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Abstract—In evolutionary multi-objective optimization (EMO),
one important issue is to efficiently remove dominated solutions
from a large number of solutions examined by an EMO algo-
rithm. An efficient approach to remove dominated solutions from
a large solution set is to partition it into small subsets. Dominated
solutions are removed from each subset independently. This
partition method is fast but cannot guarantee to remove all
dominated solutions. To further remove remaining dominated
solutions, a simple idea is to iteratively perform this approach.
In this paper, we first examine three partition methods (random,
objective value-based and cosine similarity-based methods) and
their iterative versions through computational experiments on
artificial test problems (DTLZ and WFG) and real-world prob-
lems. Our results show that the choice of an appropriate partition
method is problem dependent. This observation motivates us to
use a hybrid approach where different partition methods are
used in an iterative manner. The results show that all dominated
solutions are removed by the hybrid approach in most cases.
Then, we examine the effects of the following factors on the
computation time and the removal performance: the number of
objectives, the shape of the Pareto front, and the number of
subsets in each partition method.

I. INTRODUCTION

In evolutionary multi-objective optimization (EMO), two
solutions are usually compared using the following Pareto
dominance relation. For a minimization problem, a solution
a is said to be dominated by another solution b (i.e., a ≻ b)
iff ∀i ∈ {1, ...,M}, ai ≥ bi and ∃j ∈ {1, ...,M}, aj ̸= bj
where a = (a1, a2, ..., aM ), b = (b1, b2, ..., bM ), and M
is the number of objectives. The target of EMO algorithms
is to find a set of well distributed nondominated solutions
which represents the best trade-off surface (i.e., Pareto front)
among the conflicting objectives of a multi-objective opti-
mization problem. To obtain these nondominated solutions,
dominated solution removal is a necessary procedure for EMO
algorithms.

There are two situations where we need to remove domi-
nated solutions from a large solution set: performance eval-
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uation of EMO algorithms and numerical approximation of
unknown Pareto fronts. For EMO algorithms, performance
evaluation is usually based on one of the following two
scenarios [1], [2], [3]: the final population scenario and the
reduced UEA (unbounded external archive) scenario. Although
the final population is widely used to compare the performance
of different EMO algorithms, it has some limitations: (1)
some good solutions are discarded in the evolutionary process
and not included in the final population [4], and (2) it is
unfair to compare the performance of EMO algorithms with
different population sizes [3]. To overcome these limitations,
the reduced UEA scenario uses a pre-specified number of
solutions selected from the nondominated solutions in the
UEA for the performance assessment. Under the reduced UEA
scenario, we often need to remove dominated solutions from
a large number of examined solutions.

Dominated solution removal is also important for the ap-
proximation of an unknown Pareto front of a multi-objective
problem. The Pareto fronts of most artificial test problems
(e.g., DTLZ1-4 [5] and WFG4-9 [6]) are mathematically
defined and have triangular shapes. In this paper, triangular
shapes are consider as regular and other shapes (e.g., inverted
triangular shapes and degenerated shapes) are considered as
irregular [7]. However, for many real-world problems (e.g.,
DDMOP [8] and RE [9]) and some artificial problems (e.g.,
some partially degenerate test problems [10]), their true Pareto
fronts are usually unknown. To obtain an approximated Pareto
front, many researchers [8], [10], [9] use nondominated solu-
tions among all solutions examined in multiple runs of various
EMO algorithms. The approximated Pareto front can be used
for problem analysis in real-world applications. It can be also
used for estimating the nadir and ideal points and specify-
ing the reference point set for the GD [11], IGD [12] and
IGD+ [13] calculation for each multi-objective problem with
an unknown Pareto front. To obtain a reliable approximated
Pareto front, the number of examined solutions is usually very
large (e.g., several millions). The identification of nondom-
inated solutions (i.e., removal of dominated solutions) from
such a large number of examined solutions is an important
research topic.

