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ABSTRACT

Deep learning-based methods have proved useful for adver-
sarial attack detection. However, conventional detection al-
gorithms exploit crisp set theory for classification boundary.
Therefore, representing vague concepts is not available. Mo-
tivated by the recent success in fuzzy systems, we propose
a fuzzy rule-based neural network to improve adversarial at-
tack detection accuracy. The pre-trained ImageNet model is
exploited to extract feature maps from clean and attacked im-
ages. Subsequently, the fuzzification network is used to ob-
tain feature maps to produce fuzzy sets of difference degrees
between clean and attacked images. The fuzzy rules control
the intelligence that determines the detection boundaries. In
the defuzzification layer, the fuzzy prediction from the in-
telligence is mapped back into the crisp model predictions
for images. The loss between the prediction and label con-
trols the rules to train the fuzzy detector. We show that the
fuzzy rule-based network learns rich feature information than
binary outputs and offers to obtain an overall performance
gain. Our experiments, conducted over a wide range of im-
ages, show that the proposed method consistently performs
better than conventional crisp set training in adversarial at-
tack detection with various fuzzy system-based neural net-
works. The source code of the proposed method is available
at https://github.com/Yukino-3/Fuzzy.

Index Terms— Deep learning, adversarial attack detec-
tion, classification boundary, fuzzy rule, fuzzy prediction

1. INTRODUCTION

Adversarial attack detection, aiming to defend applications
by detecting attacks using the difference between adversar-
ial and clean image samples, is an important security topic
useful in many real-world applications such as autonomous
driving systems, object detection, medical image processing,
and robotics [1]. Recently, a variety of deep learning ap-
proaches have been proposed [2], for adversarial attack detec-
tion mainly divided into empirical statistics-based detection
[3], image pre-processing and reconstruction-based detection
[4], and detection networks [5]. In this paper, we focus on
image pre-processing and reconstruction-based detection by
using deep learning techniques.

A neural network typically predicts a crisp result, namely,

a value 1 when the sample is attacked and 0 when it is clean.
The loss between the crisp prediction and crisp label is then
exploited to train the model. While some recent studies have
explored the fuzzy classifier in adversarial attack detection
[6, 7], crisp set-based detection methods [4, 8, 9] are the com-
mon choices as the crisp sets can easily be estimated from
the input data. The crisp set-based detection methods directly
determine whether an image is clean or attacked. However,
calculating the loss is non-differentiable and hinders training
through normal back-propagation.

In recent studies, the fuzzy system is shown to offer
several advantages in handling crisp set-based problems. It
allows representation imprecision of objects, relations, and
knowledge, and aims at different levels of latent representa-
tion [10, 11]. It constitutes a unified framework for represent-
ing and processing both numerical and symbolic information,
as well as structural information (constituted mainly by spa-
tial relations in image processing) [12]. Hence this theory
can potentially handle tasks at several levels, from a low level
(e.g., binary classification) to a high level (e.g., model-based
structural recognition and scene interpretation). It provides a
flexible framework for information fusion as well as powerful
tool support for reasoning and decision-making [13]. In this
paper, we show how the use of fuzzy detectors offers signifi-
cant benefits in adversarial attack detection. Specifically, we
propose a fuzzification process with fuzzy rules of difference
degree between clean and attacked images.

2. PROPOSED APPROACH FOR FUZZY
DETECTORS

Fig. 1 illustrates the architectural approach of our proposed
fuzzy detector. Conceptually, the feature maps from the at-
tacked and clean images Fa and Fc constitute the inputs of
the proposed fuzzy detector. The loss between the feature
maps is converted into the fuzzy set for the intelligence (I).

The input of the encoder is either clean or attacked images
with hard labels, i.e., clean or attacked. The attacked images
are constructed with random error rates from 0.01 to 0.04 as
in contemporary works. The ImageNet pre-trained model ob-
tains these images and extracts their feature maps. The feature
maps of clean and attacked images are presented as Fc and
Fa, respectively. The proposed fuzzy system-based detector
then aims to map from the feature space to the label space. To
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Fig. 1. The architecture of the proposed fuzzy detector.

achieve that, we propose a fuzzy detector with its constituent
blocks progressively detailed in the following sections.

