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Abstract—Multi-objective optimization problems with various 
attributes are studied for two decades. Sparsity, as one of them, 
sparked many researchers. However, they usually focused on 
sparse large-scale bi-objective optimization. The result is 
unsatisfying when applying their algorithms to optimization 
problems with more than three objectives. To solve this issue, 
this paper selects a classical algorithm for large-scale sparse 
multi-objective optimization problems and proposes the 
reference points and adaptive crossover and mutation 
strategies to the original algorithm, adapting it to the sparse 
many-objective optimization problem. After a series of 
experiments, the algorithm with this modification mostly 
dominates other state-of-the-art multi-objective optimization 
algorithms. Although several best performance metrics are 
obtained from other competitors, the highest sparsity on the 
Pareto optimal solution is still completed by the proposed 
algorithm.  

Keywords—Evolutionary algorithm, large-scale multi-
objective optimization (MOP), sparse Pareto optimal solutions, 
many-objective optimization.  

I. INTRODUCTION  
Multi-objective optimization problems (MOPs) refer to 

problems with contradictory and mutually influenced 
objectives and the problem is solved when its objectives are 
optimized simultaneously, which are studied in various 
engineering fields for decades. Back in 1998, Schaumane[1] 
utilized Genetic Algorithm (GA) for the MOP of a reinforced 
concrete structure and for an urban planning problem. 
Concrete Problem is to minimize material cost and 
construction time while the urban problem aims to minimize 
the traffic travel time, the cost, and the change in land use. 
For now, Wei[2] design a Memetic Approach to solve the 
time-dependent agile earth observation satellite scheduling 
problem with two objectives: maximizing the weights of 
completed tasks and the imaging quality of the observation 
task. In a MOP, because its objectives are conflict with each 
other, there is no perfect solution with the best optimization 
for every objective. In order to provide adequately 
satisfactory solutions, Pareto optimal solution is proposed. It 
includes a set of solutions with a common nature that there 
does not exist a solution that is better in one objective and not 
worse in other objectives. Thus, finding the Pareto optimal 
solutions is the goal of solving MOPs. 

 
1# The authors contributed equally to the 
paper. 

The multi-objective evolutionary algorithm (MOEA) is a 
kind of intelligent algorithm, aiming to solve MOPs. 
Compared to the mathematical programming methods, which 
can quickly obtain a single solution in high-dimensional 
space, the MOEA is an expert in the tradeoff among 
conflicting objectives and generates a set of Pareto optimal 
solutions. However, due to the exponentially increasing 
decision space with the number of decision variables, 
traditional MOEA coverage is very slow, known as the curse 
of dimensionality[3]. To improve them, many operators and 
search strategies are proposed to solve Large-Scale Multi-
Objective Optimization Problems (LSMOPs)[4, 5] according 
to the specific attribute of problems, such as constrained[6], 
expensive[7], multimodal[8], sparse[9], preference[10] and 
so on. 

Among these attributes, the sparse LSMOP means the 
most decision variables of the Pareto optimal solutions are 
zero. There are many applications for sparse LSMOP, such as 
feature selection[11], critical node detection[12], neural 
network training[13], pattern mining[14], and so on. In order 
to solve this kind of problem, Tian proposed an MOEA for 
solving sparse LSMOPs, called SparseEA[9]. This algorithm 
contains a similar framework with NSGA-II in mating and 
environmental selection since they both calculate and utilize 
the non-dominated front number and crowding distance. The 
creativity of Tian’s research is the masking strategy to 
guarantee the sparsity of the initial population. Based on it, 
many studies were made for improving its effectiveness. 
Kropp[15] proposed three evolutionary operators: varied 
striped sparse population sampling (VSSPS), sparse 
simulated binary crossover (S-SBX), and sparse polynomial 
mutation (S-PM), combined with NSGA-II, to greatly 
improve the algorithm performance. Jing[16] introduces a 
two-stages strategy which is decreasing dimensionality with 
low-dimensional binary weights and facilitating offspring 
evolution by the new hybrid encoding. Zou[17] proposed a 
dynamic sparse grouping strategy to group decision variable 
with a comparable amount of nonzero values and optimize 
them in one group, which achieve better performance than 
SparseEA in benchmark problems. 