The above discussions show the importance of designing an
efficient algorithm to remove dominated solutions from a large
solution set. A straightforward idea is to partition the large
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solution set into small subsets. From each subset, dominated
solutions are eliminated independently. This method is fast
but defective since it cannot guarantee to remove all dom-
inated solutions. To further eliminate remaining dominated
solutions, a simple idea is to iteratively use this method on the
remaining solutions. In this paper, we examine the iterative
versions of three partition methods: (1) random partition,
(2) cosine similarity-based partition, and (3) objective value-
based partition. In our computational experiments, we generate
solution sets of size 500,000 for the DTLZ1-4 [5] and WFG1-
9 [6] test problems with 3-10 objectives and the real-world
RE [9] test problems with 3-9 objectives. Then, each partition
method is applied to each solution set. Our experimental
results show that the number of remaining dominated solutions
is further decreased by iterating each partition method (i.e.,
by applying each partition method to the remaining solution
set in an iterative manner). Interestingly, cosine similarity-
based partition and objective value-based partition methods
show their own superiority on the solution sets with regular
Pareto fronts and irregular Pareto fronts, respectively. Thus, we
further examine a hybrid approach where a different partition
method is used in each iteration instead of iteratively applying
the same partition method to the remaining solution set. Much
better results are obtained by the hybrid approach than iterating
a single partition method. We also examine the effects of the
number of objectives, the shape of the Pareto front and the
number of subsets on the performance of our partition methods
with respect to their computation time and dominated solution
removal performance.

The remainder is organized as follows. In Section II, we
briefly review some representative methods for dominated
solution removal. In Section III, we introduce three partition
methods and their iterative versions for dominated solution
removal. Then, we examine the performance of these methods
through computational experiments in Sections IV-VI. In
Section IV, experimental settings are explained including the
creation of various solution sets of size 500,000. In Section V,
experimental results are reported and analyzed, and the hybrid
approach is proposed. In Section VI, the effects of various
factors on the performance of our partition methods are
examined. Finally, we conclude this paper in Section VII.

II. BACKGROUND

Dominated solution removal is an important topic in many
fields (e.g., database [14] and computational geometry [15],
[16]). In evolutionary multi-objective optimization (EMO),
dominated solution removal is usually used to obtain all
nondominated solutions from an archive. Figure 1 shows a
two-objective solution set where solutions a, b, c and d are
nondominated solutions and others are dominated solutions. To
remove all dominated solutions, a naive method compares ev-
ery pair of solutions and removes the dominated one. The time
complexity of this naive method is O(MN2) where M is the
number of objectives and N is number of solutions. The naive
method is time-consuming when the number of solutions (i.e.,
N ) is large. Kung et al. [15] proposed a divide-and-conquer
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Fig. 1. A two-objective example for removing dominated solutions (i.e., grey
points).

algorithm for the dominated solution removal, which has a
time complexity of O(N(logN)max{M−2,1}). An extension of
Kung’s method is proposed in [14] which recursively divides
the solution set into m (m > 2) subsets instead of two subsets.
To avoid unnecessary comparisons in the naive method, an-
other idea is to first check the solutions which are more likely
to be nondominated [17], [18]. Based on this idea, many dom-
inated solution removal methods [17], [19], [20] are designed
which determine the solution check sequence based on the
objective values in a different manner. These methods [17],
[19] show better performance than Kung’s method when the
number of objectives is large. Many data structures (see [21])
are designed for efficiently removing dominated solutions.
For example, the ND-Tree data structure [22] dynamically
maintains a partition of a set of nondominated solutions and
can be updated efficiently when a new solution is added to
the solution set. In this paper, T-ENS [23] is used to remove
dominated solutions which is an efficient and widely-used
method (e.g., used in PlatEMO [24]) for dominated solution
removal and nondominated sorting. T-ENS uses an (M − 1)-
ary tree to store the solutions in each nondominated front and
has a time complexity of O(MN logN/ logM) when most
solutions in the solution set are nondominated [23].

The idea of partition is frequently used to speed up the
process of the dominated solution removal. For example, in
Kung’s method [15], the solution set is partitioned based on the
median value of a pre-specified objective while α-quantiles are
used in its extended method [14]. In ND-Tree method [22], the
solutions are partitioned based on the distance in the objective
space.

