
Evolutionary Multi-objective Quantization of
Randomization-based Neural Networks

Javier Del Ser∗†, Alain Andrés∗, Miren Nekane Bilbao†, Ibai Laña∗ and Jesus L. Lobo∗
∗TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

†University of the Basque Country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain
Email: javier.delser@tecnalia.com

Abstract—The deployment of Machine Learning models on
hardware devices has motivated a notable research activity
around different strategies to alleviate their complexity and
size. This is the case of neural architecture search or pruning
in Deep Learning. This work places its focus on simplifying
randomization-based neural networks by discovering fixed-point
quantization policies that optimally balance the trade-off between
performance and complexity reduction featured by these models.
Specifically, we propose a combinatorial formulation of this
problem, which we show to be efficiently solvable by multi-
objective evolutionary algorithms. A benchmark for time series
forecasting with Echo State Networks over 400 datasets reveals
that high compression ratios can be achieved at practically
admissible levels of performance degradation, showcasing the
utility of the proposed problem formulation to deploy reservoir
computing models on resource-constrained hardware devices.

Index Terms—Randomization-based neural networks, model
quantization, multi-objective optimization, fixed-point arithmetic.

I. INTRODUCTION

Nowadays there is little doubt that Deep neural networks
(DNNs) have become the de facto machine learning approach
for complex tasks, especially modeling spatio-temporal data
[1]. Indeed, by stacking several multiple layers of artificial
neurons (each comprising simple computations), significant
benefits can be brought to a wide range of domains, includ-
ing computer vision, natural language processing, or speech
recognition, among others. Other domains such as finance,
biomedicine and transportation have also warmly embraced
the unprecedented capability of DNNs to learn complex rep-
resentations and to provide value in specific problems such as
portfolio management, proteomics and traffic modeling.

Unfortunately, DNNs have a large number of parameters
that must be learned during training. These models often
amount to millions of parameters, which can make them
difficult to train and prone to overfitting. At this point, several
strategies can be adopted to reduce the complexity of DNNs
[2]. One approach is the use of regularization techniques,
such as weight-dependent loss penalties or weight decay,
which help to prevent overfitting. Another approach is to use
simpler architectures, such as smaller networks or shallower
layers, which can reduce the number of parameters and make
the model more interpretable. Additional techniques such as
pruning, quantization, and distillation can be used to further
compress the model and make it more efficient at both training
and inference times. From a broader perspective, two general

strategies can be adopted to reduce the complexity of machine
learning models: ex ante methods, namely, the reduction of
the model complexity during its design, prior to the training
process (such as AutoML based on complexity-driven design
goals); and post-hoc methods, which seek to decrease the
complexity of the network after the model has been trained
(e.g., pruning).

In this context, an alternative to reduce the complexity is
to incorporate randomness in the training process of neural
networks. The so-called family of randomization-based neural
networks [3] resorts to different forms of randomization to
accomplish different goals: 1) complexity reduction (in terms
of number of trainable parameters); 2) overfitting avoidance
(e.g., dropout, which randomly sets some of the neuron’s
activations to zero during training); 3) increased robustness
against data distribution shifts (e.g., stochastic depth, which
randomly removes some of the layers during training to make
the model more robust to changes in the data distribution);
or 4) estimation of the model’s uncertainty (as in Monte
Carlo dropout, which uses dropout at test time to estimate
the model’s uncertainty and make more robust predictions).
As a result, randomization-based neural networks have been
shown to be effective in improving the performance and ro-
bustness of deep learning models, with a growing momentum
in computer vision applications, text modeling and time-series
classification [4].

In this work we focus on quantization techniques, which
are widely used in neural networks to reduce their memory
and computational requirements [5]. Quantization involves
reducing the precision of the weights and activations in the
network, which can be done by mapping them to a fixed
set of discrete values. Quantization can be done ex ante and
post-hoc. In ex ante quantization, the weights and activations
are quantized to lower-precision values, and the network is
trained to minimize the loss function in the quantized space.
By contrast, in post-hoc quantization weights are quantized
during inference to make predictions, which can be done with
reduced memory and computational overhead. Quantization
can also decrease the storage and communication costs when
deploying the model to resource-constrained devices.