However, these researchers all improve their algorithm in 
the same experiment scenario and the benchmark problems 
are all related to two objectives. In fact, the sparse LSMOPs 

*Corresponding author 
 

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 926



highly possibly contain more than two objectives, which are 
called many-objectives. For example, a neural network 
training problem, which is verified as a sparse LSMOP, may 
contain many objectives, such as optimizing the topology, 
weight, hyperparameters, diversity, and accuracy of the 
network[18]. In addition, Zhang[14]  set the patterning 
mining, a sparse LSMOP, as a bi-objective maximum 
problem and discover that two objectives cannot distinguish 
the importance of patterns in some contexts. In his research, 
the objectives in terms of support and occupancy cannot 
determine which is better between the two patterns because 
items in real life possess numerous features. Therefore, 
MOEA should be further studied for solving sparse LSMOP 
with many objectives 

We applied PlatEMO[19], a Matlab platform for 

evolutionary multi-objective optimization, to test the 
effectiveness of SparseEA for many-objective optimization  

 

Fig. 1. IGD Metric in Evolutionary Computation of SparseEA on 
Different Benchmark Problems with Many-Objectives 

problems. Fig. 1 displays the Inverted Generational Distance 
(IGD)[20] index of SparseEA for different many-objective 
problems with the increasing number of function evaluations. 
In Fig. 1, SMOP2, SMOP7, and SMOP8 are different 
benchmark problems and M is the number of objectives. 
Additionally, since IGD is the distance between obtained 
solution and the known optimal solution, the smaller value of 
IGD indicates the better performance of the MOEA. And with 
the increasing of number of evaluations, the IGD should 
decrease with an efficient algorithm, implying that 
evolutionary computing works. However, the IGD index is 
even increasing in some cases and exponentially increasing 
with more objectives, so SparseEA cannot solve many-
objectives problems effectively. To solve this issue, this paper 
proposes an improved SparseEA with Adaptive Cross-
Mutation (ACM) mechanism and Reference Point (RP) to 
solve the many-objective sparse large-scale optimization 
problem (SparseEA-M).  

The main contributions made by this paper are summarized 
as follows: 

(1) This paper firstly proposes the sparse many-objective 
problems with high value of research and some 
targeted strategies on the original SparseEA so that it 
is capable of solving many-objective problems. 

(2) We verify the RP, from NSGA-III, still performs well 
on sparse many-objective problems. Additionally, 
since the original evolutionary variant only contains 
bare crossover and mutation strategy, modification of 
this process is necessary and ACM, proposed in this 
paper, is an efficient way of improving the algorithm 
performance. 

(3) Our experiments indicate that the proposed algorithm 
dominates on most problems and although some 
problems do not, the higher sparsity can be still 
confirmed.  

The rest of this paper is organized as follows. Section II 
introduces the original structure of SparseEA, the 
modifications proposed in this paper, and the whole structure 
of SparseEA-M. Section III describes the experiment settings 
and results. Lastly, the conclusion is made in Section IV.  

II. EVOLUTIONARY ALGORITHM FOR SPARSE MANY-
OBJECTIVE OPTIMIZATION PROBLEMS 

A. The Framework of the Original SparseEA 
The structure of the original SparseEA contains two main 

steps: 1) Population initialization: firstly calculating the 
score of every individual decision variable by the Pareto non-
dominated front number and crowding distance. And 
randomly comparing two decision variables and setting its 
corresponding mask variable to 1 as the winner while that of 
the loser is 0, which should be multiplied by the real decision 
variables. In this way, the significant decision variables with 
higher scores are counted by multiplying with 1 while those 
peripheral parts are ignored by multiplying with 0 for 
generating the initial population, as the indispensable way of 
guaranteeing the sparsity; 2) Evolutionary variation: 
randomly selecting two parents and applying crossover and 
mutation strategies to change the values of the real decision 
variables and binary mask variables. Specifically, the 
crossover strategy is to randomly select and compare two 
non-zero elements from two parents’ mask variables 
according to their scores, and then, with each 1/2 probability, 
set the corresponding offspring’s mask variable of the 
winner to 1 or the loser to 0, ensuring the optimal of solutions. 
The mutation strategy is to randomly select and compare two 
non-zero elements from the offspring’s mask variables 
according to their scores, and then, with each 1/2 probability, 
set the corresponding offspring’s mask variable of the 
winner to 0 or the loser to 1, ensuring the diversity of 
solutions. 