III. PARTITION METHODS FOR DOMINATED SOLUTION
REMOVAL

When the number of solutions is large, dominated solution
removal becomes time-consuming. To handle a large solution
set, a simple idea is to partition the large solution set into a
number of small subsets. Dominated solutions are removed
from each subset independently. Although this method is fast
but cannot always remove all dominated solutions. In this
section, we try to improve this method to remove almost all
dominated solutions.
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A. Partition Methods with Some Heuristics

The ideal case for a partition method is as follows: Each
dominated solution is included in a subset together with at
least one of its corresponding dominated solutions. In this
case, all dominated solutions are removed by the partition
method. The simplest partition method is the random par-
tition which randomly partitions the solutions into a pre-
specified number of subsets evenly. However, it is not very
likely that two solutions with the dominance relation (i.e.,
one solution dominates the other solution) are included in
the same subset. Thus, many dominated solutions cannot be
removed by the random partition method. So, it is needed
to use a special partition mechanism (instead of the random
partition) so that two solutions with the dominance relation
are included in the same subset. From Figure 1, we can see
that each dominated solution and the corresponding dominated
solution(s) have similar directions. For example, vector j
(i.e., dominated solution j) and vector a (i.e., dominating
solution a) have similar directions. That is, the angle between
j and a is very small. One idea for partition is to use the
angle between two solutions, which is measured by the cosine
similarity Sc. Here the cosine similarity Sc(s1, s2) between
two solutions s1 and s2 is defined as the cosine of the angle
between these two solution vectors in the objective space (i.e.,
Sc(s1, s2) =

s1·s2

∥s1∥∥s2∥ ). From Figure 1, we can also see that
solutions j and a have similar objective values for the first
objective f1. Thus another idea is to partition the solution set
using objective values of a specific objective. Based on these
observations, the following two partition methods can be used
to remove most dominated solutions.

Objective Value-based Partition: One of the M objectives
is selected, and all the solutions are sorted based on their
objective values of the selected objective. Then, the sorted
solutions are partitioned into a pre-specified number of subsets
with the same size.

Cosine Similarity-based Partition: Objective values of
all solutions are normalized for each objective so that the
minimum and maximum values for each objective are 0 and
1, respectively. After this normalization, all solutions are
in the M -dimensional unit hypercube [0, 1]M . Then, each
solution is mapped to a point on the hypersphere defined by
f2
1 + f2

2 + ... + f2
M = 1 using the following formulation:

f ′
i = fi/(f

2
1 +f2

2 + ...+f2
M )

1
2 for 1 ≤ i ≤ M . The Euclidean

distance Dist(s′1, s
′
2) between two mapped solutions s′1 and

s′2 equals to
√
2− 2Sc(s1, s1). A clustering algorithm is used

to partition the mapped solutions into a pre-specified number
of subsets (i.e., clusters) based on the Euclidean distance. In
this manner, two solutions with higher cosine similarity Sc are
more likely to be included in the same subset (i.e., cluster). In
our computational experiments, we use an efficient clustering
algorithm called Mini-batch k-Means [25]. For Mini-batch k-
Means, we set the number of mini-batch size as 1000 and the
number of iterations as 100.

The above two partition methods are illustrated in Figure 2
where 12 solutions are divided into three subsets with different
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Fig. 2. Illustration of the two partition methods to partition the solution set
in Figure 1 into three subsets. Dominated solution h cannot be removed in
(a), and dominated solution f cannot be removed in (b).

colors. As an example, the first objective is used for the
objective value-based partition method. As we can see from
Figure 2 (b), the subset size is not always the same in the
cosine similarity-based partition method since the clustering
results are used for partition. In Figure 2 (a), each subset has
four solutions, and solution h cannot be removed (since h is
not dominated by any other solutions in the same subset). In
Figure 2 (b), solution f cannot be removed.

