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Abstract—In this study, we proposed a new ensemble method to
predict the magnitude of gross errors (GEs) on measurement data
obtained from the hydrocarbon and stream processing industries.
Our proposed model consists of an ensemble of regressors (EoR)
obtained by training different regression algorithms on the
training data of measurements and their associated GEs. The
predictions of the regressors are aggregated using a weighted
combining method to obtain the final GE magnitude prediction.
In order to search for optimal weights for combining, we
modelled the search problem as an optimisation problem by
minimising the difference between GE predictions and corre-
sponding ground truths. We used Genetic Algorithm (GA) to
search for the optimal weights associated with each regressor.
The experiments were conducted on synthetic measurement data
generated from 4 popular systems from the literature. We first
conducted experiments in comparing the performances of the
proposed ensemble using GA and Particle Swarm Optimisation
(PSO), nature-based optimisation algorithms to search for com-
bining weights to show the better performance of the proposed
ensemble with GA. We then compared the performance of the
proposed ensemble to those of two well-known weighted ensemble
methods (Least Square and BEM) and two ensemble methods for
regression problems (Random Forest and Gradient Boosting).
The experimental results showed that although the proposed
ensemble took higher computational time for the training process
than those benchmark algorithms, it performed better than them
on all experimental datasets.

Index Terms—Gross error, ensemble method, regression, Ge-
netic Algorithm, weighted ensemble

I. INTRODUCTION

In the chemical industry, there is a need for high precision
and error-free measurements to ensure the integrity of the oper-
ations. Reducing measurement errors and early fault detection
can increase operational efficiency and save maintenance costs.
Data reconciliation is a widely-used method in chemical pro-
cesses to eliminate random noise from measurements in such
a way that the system satisfies different physical constraints
such as mass or energy balance. The reconciliation algorithms
work under the hypothesis that the measurements contain only
random errors. Gross errors (GEs) meanwhile are systematic
errors and these reduce the effectiveness of reconciliation
algorithms by biasing results away from true values [1].

To check the measurement integrity, many operators in the
hydrocarbon industry apply simple rules to filter out corrupted

measurements, such as checking for stuck meters, using simple
thresholds, or using GE detection and identification methods.
These methods are based on the statistical likelihood of the
measurement containing an error using conversational laws,
such as mass balance equations. It is noted that these tests
can only be as effective as the mathematical models that
they are based on, and they require prior knowledge, or an
estimation of the distribution of statistical noise associated
with each meter. Statistical-based tests such as Global Test
(GT) were introduced in the early 1960s, and typically do not
employ historical information of measurement data [2], [3].
With digitalisation, storing and logging data made much easier,
it is important that the tests’ performance can be improved by
using a data-driven approach.

Machine learning (ML) is a popular topic with numerous
applications in many industries, such as software engineering,
medical imaging, insurance, and chemical engineering [3],
[4]. ML algorithms find natural patterns in data that generate
insight to make better decisions and predictions. One popular
approach to improve the accuracy of ML models is ensemble
learning. Ensemble models combine multiple learning algo-
rithms, and the goal is to achieve a better prediction from
the ensemble than the individual models. Ensembles can be
described as homogeneous or heterogeneous. Homogeneous
ensemble is a collection of classifiers or regressors of the same
type, trained upon a different subset of the data. Heterogeneous
ensemble is a set of different types of classifiers or regressors,
trained upon the same dataset, and it is generally agreed that
the more diverse the models are, the better a heterogeneous
ensemble performs.

In ensemble learning, a combining method is used to
combine the outputs of ensemble members to obtain a better
prediction than that of individual members. For the regression
problem, the combining method can be constructed by using
a linear combination, with the weights assigned to the outputs
of the individual models. While there are published papers
using machine learning for the GEI problem with promising
results [3], in this paper, we will introduce a novel weighted
ensemble of regressors for same problem. The details and main
contributions of our proposed method are as follows:

• We propose a heterogeneous ensemble of regressors
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(EoR) to predict GEs in the measurement data in which
different regression algorithms are trained on measure-
ment datasets to generate the EoR. We also use the
Stacking algorithm [5] to generate predictions for all
training measurement instances and use these predictions
to train the combining algorithm.

• The outputs of EoR are combined using a weighted
combining method. The weights are found by minimising
the differences between the predictions and the ground
truth of the GEs on the training measurement instances.
We use Genetic Algorithm (GA), a popular evolution-
ary computation method inspired by natural processes,
to search for the optimal combining weights for each
regressor.

• Experiments are conducted on 4 synthetic datasets gen-
erated from 4 popular systems in the literature [6]. The
proposed method is compared with some popular bench-
marks. The results indicate that our proposed method
achieves the best results compared to the benchmark
algorithms.

