.e., providing explanations). 

Fig. 7 shows the overall process of functional reasoning. 
Given an object to be tested for frying function, the 
FUNCTIONAL REASONER deposits the object involved 
into a SIMULATION ENVIRONMENT (a buffer of sort). 
(The structure of Fig. 7 had been earlier proposed in [4], [10].) 
Then the reasoner follows the processes dictated by Fig. 3(a) 
for FRYING-PREPARATION (this representation is stored 
in the CONCEPTUAL CORE). There is a module called 
PHYSICAL REASONER that contains both Unity’s implicit 
knowledge (or for that matter, the knowledge in any 
simulation engine) as well as possibly explicitly stated 
knowledge of physics (say, in CD+). All these modules and 
processes are subparts of a more general Unified General 
Autonomous and Language Reasoning Architecture 
(UGALRA) described in [10]. 

Next, the FRYING processes described in Figs. 4(b) and 
5 are executed accordingly. A slightly tricky situation is, a 
usual simulator may not be able to simulate how well-cooked 
certain piece of food may look after certain amount of heat is 
added to it. For just this purpose, we could build in a rule that 
says that each piece of food has to have each of its various 
faces touching Top(Surface(Base)) of Frying-Pan for X 
minutes in total. In a typical, say, 20-30-minute frying 
process, X could be in the order of 3-5 minutes. 

 

Fig. 7. The various modules of FUNCTIONAL REASONER, PHYSICAL 
REASONER, SIMULATION ENVIRONMENT, and CONCEPTUAL 

CORE interacting with each other for functional reasoning. See text for 

explanations. 

The MIXED(EVENLY) condition can be defined as 
follows: the entire area of Food-Pieces is first divided into, 
say, 10 or more subareas, and if the number of different kinds 
of food pieces in each of the subareas are all about equal, then 
the MIXED(EVENLY) condition is met. 

The FUNCTIONAL REASONER could first end the 
FRYING process through the two conditions stated in Fig. 
3(b) – COOKED(WELL) and MIXED(EVENLY), and then 
check if the other two conditions, “< ST” and “>95%”, stated 
in Fig. 5(a) are met. If so, “Person is Pleased” and the frying 
pan fulfils its function. 

At this point, the system can assume that all the individual 
steps of the entire frying process must have been carried out 
correctly, thereby leading to the final positive result.  There 
are two aspects involved: the activities carried out at each step, 
and the tools involved in supporting those activities. 
Therefore, Burner must have fulfilled its function, so did 
Frying-Pan and Spatula. At this stage, the system can respond 
with “it is a good Burner,” “it is a good Frying-Pan,” “it is a 
good Spatula,” “it is a good Stove,” etc. (“etc.” because the 
list could go on and include “it is a good heat source supplied 
to the burner” and so on.) 
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Suppose the system is asked a further detailed question 
such as “WHY is that a good frying pan?” The system would 
consider the 4 conditions in Fig. 5(b) each in turn to see how 
the frying pan and its construction cause the condition to be 
satisfied. 

Suppose the system considers the condition “leftover 
quantity of food pieces in frying pan must be > 95% of what 
was there in the beginning of the frying process,” and tries to 
identify how the frying pan may cause that to happen, it could 
carry out a MENTAL EXPERIMENT like mentioned in the 
previous section, in which the functioning of the frying pan in 
the process is dissected. At this stage, the system may not 
know that it is the frying pan and its construction that allow 
this to happen, and it has to consider all the tools involved and 
their parts. 

Because the system removes ONE factor in each step of 
its consideration, it can conclude that the observed 
unsatisfactory consequent is cause by THAT factor. 
Therefore, when the Side of the pan is being considered, the 
reasoning is, “had Frying-Pan not have Side, Food-Pieces will 
not stay in Frying-Pan and the >95% condition fails.” 

The system could respond with an output such as “That is 
a good frying pan because its side prevents food pieces from 
spilling outside of the frying pan in the frying process.” 

Likewise, there are other aspects of the frying pan’s 
function that can be deduced: “That is a good frying pan 
because its base is not too small to allow stirring and mixing 
of food evenly,” “That is a good frying pan because its base is 
made of metal which allows heat to transfer from the heat 
source to the food,” etc. 