B. Iterative Version

To further decrease the number of remaining dominated
solutions, one simple idea is to iteratively apply the partition
method to the remaining solution set. Figure 3 shows the
iterative version of the partition method for dominated solution
removal. In each iteration, the current solution set S is
divided into K subsets, and dominated solutions are removed
from each subset independently. The remaining solutions are
merged into a new solution set T which is used as the
current solution set S in the next iteration. When a termination
condition (e.g., the maximum number of iterations) is satisfied,
the remaining solutions are output as the result.

When the random partition method is iteratively used,
different subsets are created in each iteration even when
no dominated solution is removed in the previous iteration.
When the objective value-based partition method is used, a
different objective is selected in each iteration in a sequential
order. More specifically, the first objective is used in the first
iteration, and the M -th objective is used in the M -th iteration.
Then the first objective is used again in the (M + 1)-th
iteration. In this case, if no dominated solution is removed
in the previous M iterations, any other dominated solution
cannot be removed in the future iterations. This is because
the same series of M partitions iteratively appear with the
cycle M . When the cosine similarity-based partition method
is used, different subsets are created in each iteration due
to the randomness of the clustering algorithm even when
no dominated solution is removed in the previous iteration.
However, it is likely that similar clustering results are obtained
when the number of removed dominated solutions is small in
the previous iteration.
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Fig. 3. Illustration of the iterative version of the partition method for
dominated solution removal.

Suppose that the time complexity of a dominated solution
removal method is O(N2) where N is the number of solutions.
When the solution set of size N is divided into K subsets of
size N/K, the time complexity for each subset is O(N2/K2).
Thus, the time complexity for the K subsets is O(N2/K).
When the partition method is iterated t times, the time
complexity for dominated solution removal is O(tN2/K).
Thus, the total computation time of the partition method
with t iterations will be about t/K of the straightforward
case where the dominated solution removal method is directly
applied to all solutions. Actually, the computation time in
each iteration gradually decreases since the solution set size
gradually decreases (i.e., since some dominated solutions are
removed in each iteration). Thus, the computation time of the
iterated partition method can be much shorter than t/K of
the straightforward removal as shown in the computational
experiments in this paper.

IV. EXPERIMENTAL SETTINGS

A. Solution Set Generation

As explained in Section I, the dominated solution removal
procedure is usually needed for the performance evaluation of
EMO algorithms and the approximation of unknown Pareto
fronts. Corresponding to these two situations, we generate
two types of solution sets. For the first type of solution
sets, we gather all solutions examined by an EMO algorithm
in a single run for a test problem. Specifically, we apply
a widely-used many-objective algorithm NSGA-III [26] to
scalable test problems DTLZ1-4 [5] and WFG1-9 [6]. Among
these test problems, DTLZ1-4 and WFG4-9 have regular
(i.e., triangular) Pareto fronts while WFG1-3 have irregular
Pareto fronts. The population size is set as 120, 126 and
275 for 3-objective, 5-objective and 10-objective problems,
respectively. The maximum number of solution evaluations is
set as 500,000. For each test problem, all solutions examined
by NSGA-III are stored as a solution set. Thus, we have
39 solution sets with 500,000 solutions. The second type of
solution sets contains all examined solutions of a real-world
problem with an unknown Pareto front in multiple runs of
various EMO algorithms. We use a real-world problem test

suit RE [9] (with 16 problems) whose true Pareto fronts are
unknown. Among them, two-objective problems (4 out of 16
problems) are not used since dominated solutions can be easily
removed in the case of two objectives. The remaining 11
problems are used in our experiments. Four EMO algorithms
MOEA/D-PBI [27], SMS-EMOA [28], [29], NSGA-II [30]
and NSGA-III [26] are applied to each RE problem five times.
The maximum number of solution evaluations is set as 25,000
in each run. We gather all examined solutions for each problem
to generate a solution set of size 500,000 (25,000 solution
evaluations × 4 algorithms × 5 runs). In this manner, we
obtain 11 solution sets of size 500,000. It should be noted
that some duplicated solutions are included in some solution
sets (e.g., RE3-4-6). This is because the same solution in
the objective space is generated and evaluated multiple times
especially when discrete decision variables are included in the
problem.