• We contributed an application of our ensemble regression
method to real-world scenarios in the field of predictive
modeling. By applying our novel weighted ensemble of
regressors to practical problems, we demonstrated its
effectiveness in improving predictions and highlighted its
potential in the scope of the GEI problem.

II. BACKGROUND AND RELATED WORK

A. Gross Error and Identification Techniques

In the past, numerous papers have discussed data reconcili-
ation, which is a well-established mathematical and statistical
technique used in allocation systems. It aims to derive the
most accurate estimates of true measurement values while
considering the preservation of physical conservation laws.
These estimates account for minor imbalances in quantities
such as mass and energy that may arise from random errors
in measurements. When GE is present in the measurements,
either due to instrument malfunction or process leaks, it can
completely invalidate the statistical basis of data reconciliation
techniques. Therefore, it is necessary to detect and identify
any data which contains GE before applying a reconciliation
method. There are four notable requirements when designing
any GE detection and identification method [1] (i) detect the
presence of one or more GE (the detection problem) (ii)
identify and locate the single GE (the identification problem)
(iii) identify and locate multiple gross errors (MGE) present
in the system (the MGE identification problem) (iv) estimate
the GE magnitude. In this study, we will focus on the fourth
requirement.

To eliminate GE, we use several well-established tests in
the literature. These methods mostly utilise hypothesis testing,
and they are based on the hypothesis that the measurements
only contain random errors. Test statistics are compared to
a critical value, which is obtained from a significance level
to determine whether the null hypothesis is rejected or not.
The most widely used statistical test is the Global Test (GT)

[2], where the result is based on the constraint residual vector
and the covariance matrix of the measurements. This method
only outputs an indication if a GE is present and does not
support any information on the location or magnitude of
the GEs. The Nodal Test also referred to as Constraint Test
(CT) [1], operates on the same principles as GT. However, it
conducts hypothesis testing on each constraint by analysing
the diagonal elements of the constraint residuals. CT not only
provides a result indicating the presence of a GE but also
offers an estimation of the location by identifying the specific
constraint(s) where the error occurs. Crowe [7] proposed the
Maximum Power Nodal Test to enhance the effectiveness of
CT, resulting in an increased probability of detecting GEs.
Measurement test [7] uses chi-square distribution and normal
statistics to test for overall errors in the measurement, for
each node imbalance which is fully measured. Generalised
Likelihood Ratio (GLR)[8] test is based on the likelihood
ratio statistical test and provides a framework to identify the
type of GE and is capable of detecting “leaks” in a steady
state condition, which is an advantage over the previously
mentioned methods.

For data-driven-based approaches, Reddy and Mavrovouni-
otis [9] used a 3-layer Neural Network (NN) to estimate
the value of each measurement and its associated residual
error. If the sum of the squares of the residuals does not
fall within the established confidence limits, this sample is
highly likely to contain a GE. Gerber et al. [10] considered
GED as a binary classification problem and compared the GE
detection results of 3 classifiers namely decision tree, linear,
and quadratic discriminative analysis on the data generated
from a simple two-product splitter process. Nguyen et al.
[11] used the Fisher combination method to combine p-values
output of several statistical tests, providing better results than
using each statistical test. These methods, however, did not
put any attention to the magnitude estimation of the GEs.

B. Ensemble Methods and Weighted Ensemble

Ensemble learning typically refers to a machine learning
approach that combines multiple learning models to make a
collaborated prediction that ideally outperforms those of the
individual models. Ensemble learning can be used to solve
classification problems (for sorting data into a set of classes
or categories based on their characteristics) or regression
problems (for predicting one or multiple so-called dependent
variables with continuous decision-making based on the inde-
pendent variables). Since the techniques aim to solve different
problems, ensemble methods for classification and regression
problems have been developed somewhat independently [12].
An extensive survey by Mendes-Moreira et al. [12] showed
that many ensembles directly imported from the classification
failed to demonstrate their viability for the regression problem.

In this study, we focus on ensemble aggregation which
defines a strategy to combine the outputs of multiple models
to obtain the final prediction. For the regression problem, the
aggregation can be described as a weighted combination of the
individual predictions as the following: f̂(x) =

∑K
i=1[wi(x) ∗
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f̂i(x)] are the weight wi(x) functions, f̂i(x) is the prediction
of ith model among K models (i = 1, ...,K) , and f̂(x) is
the final combination.