2.1. Fuzzifier

As aforementioned, the loss between Fc and Fa is required
to be calculated. Subsequently, the fuzzifier converts the loss
into a fuzzy set to describe the difference degrees between
feature maps at the pixel level. The degree of differences in
the fuzzy set quantifies the difference levels across the feature
maps of clean and attacked images. The membership function
µ is illustrated in Fig. 2.

Fig. 2. The membership function.

2.2. Fuzzy Rules

Intelligence is controlled by rules that determine the detec-
tion boundaries. The rules of the proposed fuzzifier follow
commonly used fuzzy-rule-based classifiers [10, 11] as:

Ri : IF (x1 is around xi∗
1

)
AND (x2 is around xi∗

2

)
AND · · · · · · AND(xn is around xi∗

n

)
THEN

(
P i

)
(1)

where x = [x1, x2, . . . , xn]
T is the pixels of feature maps.

In the intelligence layer, (xj is around xi∗
j ) indicates the jth

fuzzy set of the ith fuzzy rule Ri. To achieve that, we con-
sider the Eucledian Distance d between xj and xi∗

j with a

hyperparameter αj . When the distance d is smaller than αj ,
the fuzzy prediction with the ith fuzzy rule is P i that predicts
how much the model trusts the image. The hyperparameter
αj is further updated to improve the boundary accuracy in the
training stage.

2.3. Defuzzification

A centroid defuzzification method is exploited to convert the
fuzzy prediction set into the model prediction [14]. Particu-
larly, the center of gravity of the fuzzy set is calculated along
the difference degree as:

P =

∑
i µ (Pi)Pi∑
i µ (Pi)

(2)

where P is the model prediction, i.e., 0 or 1 for clean or at-
tacked image, respectively.

2.4. Training

The training loss is calculated as follows. Firstly, we calcu-
late the fuzzy loss LF between the label and fuzzy prediction.
Secondly, the overall loss L is calculated by the loss between
the label and model prediction LM with hyperparameters λ1

and λ2 as:

L =

{
λ1 · LF , if LM ̸= 0

LF/λ2, otherwise
(3)

Both λ1 and λ2 are empirically set between 1 and 10 over the
different experiments. The fuzzy rules are refined by L and
control the intelligence that makes more accurate fuzzy pre-
dictions. The pseudo-code of the proposed fuzzy rule-based
attack detection method is summarized in Algorithm 1.

3. EXPERIMENTAL RESULTS

3.1. Datasets

We perform experiments on several public datasets, including
ImageNet-R [16], Canadian Institute For Advanced Research-
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Algorithm 1: Fuzzy rule-based detector.
Input: Feature maps Fc and Fa, Label X , learning

rate η, epoch Emax,
Output: Model prediction P
Data: Training set D

1 Initialize Ri, µ;
2 Initialize hyperparameters λ1, λ2, αj and θ;
3 for E = 1, 2, ..., Emax do
4 LF = H(Fc,Fa) // Calculate the cross entropy

loss;
5 if d(xj , x

i∗
j ) < αj then

6 Pi = θ(Fa);
7 end
8 P ← Pi, µ // Defuzzification;
9 if X = P then

10 L = LF/λ2;
11 else
12 L = λ1 · LF
13 end
14 θ, µ← LF ;
15 λ1, λ2 ← L // Update hyperparameters ;
16 end

10 (CIFAR-10) [17], Common Object and Concept (COCO)
[18], and ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [19]. We randomly select 50,000, 10,000,
and 10,000 images from each dataset for the training, valida-
tion, and test stages.

3.2. Attacks and Performance Measure

The adversarial samples from these datasets are constructed
using the Fast Gradient Sign Method (FGSM) [20], Projected
Gradient Descent (PGD) [21], and Semantic similarity attack
on high-frequency components (SSAH) [22] attacks. We se-
lect these attacks because they are robust to novel adversarial
attack detection and defense techniques [22, 15]. The error
rate is randomly set from 0.01 to 0.04 for training and test
data similar to as in contemporary works [15, 4].

In the experiment, the detection rate (DR) [15] is used as
the performance measure.