In total, 50 solution sets of size 500,000 are generated (39
from artificial test problems and 11 from real-world problems).
Each solution set is used to evaluate the performance of the
proposed partition methods for dominated solution removal in
our computational experiments.

B. Compared Methods

We consider the iterative versions of the three partition
methods in Section III: (a) random partition, (b) objective
value-based partition, and (c) cosine similarity-based partition.
For simplicity, they are denoted as IR, IO and IC, respectively.
For all of these methods, the number of iterations is set as 20
and the number of subsets is set as 50.

As we have already explained, T-ENS [23] is used as the
baseline algorithm which is applied to the entire solution set
for comparison. T-ENS is also used in our three partition
methods. The random partition and cosine similarity-based
partition methods are performed ten times with different
random seeds. The other methods (i.e., the baseline T-ENS
algorithm and the objective value-based partition method)
are performed once since they have no randomness. To
evaluate the performance of each method, we calculate the
number of remaining dominated solutions and record the
computation time. The experiments are conducted on a vir-
tual machine equipped with two ADM EPYC 7702 64-
Core CUP@2.4GHz, 256GB RAM and Ubuntu Operating
System. All codes are implemented in MATLAB R2021b
and are available at https://github.com/HisaoLabSUSTC/
Iterative-Partition-Method-for-Dominated-Solution-Removal.

V. EXPERIMENTAL RESULTS

As explained in the previous section, the average compu-
tation time and the average number of remaining dominated
solutions obtained by each removal methods are calculated
over 10 runs (one run for objective value-based partition
method and the baseline T-ENS algorithm since they have no
randomness) for 50 solution sets (12 for DTLZ problems, 27
for WFG problems and 11 for RE problems). Experimental
results on all 50 solution sets are included in the supplementary
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file1. Among 50 solution sets, we choose eight representative
ones and their results are shown in Figure 4. In Figure 4,
”Exact” means the results of the baseline T-ENS algorithm
where T-ENS is applied to the entire solution set. Thus, all
dominated solutions are always removed. The vertical axis is
the computation time, and the horizontal axis is the number
of remaining dominated solutions. The smaller values show
better results for both axes. It should be noted that both axes
are logarithmic.

A. Performance Comparison

In Figure 4, the dashed horizontal line close to the top of
each figure shows the total number of dominated solutions
included in each solution set. Generally, when the number of
objectives increases, the number of nondominated solutions
increases and the number of dominated solutions decreases.
Unsurprisingly, the exact method (i.e., T-ENS), which removes
all dominated solutions, needs the largest computation time. In
general, when the number of iterations is one (i.e., the leftmost
point of each curve), each partition method removes part of
dominated solutions in a very short computation time. Among
the three partition methods, the random partition method is
the fastest one while the cosine similarity-based partition
method is the most time-consuming one. This is because the
cosine similarity-based partition uses a clustering algorithm
which takes a considerable computation time. As the number
of iterations increases, the number of remaining dominated
solutions decreases in each partition method.

As expected, the random partition method has the worst
performance among the three partition methods in Figure 4.
Many dominated solutions are not removed by the random
partition method even after 20 iterations. This is because two
solutions with the dominance relation are often included in
different subsets. In Figure 4 whereas the cosine similarity-
based partition method shows the best performance for the
DTLZ2 and WFG4 problems, it does not work well for
the WFG3 and two RE problems. This observation implies
that the performance of the cosine similarity-based partition
method depends on the distribution of solutions (i.e., the Pareto
front shape). In contrast, the objective value-based partition
method shows the best performance for the WFG3 and two
RE problems. However, it is slightly worse than the cosine
similarity-based partition method for the DTLZ2 and WFG4
problems. We will further analyze these results in detail in
Section VI.