Li et al. [13] divided weighting functions into two categories
namely constant weights and dynamic weights. In the first
category, the weights are constant and independent from the
input. The main constant weight functions can be described
using approaches such as Least Square (LS) [14], [15], Basic
Ensemble Method (BEM) [12], and Generalised Ensemble
Method (GEM) [12]. In LS, the ensemble combination is
formulated as multiple linear regression problems for the
weights of each different classifier. BEM averages the pre-
dicted values of K regressors as the following target function:
f̂BEM (x) =

∑K
i=1[

1
K ∗ f̂i(x)]. The estimator of the BEM

was rewritten as f̂BEM (x) = f(x) − 1
K

∑K
i=1 mi(x), where

mi(x) = f(x)− fi(x). It is assumed that mi(x) are mutually
independent with zero mean. The estimator for GEM [12]
meanwhile is given by f̂BEM (x) =

∑K
i=1[wi(x) ∗ f̂i(x)] =

f(x) +
∑K

i=1[wi(x) ∗ m̂i(x)] in which
∑K

i=1 wi = 1, wi =∑K
j=1 c

−1
ij /

∑K
l=1[

∑K
p=1 C

−1
lp ], Cij = E(mi(x) ∗ mj(x)). It

is noted that in GEM, the weights are proportional to the
validation error while considering the correlation of the error
of the regressors. The dynamic weights approach meanwhile
was first originally presented for the classification problem by
Puuronen et al. [16] and then was adapted to the regression
problems by Ronney et al. [17]. This approach includes 3 tech-
niques namely Dynamic Selection (DS), Dynamic Weighting,
and Dynamic Weighting with Selection. DS chooses the model
to use which has the lowest cumulative error for the nearest
neighbour to the test instance. DW assigns the weights based
on the base models’ performances on the nearest neighbour.
The final prediction is the sum of the base models’ predictions
weighted with normalised weight values. Dynamic weighting
with selection (DWS) uses the same localised data but adds
an extra pruning step and discards the predictors which can be
found in the upper half of the error interval. Some examples
of dynamic weights approach are fuzzy logic for combining
the predictions [18]. Reinforced Learning-based method [19],
and Neural Networks (NN) -based estimation [13].

III. PROPOSED METHOD

For the GED problem, when the GE information of mea-
surement data is given, we can train a supervised ML algo-
rithm on the training data. Let D be the training set of N
observations {(Xn,Yn)}Nn=1 where Xn = (xn1, xn2, ..., xnL)
is a measurement including L stream values in the training set
and Yn = (yn1, yn2, ..., ynL) is its corresponding GE ground
truth. The relationship between Xn and Yn can be described
by an unknown function f i.e., Yn = f(Xn) . Supervised
ML algorithms aim to propose an approximation (also called
hypothesis) g for the function f . On that basis, we apply g to
predict the GEs of unseen samples. In this study, we propose
an EoR-based framework to predict the magnitude of GEs in
the measurement data. The outputs of EoR are combined to
obtain the final predicted GE for any test data. We propose
to use weighted combining approach in which each regressor

Fig. 1. Proposed ensemble of regressors for the GEI problem.

contributes a different weight to the combining result. Two
following questions arise from the proposed framework:

• How can we construct an EoR to predict the GE?
• How can we find the weights for the combining method?

A. Ensemble of regressors

We proposed an EoR to solve the GEI problem. Let’s denote
K = {Kk}Kk=1 as the set of K regression algorithms. In the
ensemble, we train an EoR including K different regressors
{gk}Kk=1 and then use a combining algorithm C on the EoR
outputs to form the final decision-making: g = C({gk}Kk=1)
. The ensemble of K regressors {gk}Kk=1 is generated by
training K regression algorithms on the training set D. The
regression problem can be characterised by the following
equation: br = fr(s,Θr), br ∈ R where s is the vector of the
new observations (independent variables), br is the vector of
the output(s) (dependent variables), and fr(.) is the regression
function and Θr are the function parameters.

In the GEI problem, s = (s1, s2, ..., sL) is a vector of
measurements of L stream and br = (b1, b2, ..., bL) is a
vector of GEs in which bl is associated with lth stream.
In this study, we aim to train a multi-output regressor
fr(s1, s2, ..., sL) = (b1, b2, ..., bL) that maps a L vector of
measurements to a L output vector of GEs. It is noted
that there are several regression algorithms such as Random
Forest and Linear Regression which natively support multi-
outputs. On the other hand, not all regression algorithms
support multioutput regression, one example is the support
vector regression (SVR) which was developed based on the
support vector machine (SVM) algorithm. To use regression
models designed for predicting one value for multioutput
regression, the multioutput regression problem is divided
into multiple sub-problems. The most obvious way to do
this is to split a multioutput regression problem into mul-
tiple single-output regression problems: fr1(s1, s2, ..., sL) =
b1, fr2(s1, s2, ..., sL) = b2, ..., frL(s1, s2, ..., sL) = bL. There
are two main approaches to implementing this technique
namely direct approach (developing a separate regression
model for each output value to be predicted) and chain ap-
proach (predictions from the subsequent model were taken as
part of the input to the next model). Although these approaches
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can be used to train regressors in the proposed EoR, in this
study, we use algorithms that support multi-outputs natively.