This work explores the intersection between post-hoc quan-
tization and randomization-based neural networks. We seek
the ultimate goal of reducing the computational requirements
of this family of neural networks, beyond their small training

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1346

latencies. To this end, we formulate the discovery of good
post-hoc quantization policies as a bi-objective combinatorial
optimization problem driven by the trade-off between perfor-
mance and memory reduction, assuming a trained model. This
problem is then efficiently solved by several multi-objective
evolutionary algorithms (MOEAs). Experimental results are
discussed using one of the most renowned models in this fam-
ily of neural networks (namely, Echo State Networks, ESNs)
and an extensive benchmark of time series forecasting datasets.
As revealed by the obtained experimental outcomes, there are
clear differences between MOEAs in terms of several quality
indicators. Furthermore, we show that memory reductions of
more than 80% can be achieved while minimizing the error
degradation of the quantized ESN.

The rest of the manuscript is structured as follows: Section
II revisits the intersection between evolutionary computation
and deep learning, randomization-based neural networks and
poses the contribution of this work . Next, Section III for-
mulates the considered optimization problem, and details the
MOEAs used to solve it. Next, Section IV states the research
questions that experiments aim to address, and discusses on
the results obtained for this purpose. Finally, Section V draws
conclusions and future research lines.

II. RELATED WORK

Before delving into the quantization problem under consid-
eration and the MOEAs used, we briefly revisit the crossroads
between evolutionary computation and DNNS (Section II-A)
and randomization-based neural networks (Section II-B), end-
ing with an statement on our contribution (Section II-C).

A. Evolutionary computation and neural networks

Evolutionary computation is a class of optimization tech-
niques inspired by the principles of natural evolution
(crossover, mutation and survival of the fittest). These tech-
niques can be used to find the optimal values of the parameters
of a model, such as neural networks. Evolutionary computation
has been used in combination with deep learning to optimize
the architecture, hyperparameters, and even the weights of neu-
ral networks [6], [7]. Evolutionary algorithms can be used to
search for the best architecture of a neural network, by creating
a population of architectures and iteratively selecting the best
ones based on their performance on a validation set. Examples
as such include Evodeep [8], Evo-Unet [9], EvoDCNN [10] or
NSGAnet [11], among many others. They can also be used to
optimize the hyperparameters of a neural network, such as the
learning rate or the dropout rate [12]. These methods can be
computationally expensive but have been shown to be effective
in finding high-performing architectures, hyperparameters and
weights that are not found by traditional grid search or random
search methods. Additionally, evolutionary algorithms can be
used to optimize the weights of a neural network, by creating a
population of weight vectors and iteratively selecting the best
ones based on their performance on a validation set. However,
there is little consensus whether their good performance shown
for training reinforcement learning models can be extrapolated

to neural networks of realistic sizes [6]. Evolutionary algo-
rithms have also been used for evolving both binary (pruning)
and mixed-resolution quantization policies [13]- [17].

B. Randomization-based neural networks

Following up the introduction, randomization-based neural
networks overcome issues of conventional neural networks
(e.g., computationally demanding training process or over-
fitting) by embracing randomness during different stages of
the model construction process. Among them, we concen-
trate on those modeling approaches in which part of the
trainable parameters are initialized at random, whereas the
rest of parameters are learned based on a computationally
light training algorithm (e.g. a regularized least squares). This
randomization strategy yield learning models with drastically
reduced training latencies, making them a suitable choice for
constrained computing devices.

Several families of neural networks rely on this strategy. For
instance, random vector functional link (RVFL) networks are
a type of neural network designed to handle high-dimensional
input data [18]. In essence, RVFL is a simple feedforward
neural network with an input layer, a hidden layer, and an
output layer. The hidden layer uses a random subset of the
input features and applies a non-linear activation function to
them. The output layer uses the outputs of the hidden layer
to make predictions. RVFL networks have been shown to be
effective in a variety of tasks such as function approximation,
pattern recognition and time-series prediction. When modeling
sequential data, ESNs [19] resort to a large random fixed
recurrent weight matrix in its hidden layer (a reservoir), which
endows the model with the capability to learn long-terms
dependencies in sequences. The reservoir processes the input
data and transfers it to the output layer, which learns the
mapping from the hidden layer to the output.