However, the primary framework of the SparseEA 
possesses some disadvantages. The non-dominated front 
number and crowding distance are naturally unsuitable for 
analyzing many objectives, because the non-dominated front 
number exponentially increases with higher dimension of 
objectives, causing inefficient comparisons among solutions, 
and calculating crowding distance among many objectives is 
arduous. Furthermore, the many-objective property also 
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renders some challenges such as difficult convergence and 
solution distribution on Pareto Fronts (PFs). In order to 
ameliorate the original algorithm, inspired by NSGA-III[21], 
this paper introduces the RP to SparseEA. The purpose of the 
RP is to obtain the mapping relationship, the vertical distance, 
between the individual population and the corresponding RP, 
so that the population evolves closer to the RPs and the 
distribution of the RP is more uniform. Secondly, after the 
scoring of population initialization, the scores are not 
changed and without a relatively directed mechanism 
helping evolutionary variation, causing the crossover and 
mutation to be disorganized and wasteful. For this issue, this 
paper proposed ACM) to improve the effectiveness of the 
SparseEA. 

B. The Framework of the Proposed SparseEA-M 
The original SparseEA is divided into two parts: 

population initialization and evolutionary variant. Since the 
binary mask variables and scoring of every decision variable 
are creative and efficient, this paper adds improvements 
mainly on the second part. Fig. 2 shows the whole algorithm 
flowchart with two process parts and green highlighted parts 
are most of the proposed modifications. From those green 
highlighted parts, the first changed part is that parents are 
generated via binary tournament selection according to the 
non-dominated number and RP distances of solutions, instead 
of crowding distances from the previous algorithm. The 
second improved part is the PRs and PR distances should be 
updated for one evolutionary loop. The adapted parts from 3 
to 5 are related to the ACM mechanism. Based on the original 
crossover and mutation strategy with fixed probability, 
adaptive changes according to the Pareto rank of solutions are 
proposed. In this way, the better solutions should be selected 
for evolution with less probability since they may require less 
improvement while the worse solutions should be selected 
with a related higher probability for optimizing the whole 
population.  

For the two modifications, Firstly, RP refers to the 
selection of some representative target points in the multi-
objective optimization problem to evaluate the advantages 
and disadvantages of each solution. These target points 
should cover the entire PF as much as possible so that more 
un-dominated solutions can be found. The utilization of RP 
can effectively reduce the search space and improve search 
efficiency. Secondly, Adaptive Crossover and Mutation 
refers to the strategy of adaptively adjusting the crossover and 
mutation according to the state of the current population in a 
many-objective optimization problem. This allows the 
algorithm to better adapt to the current search space and avoid 
falling into the local optimal solution. The adaption of ACM 
can improve the convergence speed and search efficiency of 
the algorithm. Therefore, they both play significant roles in 
many-objective optimization problems, which can help the 
algorithm better adapt to the characteristics of the problem 
and improve search efficiency and accuracy. 

For creating RP, firstly, define M-dimensional RPs set 𝑉𝑉 =
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑀𝑀} . One coordinate value of RPs is 𝑣𝑣𝑗𝑗 ∈
{0
𝑑𝑑

, 1
𝑑𝑑

, … , 𝑑𝑑
𝑑𝑑

}  where ∑ 𝑣𝑣𝑀𝑀
𝑗𝑗=1 𝑗𝑗

= 1  and 𝑑𝑑  is the number of 
divisions for every objective. Let 𝐵𝐵 be (M-1) combinations 

of {0
𝑑𝑑

, 1
𝑑𝑑

, … , 𝑑𝑑+𝑀𝑀−2
𝑑𝑑

}, and change each 𝑏𝑏𝑖𝑖𝑗𝑗 ∈ 𝐵𝐵  to 𝑏𝑏𝑗𝑗𝑗𝑗 −
𝑗𝑗−1
𝑑𝑑

, 
where 𝑗𝑗  is the index of element and 𝑙𝑙  is the index of 
combination. Lastly, the coordinate value of RPs is 
calculated:  

 
 

 
Fig. 2. The proposed SparseEA-M algorithm framework. The process 

is divided into two parts: Population initialization and Evolutionary 
Variant. The green highlighted parts are the improvements. The red nodes 

label the improved parts. 
 