We then generate the predictions of each measurement
instance in D by using the Stacking algorithm [20] . The
training set is divided into T disjoint parts D1, ...,DT ,Di ∩
Dj = ∅, i ̸= j . For each Dt we denote its associated part as
D̃t = D − Dt. The regression algorithm Kk trains on D̃t to
obtain a regressor g̃kt · g̃kt predicts for all instances in Dt to
obtain the predicted GEs for instances in Dt. This procedure
runs through all parts D̃t, t = 1, ..., T to obtain the predictions
for all instances in D. The predictions for all instances in the
training set are given in an N × (K × L) matrix (1)

B =



b
(1)
11 b

(1)
12 . . . b

(1)
1L . . . b

(1)
KL

...
...

. . .
...

. . .
...

b
(n)
11 b

(n)
12 . . . b

(n)
1L . . . b

(n)
KL

...
...

. . .
...

. . .
...

b
(N)
11 b

(N)
12 . . . b

(N)
1L . . . b

(N)
KL


(1)

in which is b
(n)
ij is the predicted GE for jth stream of

nth instances of the training set, given by ith regressors
(i = 1, . . . ,K; j = 1, . . . , L;n = 1, . . . N)

B(n) =
(
b
(n)
11 b

(n)
12 . . . b

(n)
1L . . . b

(n)
KL

)
(2)

The next step is to train the combining algorithm
on B. In this study, we propose a weighted combining
method in which each regressor contributes differently to
the combined result by using different combining weights.
The weights may vary for each regressor defined by
W =

(
w11 w12 . . . w1L wK1 wK2 . . . wKL

)T
in which wij is the weight of the ith regressor on the jth

stream. Different constraints can be imposed on wij such as
Non-Negative Least Squares, i.e. wij > 0, Bounded Variable
Least Squares vij < wij < uij , in which uij and are vij given
upper and lower bounds of wij , and Bounded Variable with
Constant Sum −1 < wij < 1,

∑K
i=1 wij = 1 [15]. In this

study, the constraints for weights were set as −1 < wij < 1.
Using the weights w, the predicted GE for jth stream of an
instance s is obtained by a linear combination of predictions
bij for s and the associated weights as:

b̂j =

K∑
i=1

wijbij (3)

in which bij is the predicted GE for jth stream of instance s,
given by ith regressors (i = 1, . . . ,K; j = 1, . . . , L).

B. Data generation

Training data: In the model in Fig 1, the training dataset
is fed to an EoR so that they can be trained to approximate
the relationship between measurements and their associated
GEs. In this study, we generated training data on 4 systems
collected from the literature (Fig 2-5) [3][6]. Fig 2-5 show the
structure of the experimental systems (parallel stream, recycled

Fig. 2. Separator equipment used in GED of System 1 (S1)

Fig. 3. Heat exchanger network with recycle flowsheet used in GED of
System 2 (S2)

stream, or measurement). In these systems, the true values of
measurements and the variances of random errors associated
with all streams were given. First, random errors with a normal
distribution (zero mean and given variance) for each stream
were generated and added to the true measurement to create
the base case data i.e., no-bias data. Then biases were gener-
ated for all streams and added to those base cases. In this work,
each bias was generated under a uniform distribution between
-25% to +25% of the associated measurement value. Uniform
distribution was chosen, because to our best knowledge, there
is no data available on the distribution of the gross error, and
it could depend on the type of sensor, working conditions and
many external factors [3]. The training data for a system of
m streams contains 1000 samples with non-bias, 10 samples
with GE on the mth stream. Hence, the training data includes
m ∗ 10 + 1000 samples.

Testing process: In the model in Fig 1, a test sample
is first passed through the data preparation process. In this
study, test samples were also generated on 4 systems to study
the performance of the proposed EoR. We generated one test
dataset for each system in which each GE was generated under
a uniform distribution between -5% and +5% of the associated
measurement value (as small errors will be harder to detect).
The data generation for testing data is the same as the training
data generation. According to a system with m streams, we
generated the test data of m ∗ 10 + 1000 samples in which
1000 samples with no-GE, 1000 samples with GE on the mth

stream.