C. Contribution

Randomization-based neural networks have been optimized
with evolutionary computation. Evolutionary algorithms can
be used to search for the best hyperparameters of an ESN, such
as the size of the reservoir, the spectral radius of the recurrent
weight matrix, and the regularization coefficients [20], [21].
Additionally, evolutionary algorithms and other metaheuristic
approaches can optimize the structure of a randomized neural
network, such as the number of neurons, the connectivity
patterns, the types of non-linearities or even the values of
the weights themselves [22], leading to models with better
performance, increased robustness and smaller size.

Scarce works have dealt so far with quantization in
randomization-based neural networks. The work in [23] pro-
poses integer-coded reservoir parameters and efficient cyclic
shift operations to yield ESN implementations with reduced
memory footprint and improved computational efficiency.
Likewise, a novel quantization approach suitable for deploying
ESNs on edge devices was proposed in [24]. A naive ternary
quantization strategy for fixed-point ESN implementations
was presented in [25]. Quantization has been also under

1347

study for other members of the randomization-based neural
networks, including Extreme Learning Machines [26] and the
aforementioned RVFL networks [27], [28].

However, to the best of our knowledge no prior work has
explored the application of MOEAs to the post-hoc quantiza-
tion of randomization-based neural networks. We hypothesize
that this exercise can help decide which quantization policy to
apply in practical settings based on the estimated Pareto front
between modeling performance and memory footprint.

III. PROBLEM STATEMENT AND PROPOSED SOLVERS

We assume a supervised learning task over a dataset D =
{xn, yn}Nn=1, where xn ∈ X denotes the n-th instance of the
dataset and yn ∈ Y its annotation. We denote as Mθ a model
with trainable parameters θ = {θm}Mm=1 learned from D. For
instance, if Mθ is an ESN, θ should comprise the weights
of the input (Win), reservoir (Wres) and output (readout)
matrices of the model, as well as other matrices featured by
non-standard formulations of this randomization-based neural
network (e.g. feedback matrix Wfb). We assume that after
training, θm ∈ R ∀m ∈ {1, . . . ,M}. A Q-depth quantization
policy is a mapping f : {1, . . . ,M} 7→ {1, . . . , Q} that
reduces the bit precision of every learned parameter of the
model θm. Assuming that training has been produced on a
computer with fixed 64-bit precision, the memory reduction
∆MEM achieved by the quantization policy is given by:

∆MEM(f) =

M∑
m=1

f(m)/(64 ·M). [%] (1)

Likewise, the generalization performance of the quantized
model can be evaluated over a validation dataset Dval

.
=

{xval
n , yvaln }Nval

n=1 , drawing quantitative measurements that de-
pend on the task being tackled (e.g. Root Mean Square
Error for regression problems). By referring to this score as
S(yval, ŷval;θ, f), where ŷval denotes the prediction for yval,
the bi-objective optimization problem under study is:

f∗ = argf∈F
[
minS(yval, ŷval;θ, f), min∆MEM(f)

]
, (2)

where f∗ denotes the set of quantization policies that optimally
balance the trade-off between generalization performance and
the achieved level of compression of the parameters of the
trained model (i.e., the estimated Pareto front between such
objectives). This combinatorial formulation essentially com-
prises a search over the space of possible quantization policies
F , whose cardinality |F| = QM grows fast with the number
of quantization levels Q.

