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Abstract—Initialization plays a crucial role in surrogate-based
multiobjective evolutionary algorithms (MOEAs) when tackling
computationally expensive multiobjective optimization problems.
During the initialization process, solutions are generated to train
surrogate models. Consequently, the accuracy of these surrogate
models depends on the quality of the initial solutions, which
in turn directly impacts the performance of surrogate-based
MOEAs. Despite the widespread use of Latin hypercube sampling
as an initialization method in surrogate-based MOEAs, there is
a lack of comprehensive research examining the effectiveness of
different initialization methods. Additionally, the impact of the
number of initial solutions on the performance of surrogate-based
MOEAs remains largely unexplored. This paper aims to bridge
these research gaps by comparing the usefulness of two commonly
employed initialization methods (i.e., random sampling and Latin
hypercube sampling) in surrogate-based MOEAs. Furthermore, it
investigates how varying the number of initial solutions influences
the performance of surrogate-based MOEAs.

Index Terms—Multiobjective evolutionary algorithms, initial-
ization, surrogate models

I. INTRODUCTION

Many real-world optimization problems involve multiple
conflicting objectives that cannot be optimized simultaneously,
known as multiobjective optimization problems (MOPs) [1],
[2]. To solve MOPs, evolutionary algorithms have become
a popular method, with various multiobjective evolutionary
algorithms (MOEAs) being proposed in recent decades. These
algorithms can be divided into three categories: dominance-
based MOEAs [3], [4], indicator-based MOEAs [5], [6], [7],
and decomposition-based MOEAs [8], [9]. These MOEAs
usually require a large number of function evaluations to solve
MOPs [7], [10]. However, evaluating the quality of solutions
in real-world MOPs can be computationally expensive or
economically costly.
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To address this issue, surrogate-based MOEAs have been
proposed as a more efficient method for solving expensive
MOPs [11], [12], [13]. These algorithms construct compu-
tationally cheap surrogate models to replace the original
objective functions or fitness functions for evaluating the
quality of solutions. Surrogate-based MOEAs can be further
classified into two categories based on the types of employed
surrogate models: regression-based MOEAs and classification-
based MOEAs.

In regression-based MOEAs [11], [13], [14], each objective
function of an MOP is usually approximated by a separate
regression model. The approximated objective functions are
then used instead of the original expensive objective func-
tions for evaluation. Knowles [15] used the efficient global
optimization (EGO) algorithm [16] and employed a Gaussian
process model to approximate MOPs’ landscape. Meanwhile,
Song et al. [14] combined the Kriging model with a two-
archive evolutionary algorithm. A Kriging model is used to
approximate each objective function of the MOP. In most
cases, the number of constructed regression models is the same
as the number of objective functions.

Classification-based MOEAs [31], [32], [33] often build
classifiers to learn the relation between solutions [31], e.g.,
dominance relation. Loshchilov et al. [31] proposed a surro-
gate model that merges a classifier and a regression model to
learn the dominance relation between a new solution and the
existing non-dominated solution set. Zhang et al. [33], [34]
used a classifier to pre-select promising offspring solutions
by learning the dominance relation between solutions. Lin et
al. [35] proposed to use a classifier for pre-selecting promising
offspring solutions in MOEA/D, where an SVM model was
utilized to predict the relation between solutions. Recently,
Yuan et al. [27] combined two feedforward neural network
models with θ-DEA [36] for solving expensive MOPs. One
model was used to predict the Pareto dominance relation
between solutions and the other model was built to predict the
θ-dominance relation among solutions. Hao et al. [28] pro-
posed a classifier-based relation prediction model for MOPs,
where a neural network model was constructed to learn the
dominance relation between a pair of solutions. In most
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TABLE I
TYPICAL SURROGATE-BASED MOEAS AND THEIR INITIALIZATION METHODS.