C. Optimisation approach

In this section, we propose an approach to obtain combining
weight W for the ensemble framework. Since the ground
truths of the GEs of training instances are known in advance,
the weights of regressors should be introduced to minimise
the difference between the predicted GE and the ground truth.
Based on the predictions in (1) and weighted combining in (3)
, we obtain the combined result for nth training instance as:

b̂
(n)
j =

K∑
i=1

wijb
(n)
ij (4)
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Fig. 4. Generic mass balance flowsheet used in GED of System 3 (S3)

Fig. 5. Steam metering system flowsheet used in GED of System 4 (S4)

in which b̂
(n)
j is the predicted GE for jth stream of nth

instances of the training set. The loss function as the total
difference computed on all streams of all training instances is
defined as:

L =

∑N
n=1

∑L
j=1(b̂

(n)
j − ynj)

2

N × L

=

∑N
n=1

∑L
j=1(

∑K
i=1 wijb

(n)
ij − ynj)

2

N × L

(5)

in which L is the loss function and ynj is the ground truth
GE for the jth stream of the nth instance of the training
set. The combining weight is obtained by minimising the loss
function in (5). The proposed weighted combining model is
different from other weighted combining models for regression
problems. Compared to the LS method, its combining weights
are obtained by solving the least square minW ∥BW −Y∥ in
which W is a (KL×L) matrix of combining weights and Y
is a (N × L) matrix of the ground truth GE of all streams of
all instances. The combining model in GEM meanwhile uses
K weights computed on validation error while considering the
correlation of the error of the regressors.

In this study, we used Genetic Algorithm to search for the
optimal combining weights for the proposed ensemble system.
The proposed GA in this paper consists of three operators:
SELECTION, CROSSOVER, and MUTATION.

REPRESENTATION: We introduce a L × K vector to
encode combining weights. It is noted that the constraints for
weights were set as −1 ≤ wij ≤ 1 and the length of the
representation depends on the number of regressors K and
the number of streams L.

SELECTION: We utilize the roulette wheel selection pro-
cedure to balance fitness-based criteria and randomness [21].

Algorithm 1 Creating predictions for training data and
EoRs
Require: Training data D , number of cross-validation folds T , K regression algorithms

{Kk}K
k=1

Output: The prediction B and the trained regressors {gk}K
k=1

1: Train K regressors {gk}K
k=1 on D using {Kk}K

k=1
2: B = ∅
3: Divide D into T folds: D = D1 ∪ D2 ∪ · · · ∪ DT (Di ∩ Dj = ∅, i ̸= j)
4: for t from 1 to T do
5: D̃t = D − Dt

6: Train {g̃kt}K
k=1 on D̂t using {Kk}K

k=1

7: Use {g̃kt}K
k=1 to predict Dt

8: Add the results to B
9: end for

10: return B and {gk}K
k=1

Algorithm 2 Fitness evaluation
Require: The candidate W = {wij}(1 ≤ i ≤ K, 1 ≤ j ≤ L) where K is the

number of regressors and L is the number of streams, prediction B, GE ground truth
Y.

Output: The fitness value of W
1: pred = ∅
2: for each B(n) =

(
b
(n)
11 b

(n)
12 . . . b

(n)
1L b

(n)
KL

)
in B do

3: for j from 1 to L do
4: b̂

(n)
j =

∑K
i=1 wijbij

5: end for
6: Add b̂

(n)
j to pred

7: end for
8: Calculate fitness by using (5) with pred and Y = {ynj}
9: return fitness

At each generation, a number of parents are selected based
on their fitness values to generate offspring. For parameters’
settings, the population size is 100, and the maximum number
of generations is set to 500 based on the experiments in [22].

CROSSOVER: We used uniform crossover with a
crossover possibility Pc (was set to 0.9 in this study) to
generate offspring from their parents. If a randomly generated
crossover rate is smaller than Pc , the parent will be selected
to generate offsprings.

MUTATION: A mutation probability parameter Pm (was
set to 0.1 in this study) is used to direct the mutation
process. Each element of the first offspring is replaced by
a random number within the boundary range [-1, 1] with
a probability Pm. Meanwhile, each element of the second
offspring is replaced by a random number within the range
of the corresponding elements in its parents with Pm.

Algorithm 1 describes the procedure for creating predictions
for training data and EoR. In line 1, EoR {gk}Kk=1 are obtained
by training {Kk}Kk=1 on D. From line 3 to 9, we used the
Stacking algorithm to generate predictions B for training data.
In detail, D is divided into T disjoined parts. For each fold t,
each regressor is trained on the remainder of Dt denoted by
D̃t then predict for instances in Dt. The prediction is added
to B to return with {gi}Ki=1.