A. Solution encoding and search operators

The exponentially increasing dimensions of the combinato-
rial solution space characterizing the problem stated above re-
quires efficient means to perform the search. For this purpose,
MOEAs are a natural choice given their renowned capacity
to cope with complex combinatorial optimization problems
driven by several objectives that conflict with each other. The
good performance and design flexibility of MOEAs to include
search operators suited to deal with the particularities of the

problem at hand have been leveraged over the years in many
practical scenarios, including operations research, industry or
health, to cite a few [29], [30]. In general, the definition of
MOEAs requires specifying:

a) Solution encoding: Since solutions of our problem
are quantization policies f : {1, . . . ,M} 7→ {1, . . . , Q}, each
solution is encoded as an integer vector of size M , where each
integer entry can take on values from {1, . . . , Q}.

b) Search operators: Search operators are used during
the search to evolve a population of solutions that represents
the knowledge of the solver and ultimately, the Pareto front es-
timated by the MOEA at hand. In this work two different oper-
ators are used. First, the so-called Simulated Binary Crossover
(SBX) combines two parent individuals by randomly selecting
a crossover point and then using a probability distribution
function to determine how the genetic information from the
two parents is combined to form the offspring. Second, a
neighborhood mutation operator randomly modifies the values
of the components of a given solution (based on a probabilistic
parameter) to a value drawn uniformly at random from its
neighboring values in its alphabet {1, . . . , Q}.

The above search operators and encoding strategies can be
used by different MOEAs, each comprising distinct strategies
to rank solutions and promote convergence and diversity in
the estimated Pareto front. The experiments discussed in this
work comprise a benchmark between five well-known MOEAs
in the literature: Non-dominated Sorting Genetic Algorithm
II (NSGA2 [31]), Non-dominated Sorting Genetic Algorithm
III (NSGA3 [32]), Strength Pareto Evolutionary Algorithm
II (SPEA2 [33]), MultiObjective Cellular genetic algorithm
(MOCELL [34]), and Indicator-Based Evolutionary Algorithm
(IBEA [35]). We refer to these references for further details
about these algorithms, including descriptions of their ranking
procedures and diversity preservation mechanisms.

IV. EXPERIMENTS AND RESULTS

To shed light on the performance of MOEAs when tackling
the bi-objective problem under consideration, an extensive
experimental setup has been designed to inform two different
research questions (RQs) with empirical evidence:
• RQ1: Are there performance differences between MOEAs

when addressing this problem?
• RQ2: Which compression-performance trade-offs can be

achieved w.r.t. floating-point or fixed-point single-resolution
model implementations?
To this end, we focus on a specific modeling task: time

series forecasting with horizons H ∈ {1, 2, 4, 8}, meaning that
the model aims to predict the value of the time series at t+H ,
with t denoting the time at which the model is queried. This
task is formulated over the 400 time series datasets comprised
in the Libra benchmark [36]. This benchmark comprises
four different use cases, each covering 100 heterogeneous
time series from different application domains. To undertake
the forecasting tasks over the considered datasets, a single-
layer ESN is selected as the model Mθ with parameters
Win, Wres and readout (a ridge regressor with regularization

1348

parameter 10−5). For all cases the size of the reservoir is 50
neurons, and train-validation-test partitions are drawn from
the time series in a proportion 70-20-10%. The predictive
score S(yval, ŷval;θ, f) that represents the first objective in
Expression (2) is chosen to be the Root Mean Square Error
(RMSE) over the validation partition (valRMSE).

In all cases a maximum resolution per weight of Q = 16 bits
was configured. Population size (50), crossover (0.85) and mu-
tation (0.1) probabilities are set equal for the search operators
utilized in all MOEAs, so as to compare them only in terms
of their ranking, selection and diversity preservation criteria.
The software implementation of these MOEAs available in the
jMetalPy package [37] has been used, whereas finite-precision
fixed-point arithmetic operations are provided by the Simple
Python Fixed-Point Module (SPFPM) Python toolkit1.

Comparisons are held in terms of several multi-objective
quality indicators, namely, normalized HyperVolume (HV),
modified Inverted Generational Distance (IGD+) and Epsilon
unary indicator (EPS). The global set of non-dominated so-
lutions for all algorithms and runs is considered to be the
reference Pareto front for the computation of IGD+ and EPS.
For each (MOEA, dataset) combination, 20 independent runs
are performed to account for the statistical variability of the
results due to the stochastic nature of the search operators.
Each run is stopped after 104 objective evaluations. Once
such runs have been completed, we compute a non-parametric
Wilcoxon rank-sum test between the HV values obtained
by every pair of MOEAs (20 values per algorithm) for a
given dataset to ascertain whether significant differences exist
between them. We then use this significance to compute their
fractional ranks, granting the same rank to those algorithms
for which no significant differences were declared. These
ranks are averaged across datasets and graphically represented,
so that algorithms whose average ranks are separated by
more than a critical distance (given by a Nemenyi test with
significance level equal to 0.05) can be claimed to perform
differently with statistical significance. This ranking procedure
is then repeated for different forecasting horizons H .