DR(%) =
TP + TN

TP + TN + FP + FN
× 100 (4)

where TP and TN are true positive and true negative results,
and FP and FN are false positive and false negative results.
Moreover, we evaluate the true positive on clean image sam-
ples as:

DR(%) =
TP

TP + TN
× 100 (5)

3.3. Model Configuration

The pre-trained EfficientNetV2-XL [23] on the ILSVRC
dataset is exploited to extract features. We select this model
because it achieves the state-of-the-art benchmark on the
ILSVRC challenge. Moreover, we apply the proposed fuzzy
detector on different backbones, e.g., Res2Net-v1b-101 [24],
YOLOX-L [25], and PRB-FPN6-2PY [26]. Different from
the pre-trained encoder, these models are initialized and re-
trained with fuzzy logic.

At training stage, the proposed model is trained using
the M-SGD optimizer with a learning rate set empirically to
0.0008 according to a grid search. The batch size is set to 32.
We train the networks for 200 epochs. All experiments are
run on the High End Computing (HEC) Cluster with Tesla
V100 GPUs.

3.4. Results

3.4.1. Comparison with Same Attacks

In the first experiment, we compare the proposed method to
state-of-the-art adversarial attack detection methods [1, 15,
6, 8, 9] with the same attack between the training and test
stage. The proposed fuzzy detector-based Res2Net-v1b-101,
YOLOX-L, and PRB-FPN6-2PY are simplified as F-Res, F-
YL, and F-PF, respectively.

From Tables I & II, it can be observed that: (1) In all
the evaluated models, the proposed methods with different
backbones offer the best effectiveness. Different from crisp
set-based decision-making pipelines, the proposed fuzzy de-
tectors convert the loss between feature maps into fuzzy sets
and provide difference scores (’high’, ’ok’, and ’low’). There-
fore, the proposed method exploits more feature information
than binary decisions. The fuzzy rules are trained with dif-
ference scores to help the detector make more accurate deci-
sions. (2) The proposed F-YL model offers the best attack de-
tection performance on all datasets. The reason is likely due
to the combined implicit knowledge and explicit knowledge
in the YOLOX decoder [25]. (3) Compared to the improve-
ment in FGSM, PGD, and SSAH attacks, the improvement
of detection accuracy tends to fall drastically when evaluat-
ing the true positives on clean image samples. For example,
compared to ESMAF model, the proposed F-YL obtain 7.9%
improvement on PGD attacked CIFAR-10 dataset, while it is
only 2.8% on the true positive evaluation.

3.4.2. Comparison with Different Attacks

In this experiment, we compare the proposed method to state-
of-the-art adversarial attack detection methods [1, 15, 6, 8, 9]
with different attacks between the training and test stage. To
achieve that, we randomly select an unseen attack to construct
the test data in Tables III & IV.
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Table 1. Attack detection ratio on the CIFAR-10 and ImageNet-R datasets. Each result is the average of 10,000 experiments.
Bold indicates the best results. Italic shows the proposed methods.

Detection Ratio (%)
CIFAR-10 ImageNet-R (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [6] 75.5 ± 1.8 49.8 ± 1.5 47.1 ± 1.0 43.6 ± 1.8 75.2 ± 1.9 48.5 ± 1.8 46.8 ± 1.9 43.9 ± 1.4
SAC [1] 78.7 ± 1.5 60.1 ± 2.3 59.7 ± 2.2 56.8 ± 2.4 78.0 ± 1.9 58.9 ± 2.0 57.5 ± 2.1 52.9 ± 1.8

sim-DNN [15] 81.8 ± 1.0 70.5 ± 1.4 60.0 ± 1.6 49.4 ± 0.7 80.9 ± 1.5 71.0 ± 1.7 66.2 ± 1.3 61.4 ± 1.1
DTBA [8] 85.7 ± 1.3 78.3 ± 1.2 75.6 ± 1.0 71.7 ± 0.8 85.2 ± 1.0 78.0 ± 1.1 72.4 ± 1.1 68.9 ± 0.8

ESMAF [9] 87.4 ± 1.0 80.5 ± 1.6 76.9 ± 1.9 75.4 ± 0.7 87.4 ± 1.2 79.7 ± 1.3 75.6 ± 0.9 71.8 ± 0.6
F-Res 89.1 ± 0.5 86.3 ± 1.0 83.5 ± 0.7 82.1 ± 0.9 89.0 ± 0.5 86.0 ± 1.1 82.8 ± 1.2 80.2 ± 0.8
F-PF 89.9 ± 0.8 86.5 ± 0.7 82.3 ± 1.2 80.8 ± 0.8 89.9 ± 0.8 87.0 ± 1.3 81.6 ± 1.0 80.8 ± 0.9
F-YL 90.2 ± 0.4 87.2 ± 0.5 84.8 ± 0.9 84.1 ± 0.4 89.9 ± 0.7 87.0 ± 1.2 83.4 ± 0.7 82.9 ± 0.5

Table 2. Attack detection ratio on the COCO and ILSVRC datasets. Each result is the average of 10,000 experiments. Bold
indicates the best results. Italic shows the proposed methods.