Algorithm 2 describes the fitness evaluation procedure for
a given candidate. From line 2 to 7, for prediction B(n) for
nth instance in B, we obtain the combining result using the
weights W (lines 3-5). After obtaining the predicted GE for all
training instances, the fitness value is calculated using equation
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Algorithm 3 Training process with Genetic Algorithm to
search for optimal combining weights
Require: Training data D, number of cross-validation folds T , K regression algorithms

{Kk}K
k=1, the number of streams L, population size popSize, number of

generations maxGen, crossover probability Pc, mutation probability Pm, elitist
ratio Er , parent selection percentage Pr .

Output: the optimal combining weights Wopt

1: Use Algorithm 1 to create B and EoR {gk}K
k=1

2: Randomly initialize popSize candidates.
3: Nelite = |popSize ∗ Er|, Npar = |popSize ∗ Pr|
4: for gen from 1 to maxGen do
5: for pop from 1 to popSize do
6: Use Algorithm 2 to calculate the fitness of the popth candidate W
7: end for
8: for pop from 1 to popSize do
9: probpop =

fitnesspop∑popSize
j=1

fitnessj

10: end for
11: Parent = ∅, EffParent = ∅
12: Add Nelite candidate to Parent
13: Add Npar − Nelite candidate to Parent by using roulette wheel selection
14: for a candidate in Parent do
15: if Rand() ≤ Pc then
16: Add candidate to EffParent
17: end if
18: end for
19: Add all candidates in Parent to the new population
20: j = Npar + 1
21: while j ≤ popSize do
22: Choose two random candidates W(1) =(

w
(1)
11 ) w

(1)
12 ) . . . w

(1)
L ) . . . w

(1)
KL)

)
and

W(2) =
(
w

(2)
11 ) w

(2)
12 ) . . . w

(2)
L ) . . . w

(2)
KL)

)
in

the EffParent set
23: for k from 1 to K do
24: for l from 1 to L do
25: if Rand() ≤ 0.5 then
26: Obtain w

′(1)
kl = w

(2)
kl and w

′(2)
kl = w

(1)
kl

27: end if
28: end for
29: end for
30: for k from 1 to K do
31: for l from 1 to L do
32: if Rand() ≤ Pm then
33: Replace w

′(1)
kl with a random number in the boundary range [-1,1]

34: end if
35: end for
36: end for
37: for k from 1 to K do
38: for l from 1 to L do
39: if Rand() ≤ Pm then
40: Replace w

′(2)
kl with a random number in the range

[min(w
(1)
lk , w

(2)
lk ),max(w

(1)
lk , w

(2)
lk )]

41: end if
42: end for
43: end for
44: Add W′(1) = {w′(1)

kl } and W′(2) = {w′(2)
kl } to the new population

45: j = j + 2
46: end while
47: end for
48: return Wopt from maxGen generation

(5) (line 8).
Algorithm 3 describes the training process with GA to

search for optimal combining weights. In line 1, Algorithm 1
is called to create the prediction B and the EoR {gk}Kk=1. From
lines 2-3, the population is initialized, and the number of elites
and parents are calculated. Afterward, for each generation,
the fitness value of each candidate is first calculated using
Algorithm 2 (lines 5-7), then the probabilities for roulette
wheel selection are calculated (lines 8-10). In line 11, Parent
and EffParent set are initialized in which Parent denotes
the set of candidates in the current generation which would be
added to the next generation, while EffParent denotes the

Algorithm 4 Evaluating test instance
Require: The best candidate Wopt = {wij}(1 ≤ i ≤ K, 1 ≤ j ≤ L), test

instance x, the EoR {g}K
i=1

Output: The predicted GE for x
1: pred = ∅
2: let

(
b11 b12 . . . b1L . . . bKL

)
be the predictions of {g}K

i=1 on x
3: for j from 1 to L do
4: b̂j =

∑K
i=1 wijbij

5: end for
6: return {b̂j}L

j=1

set of candidates which will be used to generate offsprings. In
lines 12 and 13, the parents are selected, with the first Nelite

candidates are chosen from the best candidates, while the re-
maining are chosen using roulette wheel selection. From lines
14-18, the candidates in Parent are added to EffParent
based on the crossover probability Pc, and in line 19, the
candidates in Parent are added to the new population. Then,
from lines 20-46, the candidates are randomly selected from
EffParent set, and crossover and mutations are applied until
a total of popSize candidates have been obtained. In detail,
two candidates W(1) and W(2) are randomly chosen from
the EffParent set, and their offspring, denoted as W ′(1)

and W ′(2). Uniform crossover is performed from lines 23-29,
in which the values of each dimension in W(1) and W(2) are
swapped with a probability of 0.5. For mutation, firstly each
element w

′(1)
kl in the first offspring is replaced by a random

number within the boundary range [-1, 1] (lines 30-36) with
probability Pm . Meanwhile each element w′(2)

kl in the second
offspring is replaced by a random number within the range
of the corresponding elements in the parents with probability
Pm (lines 37-43). Two offsprings W′(1) and W′(2) then are
added to the new population. After maxGen generations, the
algorithm returns the optimal candidate Wopt .