We now discuss over the results reported for every RQ:

RQ1: Performance differences between MOEAs

Figure 1 depicts the critical distance diagrams computed
over the HV results for every forecasting horizon. The length
of the line denoted as CD indicates the minimum difference
between two average ranks for their corresponding MOEAs to
perform statistically different to each other. We first observe
that IBEA outperforms clearly its counterparts in this bench-
mark, followed by SPEA2 and NSGA3 (with no clear winner
among them). MOCELL is consistently surpassed by the rest
of approaches, except for H = 4, where it is found to perform
similarly to NSGA2.

A more detailed analysis of these results can be done
if we inspect the distribution of the quality indicators for

1Simple Python Fixed-Point Module (SPFPM), https://github.com/
rwpenney/spfpm, accessed on July 9th, 2023.

all algorithms. This is the purpose of Figure 2, where the
distribution of the HV (first row), IGD+ (second row) and EPS
(third row) are shown for all forecasting horizon. The fourth
row corresponds to the statistics computed over the total time
taken by every solver to complete the search for a given run. It
is straightforward to note that the HV results (first row) match
the conclusions drawn from Figure 1: a clear dominance of
IBEA for all forecasting horizons. However, we observe that
IBEA also performs better than the rest of the MOEAs for the
EPS indicator. However, there is no consistent winner when it
comes to the IGD+ indicator and the running time.

1 2 3 4 5

IBEA
SPEA2
NSGA3

NSGA2
MOCELL

CD

(a) H = 1

1 2 3 4 5

IBEA
SPEA2
NSGA3

NSGA2
MOCELL

CD

(b) H = 2

1 2 3 4 5

IBEA
NSGA3
SPEA2

NSGA2
MOCELL

CD

(c) H = 4

1 2 3 4 5

IBEA
NSGA3
SPEA2

NSGA2
MOCELL

CD

(d) H = 8

Fig. 1: Critical distance diagrams depicting the average ranks
of the MOEAs under comparison, computed over a dataset of
400 time series and the HV results obtained by these solvers.

Finally, we complement the results for RQ1 by examining
the composition of the global Pareto front estimation for
some few datasets and forecasting horizons. This analysis
allows determining which algorithm discovers results (i.e.
quantization policies) that are not dominated by any other
algorithm in any of its runs. Figure 3 summarizes this analysis
by showing the global Pareto front estimation for different
datasets, highlighting with a different color the solver that
discovered each of its points. The first objective is normalized
by its maximum value to ease the interpretation of the plots.
As shown in these particular cases and the statistics of the
% of the global Pareto front contributed by each algorithm
(boxplots on the right of this figure), IBEA provides a notably
higher fraction of the points belonging to the global Pareto
estimation, especially for low values of ∆MEM(·).

RQ2: Compression-performance trade-offs

Regarding the second research question, Table I shows
statistics (mean ± std) computed over all datasets of the RMSE
degradation in validation (first row) and test partitions (second
row), as well as the memory reduction ∆MEM achieved by the
policies f of the estimated Pareto yielding the minimum value
of valRMSE (first column), minimum ∆MEM (second column),
and minimum value of the sum of the two objectives. The
RMSE degradation ∆RMSE is computed as the normalized dif-
ference between the RMSE achieved by the model quantized
by the selected policy and the RMSE obtained with a fixed-
point quantization of Q = 16 bits per parameter: the lower
∆RMSE is, the lower the RMSE degradation of the quantized
model will be compared to its non-quantized version.