B. Further Improvement by Hybrid Partition

In our computational experiments, the cosine similarity-
based partition and the objective value-based partition methods
have demonstrated the best performance on different solution
sets. A straightforward idea is to hybridize these two partition
methods into a single method. We examine two versions
of hybrid partition methods. The first version (denoted as
IC+IO) uses cosine similarity-based partition in the first half

1https://github.com/HisaoLabSUSTC/Iterative-Partition-Method-for-
Dominated-Solution-Removal/blob/main/Supplementary%20file.pdf

(a) M = 3 (DLTZ2) (b) M = 10 (DLTZ2)

(c) M = 3 (WFG4) (d) M = 10 (WFG4)

(e) M = 3 (WFG3) (f) M = 10 (WFG3)

(g) M = 3 (RE3-3-1) (h) M = 9 (RE9-7-1)

Fig. 4. Performance comparison of different methods for removing dominated
solutions from different solution sets. Average values over ten runs are shown.

of iterations and objective value-based partition in the second
half of iterations. The second version (denoted as IO+IC) uses
objective value-based partition in the first half of iterations
and cosine similarity-based partition in the second half of
iterations. Experimental results are shown in Figure 5. In
Figure 5, more dominated solutions are removed by the hybrid
partition methods (i.e., IC+IO and IO+IC) than the original
methods (i.e., IC and IO) on the 10-objective DTLZ2 and
WFG3 problems.

For each partition method, we divide the obtained solution
sets into three categories based on the number of remaining
dominated solutions: (a) All dominated solutions are removed.
(b) The number of remaining dominated solutions is less
than ten. (c) The number of remaining dominated solutions
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(a) M = 10 (DLTZ2) (b) M = 10 (WFG3)

Fig. 5. Comparison between the hybrid partition methods and the original
partition methods for the 10-objective DTLZ2 and WFG3 problems.

TABLE I
THE NUMBERS OF SOLUTION SETS WITH DIFFERENT DOMINATED

SOLUTION REMOVAL PERFORMANCE. IN EACH CELL, (n1, n2, n3) MEANS
THE FOLLOWING. n1 : THE NUMBER OF SOLUTION SETS FOR WHICH ALL

DOMINATED SOLUTIONS ARE REMOVED (I.E., WITH 0 REMAINING
DOMINATED SOLUTION), n2 : THE NUMBER OF SOLUTION SETS WITH 1-9

REMAINING DOMINATED SOLUTIONS, AND n3 : THE NUMBER OF
SOLUTION SETS WITH MORE THAN 9 REMAINING DOMINATED

SOLUTIONS. LARGER VALUES OF n1 AND SMALLER VALUES OF n3 IN
(n1, n2, n3) MEAN BETTER METHODS.

Method WFG DTLZ RE Total
IR (0, 0, 27) (0, 0, 12) (1, 0, 10) (1, 0, 49)
IC (14, 3, 10) (7, 3, 2) (0, 0, 11) (21, 6, 23)
IO (11, 5, 11) (4, 3, 5) (7, 2, 2) (22, 10, 18)

IC+IO (20, 6, 1) (10, 2, 0) (9, 1, 1) (39, 9, 2)
IO+IC (21, 4, 2) (10, 2, 0) (10, 0, 1) (41, 6, 3)

is more than or equal to ten. The results are summarized in
Table I. When the hybrid methods are used in Table 2, only
two or three solution sets (among the examined 50 solution
sets of size 500,000) have ten or more remaining dominated
solutions. These observations show the effectiveness of the
hybrid partition methods for dominated solution removal from
large solution sets.

VI. RESULTS ANALYSIS

A. Effects of the Number of Objectives

One clear observation from Figure 4 is that the dominated
solution removal becomes difficult for the partition method in
high-dimensional spaces. For example, to remove all domi-
nated solutions, the cosine similarity-based partition method
needs four iterations for the 3-objective DTLZ2 problem, but
more than 10 iterations for the 10-objective DTLZ2 problem as
shown in Figure 4 (a) and (b). This is because each dominated
solution has less dominating solutions in higher-dimensional
spaces. For each dominated solution in each solution set, we
examine the number of its dominating solutions. Then, we
categorize each dominated solution into one of four types
depending on the number of its dominating solutions. Type
1: dominated solutions with only one dominating solution,
Type 2: dominated solutions with 2-10 dominating solutions,
Type 3: dominated solutions with 11-100 dominating solu-
tions, and Type 4: dominated solutions with more than 100
dominating solutions. Since Type 4 dominated solutions have
many dominating solutions, it is very likely that they are easily