Suppose in another mental experiment, the system 
removes Blade of Spatula instead (Frying-Pan and other 
things stay constant), then the consequence would be that the 
STIRring process is very inefficient and the FLIPping process 
is nearly impossible. Food-Pieces will still get pushed around, 
resulting in some mixing, and some may occasionally roll 
over, resulting in all sides of Food-Pieces get cooked, but by 
the time the process finishes, it would be much longer than 
ST. In this experiment, the >95% rule may still be satisfied. 
The system can continue to drill down further to understand 
WHY a Spatula without Blade or with a poorly designed 
Blade cannot function well to support the process of frying. 

In Fig. 6(c), we show a frying pan that has a very low side. 
A similar process of reasoning will lead to the conclusion that 
“That is NOT a good frying pan,” and “That is not a good 
frying pan BECAUSE its side is too low and in the process of 
frying food-pieces will spill outside the pan and much more 
than 95% of food-pieces will be lost.” 

Fig. 6(d) shows a situation in which the side of the frying 
pan is way too high. In simulation, it is likely that the time 
taken for “COOKED(WELL)” will be too long because the 
spatula cannot effectively flip the food pieces around so that 
all the sides of the food pieces can be properly cooked within 
a reasonable time (<ST), though in principle the sides could 
still ultimately be cooked as the pushing action may still flip 
the pieces occasionally. Fig. 6(d) also shows that even if the 
entire Spatula is lowered into Frying-Pan to obtain a good 
angle for the Blade (the “dotted” Spatula), the FLIPping 

action still cannot be properly executed. The 
MIXED(EVENLY) condition could probably still be met 
within ST. 

In a similar reasoning process as discussed above, it is 
identified that it is the height of the side of the frying pan that 
causes the inability in positioning Blade(Spatula) in a correct 
way as stipulated in Fig. 4(b) for the effective executing of the 
Fast-INSERT step, as a result the FLIPping act cannot be 
successfully carried out (i.e., no Action Plan exists for 
FLIPing to be executed properly). Thus, this is WHY the 
frying pan is not a good frying pan. 

A verbal explanatory output of the system could be 
something like “This frying pan is not a good frying pan 
because its side is too high, which prevents the spatula from 
being able to adopt an angle to be able to flip the food pieces, 
and this leads to a much longer time than that of ST to reach 
the well-cooked states of all the food pieces involved, and this 
in turn leads to the person involved not being pleased.” 

With other knowledge such as heating and burning effects 
on various materials and the human body, we can present 
utensils like a frying pan or a spatula made of paper or 
porcelain, or with inadequate handle length, etc., and have the 
system explain why they are not good frying pans, or spatulas. 
(If the handle of the frying pan or spatula is too short, the 
human or robot’s hand could be burned in the process of 
frying – i.e., in the process of carrying out the frying actions 
as stipulated in the representation of Fig, 3(b).) 

V. CONCLUSIONS AND FUTURE WORK 

This paper demonstrates that the representation and 
understanding of functionalities involve several aspects of 
events taking place in the environment and requires the use of 
a representation language. These include the relevant contexts 
in which certain processes and functioning take place (in our 
particular example, it would be cooking and frying), and in 
which certain objects and tools participate in the causal 
processes that support the functionalities involved. There is 
also usually some background knowledge involved (in our 
particular case, this would be the eating and cooking 
background knowledge of Fig. 2, and the physics knowledge 
discussed). And we have successfully demonstrated that 
whether it is background knowledge, knowledge about the 
particular causal effects that a certain object or tool have in its 
interacting with other objects to elicit certain functionalities, 
or the knowledge about the entire context in which the 
functioning takes place, in which the adequacy of the objects 
and tools involved in supporting the desired functionalities is 
evaluated and understood, they can all be represented using 
the CD+ representational language and framework [10]. 

This proposed method and framework could work with 
certain current generative AI systems [11], [12] in evaluating 
the novel designs they generate, thus identifying which novel 
design would work well functionally in certain given 
environments to serve certain purposes. 

Future work includes investigating how this methodology 
could be extended to many other daily-encountered tools and 
objects, as well as more specialized tools and objects found in 
factories and other business environments such as offices, 
restaurants, gas stations, etc. to represent and understand the 
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functionalities involved so as to be able to judge how well they 
can fulfil certain desired functionalities as well as how new 
and better designs can be concocted. Future work will also 
flesh out the detailed mental experimental processes in CD+ 
form for reasoning about design improvement and novel 
design generation. The other main work to devote future effort 
to would be a complete program implementation of the 
representational constructs and the attendant reasoning 
processes. 
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