1349

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.5

0.6

0.7

0.8

H
V

H = 1

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.4

0.5

0.6

0.7

0.8

H = 2

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.5

0.6

0.7

0.8

H = 4

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.4

0.5

0.6

0.7

0.8

H = 8

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0.0

0.1

0.2

0.3

IG
D

+

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.1

0.2

0.3

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.05

0.10

0.15

0.20

0.25

NSGA2 SPEA2 MOCELL NSGA3 IBEA

0.1

0.2

0.3

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0.0

0.1

0.2

0.3

E
P

S

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0.0

0.1

0.2

0.3

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0.0

0.1

0.2

0.3

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0.00

0.05

0.10

0.15

0.20

0.25

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0

1000

2000

3000

4000

5000

R
un

ni
ng

tim
e

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0

1000

2000

3000

4000

5000

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0

1000

2000

3000

4000

5000

NSGA2 SPEA2 MOCELL NSGA3 IBEA
0

1000

2000

3000

4000

5000

Fig. 2: Boxplots of the multiobjective quality indicators computed over all datasets for different forecasting horizons (columns).

0.0 0.2 0.4

Normalized valRMSE

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

m
od

el
si

ze

finance 34, H = 1

0.00 0.05 0.10

Normalized valRMSE

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

m
od

el
si

ze

human 51, H = 2

0.0 0.5 1.0

Normalized valRMSE

0.2

0.4

0.6

N
or

m
al

iz
ed

m
od

el
si

ze

finance 78, H = 4

0.0 0.1

Normalized valRMSE

0.4

0.6

0.8

N
or

m
al

iz
ed

m
od

el
si

ze

human 25, H = 8

N
S

G
A

2

S
P

E
A

2

M
O

C
E

LL

N
S

G
A

3

IB
E

A

0

20

40

60

80

100

%
ag

g.
P

ar
et

o
fro

nt

H = 1

N
S

G
A

2

S
P

E
A

2

M
O

C
E

LL

N
S

G
A

3

IB
E

A

0

20

40

60

80

%
ag

g.
P

ar
et

o
fro

nt

H = 2

0.00 0.25 0.50

Normalized valRMSE

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

m
od

el
si

ze

economics 37, H = 1

0.0 0.2

Normalized valRMSE

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

m
od

el
si

ze

economics 72, H = 2

0.0 0.1 0.2

Normalized valRMSE

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

m
od

el
si

ze

economics 87, H = 4

0.0 0.1 0.2

Normalized valRMSE

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

m
od

el
si

ze

finance 99, H = 8

N
S

G
A

2

S
P

E
A

2

M
O

C
E

LL

N
S

G
A

3

IB
E

A

0

20

40

60

80

%
ag

g.
P

ar
et

o
fro

nt

H = 4

N
S

G
A

2

S
P

E
A

2

M
O

C
E

LL

N
S

G
A

3

IB
E

A

0

20

40

60

80

100

%
ag

g.
P

ar
et

o
fro

nt

H = 8

Fig. 3: Contribution of each solver to the global Pareto front of some datasets (left) and distribution over all datasets (right).

Several observations can be done: to begin with, compres-
sion levels between 18% and 54% can be achieved at an RMSE
degradation whose tolerance will depend on the application at
hand. Above all, we highlight the results shaded in gray in the
table, which expose that for long forecasting horizons (high
H), the quantization policy yields lower RMSE values than the
case where the resolution of all model parameters is kept to
Q = 16. This can be also noted in the decreasing behavior of
∆RMSE with H for any selected policy. This counter-intuitive
result can be due to the fact that quantization can be regarded
as a post-tuning process of the ESN parameters which, as the
forecasting horizon increases, allows the compressed model to
fit better the dynamics of the time series under consideration.

This, however, requires further analysis in the near future.

V. CONCLUSIONS AND FUTURE WORK

This manuscript has showcased the benefits of MOEAs for
efficiently delineating the Pareto relationship between perfor-
mance and model compression ratio that can be achieved by
quantizing randomization-based neural networks. Focusing on
one of these models (ESN) and time series forecasting tasks,
we have shown throughout extensive experimentation that the
memory footprint of trained ESNs can be dramatically reduced
at a penalty in the predictive performance of the quantized
model. We have also unveiled an interesting parameter refining
effect of post-hoc quantization by which, in addition to model

1350

TABLE I: RMSE degradation and model compression ratio
statistics of selected policies belonging to the Pareto front
estimated for each dataset.