Detection Ratio (%)
COCO ILSVRC (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [6] 72.7 ± 1.6 47.2 ± 1.6 46.5 ± 1.9 40.6 ± 2.0 76.8 ± 1.5 51.2 ± 2.2 50.4 ± 1.5 48.5 ± 2.5
SAC [1] 78.0 ± 2.0 49.6 ± 2.1 48.4 ± 2.0 45.9 ± 1.9 80.2 ± 2.2 63.6 ± 1.6 63.0 ± 2.0 59.4 ± 1.9

sim-DNN [15] 79.3 ± 2.0 66.8 ± 2.0 64.3 ± 2.2 60.0 ± 1.8 82.5 ± 1.3 75.2 ± 2.1 72.5 ± 1.6 69.6 ± 1.5
DTBA [8] 83.1 ± 0.9 75.3 ± 1.1 71.0 ± 1.4 68.7 ± 1.0 86.8 ± 0.7 81.1 ± 1.4 80.5 ± 0.8 76.0 ± 0.9

ESMAF [9] 85.0 ± 1.1 76.5 ± 1.3 74.2 ± 1.6 70.8 ± 1.0 87.9 ± 1.0 82.6 ± 2.0 77.0 ± 2.1 75.2 ± 0.9
F-Res 88.4 ± 0.6 84.0 ± 1.4 80.7 ± 1.5 78.6 ± 1.2 89.7 ± 0.8 86.9 ± 1.2 84.1 ± 0.6 82.8 ± 1.1
F-PF 89.8 ± 0.3 85.8 ± 1.2 82.0 ± 1.0 80.1 ± 1.1 90.3 ± 0.4 87.3 ± 1.0 82.4 ± 1.1 81.2 ± 0.6
F-YL 89.8 ± 0.3 86.8 ± 0.9 84.0 ± 1.1 84.1 ± 0.8 91.0 ± 0.3 87.9 ± 0.7 85.9 ± 0.9 84.4 ± 0.8

Table 3. Attack detection ratio on the CIFAR-10 and ImageNet-R datasets with unseen attacks. Each result is the average of
10,000 experiments. bold indicates the best results. Italic shows the proposed methods.

Detection Ratio (%)
CIFAR-10 ImageNet-R (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [6] 73.6 ± 1.9 46.3 ± 1.4 45.2 ± 1.3 40.7 ± 2.0 72.0 ± 2.1 44.9 ± 1.9 44.5 ± 1.9 41.4 ± 1.7
SAC [1] 74.8 ± 1.6 57.7 ± 2.2 56.0 ± 2.5 53.5 ± 2.6 74.9 ± 2.1 56.0 ± 2.3 53.9 ± 2.4 50.2 ± 2.0

sim-DNN [15] 79.5 ± 1.2 67.9 ± 1.6 56.9 ± 1.8 47.5 ± 1.0 77.6 ± 1.8 68.8 ± 1.6 65.1 ± 1.5 60.1 ± 1.2
DTBA [8] 84.2 ± 1.6 77.0 ± 1.4 74.0 ± 1.1 70.2 ± 1.1 83.9 ± 1.4 76.4 ± 1.3 70.9 ± 1.2 67.3 ± 1.2

ESMAF [9] 84.8 ± 1.3 77.9 ± 1.5 74.3 ± 2.2 73.8 ± 0.9 84.7 ± 1.5 77.1 ± 1.6 72.9 ± 1.2 70.0 ± 1.0
F-Res 88.8 ± 0.5 85.9 ± 0.9 82.8 ± 0.9 81.6 ± 1.1 88.5 ± 0.7 85.7 ± 1.5 82.7 ± 1.1 79.4 ± 0.9
F-PF 89.8 ± 0.6 86.3 ± 0.6 82.0 ± 1.2 80.4 ± 0.9 89.5 ± 0.9 86.8 ± 1.1 81.4 ± 1.1 80.7 ± 1.0
F-YL 89.4 ± 0.6 86.4 ± 0.7 83.6 ± 1.0 82.8 ± 0.7 89.0 ± 0.4 85.9 ± 1.5 82.0 ± 0.8 82.6 ± 0.5
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Table 4. Attack detection ratio on the COCO and ILSVRC datasets with unseen attacks. Each result is the average of 10,000
experiments. Bold indicates the best results. Italic shows the proposed methods.