Algorithm 4 describes the evaluation process on the test
set. The inputs of the algorithm consist of the best candidate
Wopt = {wij}(1 ≤ i ≤ K, 1 ≤ j ≤ L), test instance x, the
trained regressors {gk}Kk=1.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

The proposed EoR was generated by training two regression
algorithms namely Random Forest and Gradient Boosting.
Random Forest was reported as one of the best methods among
more than 150 ML methods in [23] while Gradient Boosting
was reported as a reliable method for regression problems [24].
We used the Sklearn library with default parameters’ values
to implement these algorithms. To generate B in (1), a 5-
fold Cross-Validation on the training measurement data was
applied.

The performances of all experimental methods on the test
samples were reported according to two performance metrics
namely mean absolute error (MAE) and mean square error
(MSE). We used the Friedman test to test the null hypothesis
that all methods perform equally on the datasets. If the null
hypothesis is rejected (that means the performances of all
methods are different), we conducted the Nemenyi post-hoc
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Fig. 6. The Nemenyi test result on MSE

Fig. 7. The Nemenyi test result on MAE

test for all pairwise comparisons based on the rankings of
experimental methods on all experimental test datasets. In this
work, the confidence level of the Nemenyi test was set to 0.05.

B. Comparison with the Benchmark Algorithms

We compared the proposed ensemble to 4 benchmark algo-
rithms: two ensemble members (Random Forest and Gradient
Boosting), BEM, and LS method. The comparison of two
ensemble members aims to show the advantage of EoR over
single regressors. Meanwhile, the comparison to two weighted
EoR namely BEM and LS aim to demonstrate the advantage of
the proposed combining weight method in our method. Both
BEM and Least Square were implemented with an ensemble
of two members Random Forest and Gradient Boosting like
the proposed method. We run each method one time and
reported the results in Tables 1 and 2. Since the p-values of
the Friedman test corresponding to MAE and MSE are all
smaller than a given significant level, we then reject the null
hypothesis that all methods performed equally. We run the
Nemenyi post-hoc test to compare each pair of methods. The
results of the Nemenyi test are shown in Fig 6 and 7.

For MSE, the Nemenyi test result in Fig 6 shows that the
proposed ensemble ranks first among all experimental methods
and is better than Random Forest, followed by LS and Gradient
Boosting. The poorest method in our experiments was Random
Forest (with rank value 5). In detail, the proposed ensemble
ranks first on all datasets. On S1, S2, and S4 datasets, the MSE
of the proposed ensemble was slightly better than the second-
best method on those datasets (0.019417 vs. 0.019442 of LS
on S1, 0.054523 vs. 0.055522 of LS on S2, and 0.500162 vs.
0.05075 of LS on S4). On S3 dataset, the proposed ensemble
outperforms LS with more significance, 3.718 vs. 3.9189.
Compared to BEM, the proposed ensemble yields significantly
better results on S3 dataset (3.7186 vs. 6.8408). BEM simply
computes the mean of predictions without attention to the
difference in the performance of each regressor of the ensem-

TABLE I
THE MSE OF THE PROPOSED ENSEMBLE (2 REGRESSORS) AND

BENCHMARK ALGORITHMS

Dataset Random Gradient BEM LS Proposed
Forest Boosting ensemble

S1 0.021055 0.019602 0.019701 0.019442 0.019417
S2 0.089433 0.073892 0.077728 0.055522 0.054523
S3 8.954313 6.209644 6.840754 3.918852 3.718571
S4 0.565045 0.522243 0.516814 0.507476 0.500162

TABLE II
THE MAE OF THE PROPOSED ENSEMBLE (2 REGRESSORS) AND

BENCHMARK ALGORITHMS

Dataset Random Gradient BEM LS Proposed
Forest Boosting ensemble

S1 0.078704 0.075874 0.076407 0.076102 0.075869
S2 0.152985 0.128022 0.138561 0.112818 0.109807
S3 1.045511 0.732430 0.873343 0.699505 0.646974
S4 0.166957 0.132138 0.148205 0.158130 0.142902

ble, thus this method obtained poorer results than LS and our
method in the experiment.