H f @ min valRMSE f @ min∆MEM f @ min(valRMSE +∆MEM)

∆RMSE
(val, %)

1 50.65± 29.62 4250.03± 649.63 369.75± 115.02
2 10.72± 9.11 4078.38± 541.14 272.64± 45.43
4 −9.42± 3.89 4278.84± 617.49 211.95± 32.31
8 −15.42± 3.34 3751.14± 513.07 224.64± 39.35

∆RMSE
(test, %)

1 63.95± 29.73 3937.43± 606.45 375.60± 123.88
2 19.87± 16.56 3965.52± 555.58 297.68± 64.01
4 −2.55± 5.54 4120.02± 668.07 208.49± 36.91
8 −4.63± 5.28 3311.40± 480.80 193.65± 31.67

∆MEM
(%)

1 51.37± 25.81 18.01± 2.16 31.12± 14.82
2 54.03± 26.53 18.60± 2.69 35.03± 16.34
4 54.21± 25.85 18.92± 2.78 36.51± 15.76
8 53.65± 27.18 19.18± 3.14 35.63± 16.98

compression, fine-tuning can be achieved, leading to improved
generalization performance for high forecasting horizons.

Besides investigating this effect, future research will extend
the problem to architecture search, leveraging the modularity
and design flexibility of reservoir computing models. Special-
ized readout models will be also studied, featuring learning
algorithms that are sensitive to fixed-point arithmetic, which
can support the ex ante optimization of quantization policies.

ACKNOWLEDGMENTS

The authors thank the Basque Government (MATHMODE,
ref. T1256-22, and BEREZ-IA, ref. KK-2023/00012) and
Euskampus Fundazioa (ref. ORLEG-IA) for their support.

REFERENCES

[1] S. Wang, J. Cao, and S. Y. Philip, “Deep learning for spatio-temporal
data mining: A survey,” IEEE transactions on knowledge and data
engineering, vol. 34, no. 8, pp. 3681–3700, 2020.

[2] X. Hu et al., “Model complexity of deep learning: A survey,” Knowledge
and Information Systems, vol. 63, pp. 2585–2619, 2021.

[3] L. Zhang and P. N. Suganthan, “A survey of randomized algorithms for
training neural networks,” Information Sciences, vol. 364, pp. 146–155,
2016.

[4] S. Scardapane and D. Wang, “Randomness in neural networks: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 7, no. 2, p. e1200, 2017.

[5] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” arXiv preprint arXiv:1808.04752, 2018.

[6] A. D. Martinez et al., “Lights and shadows in Evolutionary Deep
Learning: Taxonomy, critical methodological analysis, cases of study,
learned lessons, recommendations and challenges.”

[7] H. T. Ünal and F. Başçiftçi, “Evolutionary design of neural network ar-
chitectures: a review of three decades of research,” Artificial Intelligence
Review, pp. 1–80, 2022.

[8] A. Martı́n et al., “Evodeep: a new evolutionary approach for automatic
deep neural networks parametrisation.”

[9] T. Hassanzadeh, D. Essam, and R. Sarker, “Evou-net: an evolutionary
deep fully convolutional neural network for medical image segmenta-
tion,” in Annual ACM Symposium on Applied Computing, 2020, pp.
181–189.

[10] ——, “EvoDCNN: An evolutionary deep convolutional neural network
for image classification,” Neurocomputing, vol. 488, pp. 271–283, 2022.

[11] Z. Lu et al., “Nsga-net: neural architecture search using multi-objective
genetic algorithm,” in Genetic and Evolutionary Computation Confer-
ence, 2019, pp. 419–427.

[12] P. Jiang, Y. Xue, and F. Neri, “Continuously evolving dropout with
multi-objective evolutionary optimisation,” Engineering Applications of
Artificial Intelligence, vol. 124, p. 106504, 2023.