(1) (2-10) (11-100) (>100)

Fig. 6. Number of dominated solutions in each of the four types for the
3-objective, 5-objective and 10-objective DTLZ2 problems. The four types
of dominated solutions have 1, 2-10, 11-100 and more than 100 dominating
solutions, respectively.

removed by any partition method. On the contrary, Type 1
dominated solutions have only one dominating solutions. Thus,
their removal by partition methods is very difficult. We need
a careful partition method to include each Type 1 solution and
its dominating solutions in the same subset. Figure 6 shows
the number of each type of dominated solutions in the 3-
objective, 5-objective and 10-objective DTLZ2 problems. As
we can see, most dominated solutions have more than 100
corresponding dominating solutions in the 3-objective DTLZ2
problem. However, the number of corresponding dominating
solutions becomes less than 11 for most dominated solutions
in the 10-objective DTLZ2 problem. That is, it becomes
difficult to include each dominated solution and at least one
corresponding dominating solution in the same subset in high-
dimensional objective spaces. Therefore, the performance of
all partition methods deteriorates as the number of objectives
increases in Figure 4 with respect to both the computation
time and the number of remaining dominated solutions.

B. Effects of the Solution Distribution

As shown in Figure 4, the cosine similarity-based partition
method shows excellent results for the solution sets with
regular Pareto fronts (e.g., the DTLZ2 and WFG4 problems).
However, for the solution sets with irregular Pareto fronts
(e.g., the WFG3 and two RE problems), the cosine similarity-
based partition method does not work. For those solution
sets, the objective value-based partition method shows good
performance. To further analyze these results, we quantify
the cosine similarity-based difference and the objective value-
based difference between the dominated solutions and their
corresponding dominating solutions in the following manner.
For a dominated solution s in the solution set S, we rank
the other solutions in S based on their cosine similarity with
s. The most similar solution to s has Rank 1 and the least
similar solution has Rank (N−1) where N is the solution set
size (N = 500, 000 in our computational experiments). The
cosine similarity-based difference Diffc(s, S) is defined as
the minimum rank over all dominating solutions of s. As we
can see, larger Diffc(s, S) means that it is more difficult
for the cosine similarity-based partition method to include
the dominated solution s and its corresponding dominating
solutions(s) in the same subset. In a similar manner, we define
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the objective value-based difference Diffo(s, S) using the
objective value-based ranking of the solutions in S for each
dominated solution s. First, all solutions in S are sorted
using the i-th objective value. The solution with the smallest
objective value has Rank 1, and the solution with the largest
objective value has Rank N . Let us denote the rank of solution
s based on the i-th objective by σi(s) for i = 1, 2, ...,M .
The objective value-based difference between a dominated
solution s and its dominating solution s′ is defined by the
difference between their ranks as |σi(s)− σi(s

′)|. When this
objective value-based difference is small, it is likely that s and
s′ are included in the same subset by the objective value-based
partition method for the i-th objective. Since all objectives are
used in the iterated version, we define the objective value-
based difference Diffo(s, S) between s and its dominating
solution(s) in S as the minimum objective value-based differ-
ence over all dominating solutions for all objectives. That is,
Diffo(s, S) = min{|σi(s) − σi(s

′)||1 ≤ i ≤ M, s′ ∈ S′}
where M is the number of objectives and S′ is the set of
solutions in S which dominate s.

Figure 7 shows the cosine similarity-based difference and
objective value-based difference distributions for all dominated
solutions for the 3-objective DTLZ2 and RE3-3-1 problems.
As a reference, the average size of subsets (i.e., 10,000) is
shown by a red dotted line. Roughly speaking, a dominated
solution s is likely to be group together with at least one
of its corresponding dominating solution(s) by the objective
value-based (cosine similarity-based) partition if its objective
value-based (cosine similarity-based) difference is smaller than
the average size of subsets. The dominated solutions and their
corresponding dominating solutions have both small cosine
similarity-based difference and small objective value-based
difference in the 3-objective DTLZ2 problem as shown in Fig-
ure 7 (a). For the RE3-3-1 problem, each dominated solution
has large cosine similarity-based difference but small objective
similarity-based difference as shown in Figure 7 (b). Further
discussions are included in page 21 of the supplementary file.