�
𝑣𝑣𝑗𝑗𝑗𝑗 = 𝑏𝑏𝑖𝑖𝑗𝑗 − 0, 𝑗𝑗 = 1 

𝑣𝑣𝑗𝑗𝑗𝑗 = 𝑏𝑏𝑗𝑗𝑗𝑗 − 𝑏𝑏(𝑗𝑗−1)𝑗𝑗 ,   1 < 𝑀𝑀 < 𝑗𝑗
𝑣𝑣𝑗𝑗𝑗𝑗 = 1 − 𝑟𝑟(𝑗𝑗−1)𝑗𝑗 , 𝑗𝑗 = 𝑀𝑀

                  (1) 

 
According to the RPs’ coordinate values from Equation 

(1), the solutions calculated during evolution would be get 
closer to these RPs. Specifically, the distance between the 
individual and RPs influences this solution’s Pareto rank. 
Less distance means the optimal of the individual. This 
improvement promotes the optimal solution distribution on 
PFs. 

ACM mechanism provides the adaptive crossover 
probability 𝑃𝑃𝑐𝑐  and mutation probability 𝑃𝑃𝑚𝑚  in evolutionary 
variation. The crossover strategy uses the method of partially 
matching crosses. The ACM mechanism is utilized to 
increase the evolutionary opportunities of superior 
individuals and improve the searchability of the algorithm. 
The adaptive crossing probability is: 
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                          𝑃𝑃𝑐𝑐𝑖𝑖 = 𝑃𝑃𝑐𝑐 ∗

max(𝑟𝑟1,𝑟𝑟2,…𝑟𝑟𝑛𝑛)−𝑟𝑟𝑖𝑖+1
max(𝑟𝑟1,𝑟𝑟2,…𝑟𝑟𝑛𝑛)

                       (2) 

                          𝑃𝑃𝑚𝑚𝑖𝑖 = 𝑃𝑃𝑚𝑚 ∗ max(𝑟𝑟1,𝑟𝑟2,…𝑟𝑟𝑛𝑛)−𝑟𝑟𝑖𝑖+1
max(𝑟𝑟1,𝑟𝑟2,…𝑟𝑟𝑛𝑛)

                         
(3) 

 
where 𝑃𝑃𝑐𝑐𝑖𝑖 is the adaptive crossover probability of individual 
𝑖𝑖, 𝑃𝑃𝑐𝑐 is the pre-set probability, n is the population size, and 𝑟𝑟𝑖𝑖 
is the Pareto rank of individual 𝑖𝑖 , and where 𝑃𝑃𝑚𝑚𝑖𝑖  is the 
adaptive mutation probability of individual 𝑖𝑖 and 𝑃𝑃𝑚𝑚  is the 
pre-set probability 

According to Equations (2) and (3), the crossover and 
mutation probability are both changed with the Pareto rank 
of individuals, which is obtained by the non-dominated front 
number. A higher Pareto rank renders lower crossover and 
mutation probability for every individual. 

 

 
Fig. 3. Reference Points on Pareto Fronts and Solution Population (M = 

3) 

Fig. 3 displays the relationship between RPs and the 
solution population. Since there are three objectives in this 
case, this figure is presented in three dimensions. In Fig. 2, 
the size of an individual indicates the Pareto rank. The larger 
nodes imply that it has a higher Pareto rank. According to 
Equations (2) and (3), these individuals on the higher Pareto 
rank would possess a lower probability to be selected for 
crossover and mutation, since they are closer to the optimal 
solutions, which accelerates coverage and maintains the 
optimal.  

Algorithm 1 is the pseudocode of the framework of the 
proposed SparseEA-M. Lines 1-6 complete the population 
initialization, containing the initial mask variable and 
decision variable, Pareto rank, RPs, and their distances. 
Lines 7-21 accomplish the evolutionary variations. Within 
this process, except for the original strategy, the ACM and 
RPs are added. The crossover and mutation strategies are 
made on lines 9-15. In these two processes, 𝑃𝑃𝑐𝑐  is the 
crossover probability of selecting two individual parents, 
while 𝑃𝑃𝑚𝑚  is the mutation probability of selecting two 
decision variables. After this variation, lines 16-21 update 
the Pareto rank, RPs and distances, and the population for the 
next evolution. Until the termination criterion is fulfilled, the 
final population, the Pareto optimal solution, is obtained.  