Detection Ratio (%)
COCO ILSVRC (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [6] 69.9 ± 1.7 45.8 ± 1.7 44.8 ± 2.2 38.9 ± 2.4 74.0 ± 1.7 48.4 ± 2.0 47.8 ± 1.8 45.9 ± 2.8
SAC [1] 72.8 ± 2.1 48.2 ± 2.1 45.9 ± 2.2 44.5 ± 2.1 78.7 ± 2.3 60.8 ± 1.4 61.7 ± 2.1 57.6 ± 2.2

sim-DNN [15] 78.8 ± 2.4 63.6 ± 1.9 62.5 ± 2.0 57.8 ± 2.1 82.0 ± 1.6 74.3 ± 2.4 70.3 ± 1.9 66.8 ± 1.8
DTBA [8] 82.4 ± 1.1 74.6 ± 1.6 70.1 ± 1.8 67.6 ± 1.5 86.3 ± 0.5 79.7 ± 1.8 79.0 ± 1.2 74.7 ± 1.5

ESMAF [9] 82.2 ± 1.1 72.9 ± 1.9 72.0 ± 2.0 67.1 ± 1.8 84.3 ± 1.9 80.2 ± 2.2 73.8 ± 2.5 72.9 ± 1.6
F-Res 88.3 ± 0.5 83.3 ± 1.4 80.1 ± 1.9 77.9 ± 1.4 89.5 ± 1.0 86.0 ± 1.3 83.3 ± 0.8 81.7 ± 1.5
F-PF 89.7 ± 0.4 85.2 ± 1.1 81.6 ± 1.4 79.8 ± 1.2 89.9 ± 0.6 87.0 ± 0.9 82.1 ± 1.4 80.8 ± 0.8
F-YL 89.0 ± 0.6 85.6 ± 1.2 82.9 ± 1.2 82.8 ± 1.0 90.0 ± 0.5 86.8 ± 1.0 85.0 ± 0.8 83.1 ± 1.3

From Tables III & IV, it can be observed that in all the
evaluated models, the proposed fuzzy rule-based methods
with different backbones offer the best effectiveness. The
goal of the adversarial training provided by the DTBA and
DSMAF is to increase the model’s robustness, however, they
lack generalisation to unseen domains, i.e., datasets and at-
tacks. The proposed fuzzy detector maintains its performance
stable even when adversarial or clean images from unknown
datasets are presented to the detection model due to its inner
fuzzy rules and detection mechanism that was projected for
such scenarios.

The visualizations are shown in Fig. 3 as related to the
reconstructions after detecting attacks of three randomly se-
lected images from the COCO dataset. After comparing the
reconstructed images with the original and attacked images, it
can be observed that the reconstructions obtained via the pro-
posed method, i.e., Fig. 3 (d), are closer to original images,
which again confirms the efficacy of the proposed method.

Fig. 3. Attack detection results: (a) original images; (b)&(c)
attacked by random attack types and error rates; (d) recon-
struction from attacks.

4. CONCLUSIONS

In this paper, we have proposed a fuzzy detector-based adver-
sarial attack detection method, a simple yet effective replace-
ment to the conventional crisp set-based decision-making
pipelines. Differing from these pipelines, the difference de-
grees between clean and attacked feature maps provide rich
information to improve the proposed model’s ability to detect
adversarial attacks. Our evaluation with different datasets
and attacks has demonstrated the high effectiveness of the
proposed method. The proposed fuzzy detector represents a
significant step toward the realization of fuzzy rule-based ad-
versarial attack detection algorithms and opens many future
research directions that would further improve its accuracy
and generalisation, which could eventually make adversarial
attack detection easily designed for real-world applications.
In the future, we will investigate the potential of assessing
fuzzy rules using a new threshold-based fitness function with
redefined support and confidence measures to further improve
the detection accuracy.
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