[13] Z. Wang et al., “Evolutionary multi-objective model compression for
deep neural networks,” IEEE Computational Intelligence Magazine,
vol. 16, no. 3, pp. 10–21, 2021.

[14] T. Wang et al., “Apq: Joint search for network architecture, pruning and
quantization policy,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 2078–2087.

[15] Z. Liu et al., “Evolutionary quantization of neural networks with mixed-
precision,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2021, pp. 2785–2789.

[16] Y. Yuan et al., “Evoq: Mixed precision quantization of DNNs via sensi-
tivity guided evolutionary search,” in International Joint Conference on
Neural Networks (IJCNN), 2020, pp. 1–8.

[17] Z. Wang et al., “Adaptive integer quantisation for convolutional neural
networks through evolutionary algorithms,” in IEEE Symposium Series
on Computational Intelligence (SSCI), 2021, pp. 1–7.

[18] A. K. Malik et al., “Random vector functional link network: recent
developments, applications, and future directions,” Applied Soft Com-
puting, p. 110377, 2023.

[19] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks - with an erratum note,” German National Research
Center for Information Technology GMD Technical Report, vol. 148,
no. 34, p. 13, 2001.

[20] L. Wang et al., “Effective electricity energy consumption forecasting
using echo state network improved by differential evolution algorithm,”
Energy, vol. 153, pp. 801–815, 2018.

[21] H. Wang and X. Yan, “Optimizing the echo state network with a bi-
nary particle swarm optimization algorithm,” Knowledge-Based Systems,
vol. 86, pp. 182–193, 2015.

[22] N. Chouikhi et al., “PSO-based analysis of echo state network param-
eters for time series forecasting,” Applied Soft Computing, vol. 55, pp.
211–225, 2017.

[23] D. Kleyko et al., “Integer echo state networks: efficient reservoir
computing for digital hardware,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 4, pp. 1688–1701, 2020.

[24] S. Liu, L. Liu, and Y. Yi, “Quantized reservoir computing on edge
devices for communication applications,” in IEEE/ACM Symposium on
Edge Computing (SEC), 2020, pp. 445–449.

[25] K. Honda and H. Tamukoh, “A hardware-oriented echo state network
and its FPGA implementation,” Journal of Robotics, Networking and
Artificial Life, vol. 7, no. 1, pp. 58–62, 2020.

[26] H. H. Bosman et al., “Online extreme learning on fixed-point sensor net-
works,” in IEEE International Conference on Data Mining Workshops,
2013, pp. 319–326.

[27] A. Rosato, R. Altilio, and M. Panella, “On-line learning of RVFL
neural networks on finite precision hardware,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[28] D. Kleyko et al., “Density encoding enables resource-efficient randomly
connected neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 8, pp. 3777–3783, 2020.

[29] T. Stewart et al., “Real-world applications of multiobjective optimiza-
tion,” Multiobjective optimization: interactive and evolutionary ap-
proaches, pp. 285–327, 2008.

[30] C. A. Coello Coello, “Multi-objective evolutionary algorithms in real-
world applications: Some recent results and current challenges,” Ad-
vances in evolutionary and deterministic methods for design, optimiza-
tion and control in engineering and sciences, pp. 3–18, 2015.

[31] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[32] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
Part I: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, pp. 577–601, 2014.

[33] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” TIK report, vol. 103, 2001.

[34] A. J. Nebro et al., “MOCELL: A cellular genetic algorithm for mul-
tiobjective optimization,” International Journal of Intelligent Systems,
vol. 24, no. 7, pp. 726–746, 2009.

[35] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International conference on parallel problem solving from
nature. Springer, 2004, pp. 832–842.

[36] A. Bauer et al., “Libra: A Benchmark for Time Series Forecasting
Methods,” in ACM/SPEC International Conference on Performance
Engineering, 2021.

[37] A. Benı́tez-Hidalgo et al., “jMetalPy: A Python framework for multi-
objective optimization with metaheuristics,” Swarm and Evolutionary
Computation, vol. 51, p. 100598, 2019.

1351