For MAE, the Nemenyi post-hoc test result in Fig 7 shows
that the proposed ensemble ranks first and is better Random
Forest. The proposed method is worse than Gradient Boosting,
the second-best method on S4 dataset (0.142902 vs. 0.132138)
while outperforms that method on S2 and S3 dataset (0.109807
vs. 0.128022 on S2 and 0.646974 vs. 0.732430 on S3). The
proposed ensemble performs slightly better than LS on S1 and
S2 datasets while the MAE differences of those methods are
significant on S3 dataset. Random Forest continues to be the
poorest method in our experiments corresponding to MAE.
The outstanding of the proposed ensemble can be explained
by the weighted combining method.

C. Different Number of Regressors

We compared the proposed ensemble to the benchmark
algorithms with a different number of regressors. In this
experiment, we created ensemble systems with 3 regressors
(Bayesian Ridge Regression algorithm, Ridge Regression al-
gorithm, and Histogram-Based Gradient Boosting (HGB) for
regression). Table 3 and 4 show the experimental results of
all experimental methods. It is observed that the proposed
ensemble once again is better than the 3 regressor members
and two EoRs concerning both MSE and MAE. For MSE, the
proposed ensemble ranked first on all datasets and for MAE
a similar pattern was observed except on S1 dataset where
the proposed ensemble’s performance is slightly better than
that of HGB (0.082068 vs. 0.078093). LS, another weighted
combining method, was worse than the proposed method on all
datasets. This method, even, was worse than the three regressor
members on S4 dataset. These results indicated the advantage
of our method with a different EoR.

We compared the training and testing time of the two
weighted ensemble methods (the proposed method and LS).
For the training process, LS and the proposed method took
the same time in generating the prediction B in (1) and
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TABLE III
THE MSE OF THE PROPOSED ENSEMBLE (3 REGRESSORS) AND

BENCHMARK ALGORITHMS

Dataset Bayesian Ridge HGB BEM LS Proposed
Ridge ensemble

S1 0.024818 0.024774 0.020179 0.020089 0.019770 0.019526
S2 0.057670 0.057846 0.108532 0.064989 0.081334 0.054844
S3 5.182465 5.197063 8.625569 5.002093 4.062159 3.877229
S4 0.933948 0.936405 0.681322 0.676290 2.504710 0.607045

TABLE IV
THE MSE OF THE PROPOSED ENSEMBLE (3 REGRESSORS) AND

BENCHMARK ALGORITHMS

Dataset Bayesian Ridge HGB BEM LS Proposed
Ridge ensemble

S1 0.117805 0.117670 0.078093 0.102706 0.083277 0.082068
S2 0.157104 0.157595 0.170890 0.158690 0.164433 0.123669
S3 1.425069 1.428178 0.968218 1.256697 0.896520 0.790358
S4 0.583918 0.584691 0.168820 0.442076 0.851757 0.282238

generating the EoR. However, the proposed ensemble took
higher computational time in obtaining combining weights
than the LS method because of using GA for searching. On
S3 dataset, two methods took about 344 seconds in generating
B and 88 seconds in generating the EoR; the proposed method
took about 100 seconds in obtaining the optimal weights while
LS took less than 1 second only. On the other hand, the
proposed method took less testing time in the testing process
compared to the LS method because of the small size of
combining weights (L × K -matrix of the proposed method
vs. (LK)×K -matrix of the LS method). On S3 dataset, the
proposed method took 1.22 seconds to test all test instances
while the LS method took 1.8 seconds on the same task.

V. CONCLUSIONS

In this paper, we proposed an EoR to predict GE magnitudes
on measurement data. The ensemble includes a number of
regressors obtained by training different regression algorithms
on the training data including measurement instances and their
associated GE ground truths. The outputs of EoR are combined
by a weighted combining method showing how regressors
contribute to the combining result. We modelled the weights
search problem as an optimisation problem by minimising
the differences between the predicted GE for instances in
the training data and the corresponding GE ground truths.
Three GA operators were proposed to search for the optimal
combining weight of each regressor, including roulette wheel
selection for breeding, single-point crossover to generate new
offspring, and random mutation on each offspring.

We compared two optimisation methods GA and PSO with
the proposed ensemble. The experimental results on 4 datasets
generated from 4 popular systems in the literature showed
that the proposed ensemble using GA performed better than
that using PSO. Compared to two ensemble methods (Random
Forest and Gradient Boosting) and two weighted combining
ensemble methods (Least Square and BEM), the proposed
ensemble outperforms those methods with different margins.
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