III. EXPERIMENTAL RESULTS 
For confirming the beneficial effects from the 

improvements, we first compare IGD in evolutionary 
computing by the original SparseEA and the proposed 
SparseEA-M. And then we test the original SparseEA, 
SparseEA-M, NSGA-III[21], MOEA/D-DRA, and 
CMOPSO on eight benchmark problems. The first two 
algorithms are introduced in Section II. NSGA-III, the first  

Algorithm 1 Framework of the Proposed SparseEA-M 

Input: N (Population Size) 

Output: PO (Final Population) 

1    D ← Number of decision variables; 

2    M ← Number of objectives; 

3    O ← ∅ 

4    [PO, Score] ← Initialization(N); // Calculate the score of 

every individual decision variable and set the mask 

variable according to the original SparseEA 
5    [𝐹𝐹1,𝐹𝐹2,𝐹𝐹3, …] ← Do non-dominated sorting on PO; 

6    V ← ReferenceePointsDistance(N,M,F); // Creating PRs and 

calculate the distances between solution F and PRs. 
7    While Termination criterion not fulfilled do 

8     PO’ ← Select 2N parents via binary tournament selection 
according to the non-dominated front number and Z; 

9     While PO’ is not empty do 

10      𝑃𝑃𝑐𝑐 ,𝑃𝑃𝑚𝑚 ← calculate crossover and mutation probability; 

11      [p, q] ← select two parents based on crossover probability 
𝑃𝑃𝑝𝑝𝑐𝑐 and 𝑃𝑃𝑞𝑞𝑐𝑐 ; 

12      [o.mask] ← Crossover(p, q, Score); // The crossover 

strategy from the original SparseEA. 
13      [𝑥𝑥1, 𝑥𝑥2] ← select two nonzero variable in o.mask based on 

mutation probabilities 𝑃𝑃𝑥𝑥1𝑚𝑚 and 𝑃𝑃𝑥𝑥2𝑚𝑚; 

14      [o.mask] ← Mutation( 𝑥𝑥1 , 𝑥𝑥2 , o.mask, Score); // The 
mutation strategy from the original SparseEA.  

15      [o.dec] ← GenerateDec(o.dec, p.dec, q.dec); // Update the 
real decision variables in the offspring based 

on original SparseEA. 
16     Delete duplicated solutions from PO; 

17     [𝐹𝐹1,𝐹𝐹2,𝐹𝐹3, …] ← Do non-dominated sorting on PO; 

18     V ← ReferenceePointsDistance(N,M,F); // Update PRs and 
calculate the distances between solution F and PRs. 

19     k  ←𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖| 𝐹𝐹1 ⋃… ⋃𝐹𝐹𝑛𝑛 | > = 𝑁𝑁𝑖𝑖 

20     Delete | 𝐹𝐹1 ⋃… ⋃𝐹𝐹𝑛𝑛 | − 𝑁𝑁  solutions from 𝐹𝐹𝑘𝑘  with the 
largest RPs distance; 

21     PO  ←𝐹𝐹1 ⋃… ⋃𝐹𝐹𝑛𝑛 ; 

22    Return PO; 

 
algorithm introducing RPs, is the upgrade on NSGA-II. 
MOEA/D is the algorithm separating many objectives into 
individual single objective with different weights and 
applying a weighted sum approach to integrate all objectives. 
MOEA/D-DRA introduces the Dynamic Resource 
Allocation (DRA) strategy to the original MOEA/D for 
extremely decreasing computing time, making it possible to 
solve many-objective problems. CMOPSO[22] proposes a 
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competitive mechanism to particle swarm optimization (PSO) 
for extending the original PSO to solve multi-objective 
optimization. These algorithms are the state-of-the-art 
algorithms for solving sparse multi-objective problems.  

The eight benchmark problems SMOP1 to SMOP8, with 
known Pareto optimal solutions, are proposed by Tian[9]. 

Tian analyzed the existing multi-objective benchmark 
problems (MOPs) and found their decision variables are not 
sparse on Pareto optimal solutions. To make them sparse, in 
short, the crucial modified part is to multiply a ratio 𝜃𝜃 (𝜃𝜃 ∈
[0,1]) with a parameter K, which indicates the number of 
decision variables related to the two landscape functions. 
Because this modification decreases K and a Pareto set of 
one example is [0,1]𝑀𝑀−1 × {𝜋𝜋/3}𝐾𝐾 × {0}𝐷𝐷−𝑀𝑀+1−𝐾𝐾  from 
their research, when K is smaller, the number of zero 
decision variables is increasing and the sparsity is achieved. 
More information refers to Tian’s study.   