C. Effects of the Number of Subsets

Figure 8 (a) shows the number of remaining dominated
solutions by each partition method with various specifications
of the number of subsets. As we can see, when the solution set
is partitioned into more subsets (i.e., smaller sizes), the number
of remaining dominated solutions increases in each partition
method. This is because each dominated solution is less likely
to be grouped together with its dominating solution(s) when
the subset size decreases.

Figure 8 (b) shows the computation time of each partition
method with various specifications of the number of subsets.
For the random and objective value-based partition methods,
the computation time decreases as the number of subsets
increases. This is consistent with the analysis in Section III-B.
However, the computation time of the cosine similarity-based
partition method first decreases and then increases with the
increase in the number of subsets (i.e., with the decrease in
the subset size). The reason for the increase of the computation

(a) M = 3 (DTLZ2)

(b) M = 3 (RE3-3-1)

Fig. 7. Distributions of the cosine similarity-based difference and the objective
value-based difference for all dominated solutions for the 3-objective DTLZ2
problem in (a) and the 3-objective RE3-3-1 problem in (b). A dominated
solution is likely to be removed by the cosine similarity-based (objective
value-based) partition method if its cosine similarity-based (objective value-
based) difference is smaller than the average size of subsets.

(a) (b)

Fig. 8. (a) Number of remaining dominated solutions and (b) computation
time of each partition method with different specifications of the number of
subsets for the 3-objective DTLZ2. The bold horizontal line in (a) shows the
number of dominated solutions included in each solution set with 500,000
solutions. The dashed horizontal line in (b) shows the computation time of
the exact method (where the number of subsets is one).

time by too many subsets is as follows: To partition the
solution set, the cosine similarity-based partition method uses
a clustering algorithm whose computation time is linear to
the number of subsets (i.e., clusters). When the number of
subsets is large, the clustering algorithm takes a major part of
the computation time in the cosine similarity-based partition
method.

VII. CONCLUSION

In this paper, we examined three partition methods, their
iterative versions, and their hybrid versions for dominated
solution removal from various large solution sets of size
500,000, which are created from artificial test problems (DTLZ
and WFG) and real-world problems in the RE problem suite.
We obtained the following observations from our experimental
results.

447



1) Dominated solution removal becomes more difficult
for the partition method as the number of objectives
increases.

2) Although a single iteration of any partition method
cannot remove all dominated solutions, the number
of remaining dominated solutions is further decreased
by iteratively applying the partition method. When the
number of iterations is not large (e.g., 20 iterations), the
partition method is still much faster than the baseline
exact method with no partition.

3) The cosine similarity-based partition method shows the
best performance on the solution sets of multi-objective
problems with regular Pareto fronts while the objective
value-based partition method shows the best perfor-
mance on the solution sets of multi-objective problems
with irregular Pareto fronts.

Inspired by the third observation, we further examined two
hybrid versions where both the cosine similarity-based and
objective value-based partition methods are used (i.e., each
method is used in a different iteration). Our experimental
results showed that all dominated solutions are removed by the
two hybrid versions from most solution sets in much shorter
computation time than the baseline exact algorithm with no
partition. To analyze the first and the third observations, we
calculated some statistics for all dominated solutions in the
solution set. Then, we explained the reason for these observa-
tions using the relations between each dominated solution and
its corresponding dominating solutions.

As future work, it is interesting to further examine the
remaining dominated solutions in some solution sets for the
design of a new efficient mechanism to remove them. In
this work, the solution sets are generated by applying EMO
algorithms to multi-objective problems. It is also interesting
to test the partition method on large solution sets in other
research fields. Another research direction is the parallel
implementation of the partition methods, which may be needed
when we handle much larger solution sets.
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