A. Parameters Setting 
1) Problems: For SMOP1 to SMOP8, we set the 

population size N as 100, the numbers of objectives are 3, 5, 
and 10, the number of decision variables is 500, and the ratio 
𝜃𝜃 is 0.1 since the smaller value of 𝜃𝜃 implies a higher sparsity.  

2) Operators: the proposed basic crossover and mutation 
probability 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑚𝑚 are 1 and 1/𝐷𝐷, respectively. Similarly, 
the crossover and mutation probability of NSGA-III and 
SparseEA are 1 and 1/𝐷𝐷 . Additionally, in differential 
evolution in MOEA/D-DRA, the parameter CR is 1 and F is 
0.5. 

3) Termination criterion: the number of function 
evaluations for each test of one algorithm and one 
benchmark problem is 100 × 𝐷𝐷.  

4)  Performance Metric: The inverted generational 
distance (IGD)[20] is an index to measure the distances 
between obtained solutions and Pareto optimal solutions. 

The smaller value of IGD indicates better performance. 
Approximately 1000 optimal solutions on each PF of 
SMOP1 to SMOP8 are sampled by the proposed methods[9]. 
Each benchmark problem is run 30 times for abundant data 
results. In addition, the Wilcoxon rank sum test with a 
significance level of 0.05 and the Holm procedure[23] is 
made. The symbol “+,” “-,” “≈” means that the result from 
this algorithm is better, much worse, and similar to that of 
the proposed algorithm.  

5) Programming Environment: All experiments all made 
in the PlatEMO platform under MATLAB 2022a. 

B. Experimental Results 
For verifying the improvements of the proposed 

SparseEA-M,  the same test on IGD metric in the 
evolutionary computation of SparseEA-M is made and the 
comparison chart is shown in Fig.4. From this figure, the red 
line is SparseEA-M, which distinctly indicates a lower value 
and gradually decreases with the number of function 
evaluations. Since lower values mean better performance, the 
improvement is confirmed.  

With these parameter settings, these five selected 
algorithms are tested and the results are shown in Table I, 
which contains the median IGD values and interquartile 
ranges. Obviously, the most of best results are on SparseEA-
M, indicating the modifications are effective although there 
are several best results on other algorithms. The reason why 

TABLE I.  MEDIAN IGD VALUES AND IQRS FROM NSGA-III, CMOPSO, MOEA/D-DRA, SPARSEEA, AND SPARSE-M ON SMOP1 TO 
SMOP8, WHERE THE BEST RESULT OF EVERY ROW IS HIGHLIGHTED 

Problems M D NSGA-III CMOPSO MOEA/D-DRA SparseEA SparseEA-M 

SMOP1 
3 500 2.2204e-1 (6.21e-3) - 7.3664e-1 (3.88e-2) - 6.2285e-1 (2.97e-2) - 7.7108e-2 (3.77e-3) - 4.7936e-2 (1.78e-3) 
5 500 4.1919e-1 (5.67e-3) + 1.4826e+0 (7.31e-2) - 7.3120e-1 (4.94e-2) - 4.3987e-1 (2.72e-2) + 5.5286e-1 (1.87e-1) 

10 500 1.1278e+0 (2.12e-2) - 1.4722e+0 (1.21e-1) - 7.1919e-1 (4.81e-2) ≈ 7.8077e-1 (6.41e-2) - 6.7867e-1 (8.31e-2) 

SMOP2 
3 500 8.4262e-1 (1.80e-2) - 1.7389e+0 (2.65e-2) - 1.6843e+0 (1.51e-2) - 1.2679e-1 (7.20e-3) - 7.9664e-2 (4.69e-3) 
5 500 1.0173e+0 (1.15e-2) - 1.5446e+0 (3.86e-2) - 1.4331e+0 (3.51e-2) - 6.0520e-1 (9.58e-2) ≈ 5.2584e-1 (1.62e-1) 

10 500 1.8308e+0 (1.26e-2) - 1.4645e+0 (5.72e-2) - 1.1231e+0 (2.50e-2) - 9.2880e-1 (4.07e-2) - 7.3493e-1 (5.83e-2) 

SMOP3 
3 500 9.1202e-1 (1.97e-2) - 1.6584e+0 (6.79e-2) - 1.4370e+0 (3.24e-2) - 8.3991e-2 (3.73e-3) + 1.3801e-1 (1.95e-1) 
5 500 1.1395e+0 (2.00e-2) - 1.8182e+0 (4.28e-2) - 1.3137e+0 (4.76e-2) - 7.5168e-1 (1.97e-1) - 5.5680e-1 (1.04e-1) 

10 500 2.1766e+0 (1.52e-2) - 1.6354e+0 (6.02e-2) - 1.1126e+0 (2.91e-2) - 9.3613e-1 (1.31e-1) - 6.4587e-1 (4.56e-2) 

SMOP4 
3 500 3.1424e-1 (5.72e-3) - 6.3304e-1 (1.04e-2) - 6.2858e-1 (6.33e-3) - 6.1171e-2 (8.52e-3) - 2.6287e-2 (1.66e-4) 
5 500 2.8293e-1 (4.64e-3) ≈ 4.5212e-1 (2.88e-2) ≈ 3.6288e-1 (1.29e-2) ≈ 2.2479e-1 (2.95e-2) ≈ 5.4143e-1 (4.10e-1) 

10 500 3.1208e-1 (7.53e-2) + 4.7493e-1 (6.14e-2) + 1.8885e-1 (3.23e-3) + 3.6021e-1 (2.88e-2) + 7.0207e-1 (2.70e-1) 

SMOP5 
3 500 2.4126e-1 (1.46e-3) - 4.0601e-1 (1.56e-2) - 2.7900e-1 (2.61e-3) - 6.4107e-2 (5.98e-3) - 2.6610e-2 (1.62e-4) 
5 500 2.0752e-1 (3.15e-3) + 4.2608e-1 (4.70e-2) + 2.2949e-1 (1.19e-2) + 3.5238e-1 (2.50e-1) + 7.6169e-1 (1.38e-1) 

10 500 2.8149e-1 (6.42e-2) + 5.1023e-1 (8.91e-2) ≈ 1.6552e-1 (1.67e-2) + 8.2332e-1 (1.24e-1) - 5.3081e-1 (1.05e-1) 

SMOP6 
3 500 6.7640e-2 (1.24e-3) - 2.1428e-1 (7.66e-3) - 1.4741e-1 (4.11e-3) - 6.4813e-2 (6.32e-3) - 2.6859e-2 (2.38e-4) 
5 500 1.1893e-1 (1.79e-3) + 1.9771e-1 (1.40e-2) + 1.8185e-1 (7.96e-3) + 4.0457e-1 (3.27e-1) + 6.6644e-1 (2.20e-1) 

10 500 1.8389e-1 (3.25e-2) + 2.7762e-1 (2.46e-2) + 1.2568e-1 (2.95e-3) + 8.2000e-1 (1.22e-1) - 5.7837e-1 (9.60e-2) 

SMOP7 
3 500 5.6527e-1 (2.89e-2) - 8.6240e-1 (3.27e-2) - 8.5978e-1 (6.28e-2) - 1.7320e-1 (9.38e-3) - 1.1438e-1 (9.68e-3) 
5 500 1.2535e+0 (4.58e-2) - 3.7296e+0 (5.34e-1) - 1.3956e+0 (1.19e-1) - 3.7311e-1 (1.69e-2) - 2.9024e-1 (4.12e-3) 

10 500 2.4263e+0 (5.90e-2) - 4.7569e+0 (9.57e-1) - 1.6982e+0 (9.92e-2) - 1.3125e+0 (7.42e-2) - 5.7608e-1 (2.25e-2) 

SMOP8 
3 500 2.9989e+0 (1.26e-1) - 3.6143e+0 (2.42e-2) - 2.8004e+0 (2.59e-1) - 3.3027e-1 (2.10e-2) - 2.7345e-1 (1.69e-2) 
5 500 3.4648e+0 (2.37e-2) - 3.7669e+0 (1.25e-2) - 3.3089e+0 (3.62e-1) - 5.9101e-1 (1.38e-2) - 4.7682e-1 (1.42e-2) 

10 500 3.8017e+0 (3.54e-2) - 3.8349e+0 (7.97e-3) - 3.8896e+0 (1.29e-1) - 1.5121e+0 (6.87e-2) - 7.7258e-1 (6.03e-2) 
+/-/≈ 6/17/1 4/18/2 5/17/2 5/17/2  
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some best results are not on SparseEA-M is that other 
algorithms are naturally experts in many-objective 
optimization. However, this phenomenon cannot deny the 
contribution of the improvements since the SparseEA-M still 
dominated most of the best results and it succeed in higher 
sparsity.  

Since the PFs of an optimization problem with more than 
three objectives are not visualized distinctly in imaging, this 

paper displays the Pareto optimal sets with IGD medians. 
Unexpectedly, the decision variable distribution indicates that 
the SparseEA-M shows the highest sparsity even though there 
are no specific modifications for increasing sparsity. To 
reveal this point, we choose three experimental examples. 
Normally,  

Fig. 4 IGD Metric in Evolutionary Computation of SparseEA and 
SparseEA-M on Different Benchmark Problems with Many-Objectives 

 

Fig. 5 SparseEA and the best competitive algorithms on SMOP4 to SMOP6 
on different M with 500 decision variables over 30 independent runs 

produced Pareto optimal sets with median IGD value 
according to the designing theory of benchmark problems 
SMOP1 to SMOP8, the higher sparsity highly suggests better 
final solutions. For those problems that the SparseEA-M does 
not dominate other competitors, the algorithms with the best 
result should highly possibly have higher sparse decision 
variables of their Pareto sets. However, the experimental 
results do not support this view. Fig.5 displays the 
distribution of all decision variables affecting median IGD, 
implying the number of nonzero decision variables and 
sparsity on Pareto set. In addition, these three pairs of graphs 
all demonstrate the comparison between the algorithm with 
the best IGD values and the SparseEA-M in the same 
experimental scenario. For example, Fig.4 compares the 
sparsity of the MOEA/D-DRA, which completes the best 
IGD values on SMOP5 (M=10), and that of the SparseEA-M. 
All figures prove that the SparseEA-M achieves higher 
sparsity than other algorithms although the competitors 
succeed in the best performance metrics. Therefore, the 
SparseEA-M unfolds the strong ability to complete the Pareto 
set with sparse decision variables. But the reason why it 
cannot achieve the best performance metric is that although 
sparsity is guaranteed, in other words, the zero binary mask 
variables are discovered previously, and the values of the 
non-zero decision variables are not optimized adequately. In 
future work, how to optimize the real decision variables is 
meaningful and significant research. 

IV. CONCLUSION 
Among MOPs, sparsity in decision variables is the one 

of important attributes. There are many real-world 
applications with sparse MOPs, such as patterning. By 
proposing some targeted strategies, the algorithm would 
perform with fast convergence and efficient optimizations. 
Recently, although many studies are made for this kind of 
problem, the problems they focus on are usually bi-
objectives. Those problems with more than three objectives 
are called many-objective, which is also an important 
attribute. However, studies made on this are absent. To fill 
this gap, this paper introduces the Reference Point (RP) and 
(Adaptive Crossover and Mutation) ACM mechanism into 
the original SparseEA, which is verified as a successful 
algorithm for solving sparse MOPs. We set a series of 
experiments for testing our algorithm SparseEA-M, 
competing with other state-of-the-art multi-objective 
optimization algorithms. The experiment results indicate that 
SparseEA-M dominates other algorithms in most instances, 
although there are several best results obtained from other 
algorithms. Because SparseEA-M only dominates one test 
on SMOP4, we take it as an example to show its decision 
variable distribution. From this experiment result, 
SparseEA-M still achieves the highest sparsity. Therefore, 
these modifications certainly improve the performance of the 
original SparseEA.  

To our best knowledge, this paper firstly studies the 
sparse many-objective optimization problems. Furthermore, 
we find the RP also works well on sparse many-objective 
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optimization and efficient modification on evolutionary 
variant is necessary. In addition, the proposed algorithm 
achieves higher sparsity although it does not dominate other 
algorithms in performance metrics.  

In future work, other adapted strategies would be tested 
to further improve the algorithm for solving many-objective 
optimization. In addition, other innovative strategies or 
algorithms for increasing sparsity should also be studied.   
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