Algorithm Year Test Problem M d Initialization method NI MaxFEs

ParEGO [15]

KNO1, OKA1, VLMOP2 2 2

LHS 11d − 1 250
OKA2 2 3

2005 VLMOP3 3 2
DTLZ1a 2 6

DTLZ2a, DTLZ4a, DTLZ7a 3 8

SMS-EGO [17]
OKA2, R ZDT4 2 3

LHS 11d − 1 1302008 R ZDT1 2 6
R DTLZ2 3, 5 6, 6

MOEA/D-EGO [18]
KNO1, VLMOP2 2 2

LHS 11d − 1
300 (M = 3)

2010 ZDT1-4, 6, LZ08-F1-4 2 8
200 (M = 2)DTLZ2 3 6

K-RVEA [19] 2018 DTLZ1-7 3, 4, 6, 8, 10 10 LHS 11d − 1 300

HSMEA [20] 2019
DTLZ1-7 3, 4, 6, 8, 10 10 LHS 11d − 1 300WFG1-9 3, 4, 6, 8, 10 10, 10, 9, 9, 11

CSEA [21]
DTLZ1-7 3, 4, 6, 8, 10 10

LHS 11d − 1 3002019 WFG1-9 3, 4, 6, 8, 10 10, 10, 9, 9, 11
MaF1-5 3, 4, 6, 8, 10 -

HeE-MOEA [22] 2019 DTLZ1-7, WFG1-9 3 10, 20, 40, 80 LHS 11d − 1 11d + 119

EIR2 [23]
ZDT1, 2 2

5 LHS MaxFEs/3 90, 120, 2102020 ZDT3 2
DTLZ2, 5, 7 3

AB-MOEA [24] 2020

DTLZ1 3 7

LHS 11d − 1 300
DTLZ2-6 3 12
DTLZ7 3 22
UF1-7 2 -

KTA2 [14] 2021
DTLZ1-7 3, 4, 6, 8, 10 10 LHS 11d − 1 300WFG1-9 3, 4, 6, 8, 10 10, 10, 9, 9, 11

PB-NSGAIII [25] 2021 DTLZ1-7 3, 4, 6, 8, 10 10 LHS 11d − 1 300

EDN-ARMOEA [26] 2022 DTLZ1-7 3 20, 40, 60 LHS 11d − 1 11d + 119
5, 10 40

θ-DEA-DP [27] 2022

ZDT1-4 2 10

LHS 11d − 1
250 (M = 2, 3)DTLZ1 2, 5, 8 6, 10, 10
300 (M = 5)DTLZ2, 4, 7 3, 5, 8 8, 10, 10
400 (M = 8)WFG6, 7 3, 5, 8 10

REMO [28] 2022 DTLZ1-7
3, 4, 6, 8, 10 10

LHS
11d − 1

3003 30, 50 100
10 30, 50 100

ESF-RVEA [29] 2022
DTLZ1-7, WFG1-9 3

10, 20, 30 LHS 11d − 1 11d + 120UF1-9 2
MaF1-7 3

MCEA/D [30] 2022 DTLZ1-7, WFG1-9 3, 7, 11 50, 100, 150 LHS 100 300

of the aforementioned algorithms, the number of classifiers
constructed is fewer than in regression-based algorithms.

Initialization is an important component of surrogate-based
MOEAs. The solutions generated during the initialization
process, which are evaluated by expensive objective functions,
serve as the initial training data for surrogate model building.
As a result, these solutions play a crucial role in the accuracy
of surrogate models, which in turn affect the performance of
the surrogate-based MOEA.

Despite the popularity of the Latin hypercube sampling
(LHS) [37] method in surrogate-based MOEAs, the effective-
ness of the LHS method has rarely been examined. Different
numbers of initial solutions are often used in experiments.
Table I summarizes the studies on surrogate-based MOEAs.
It includes the proposed surrogate-based MOEAs, the test
problems used in the experiments, the number of objectives

(M ), the initialization method in the proposed algorithm, the
setting of the number of initial solutions (NI), and the setting
of the maximum number of function evaluations (MaxFEs).
From the table, we have the following observations.

• Surrogate-based MOEAs in the studies prefer to use the
LHS method for initialization.

• The number of initial solutions is generally set to 11d−1,
where d is the number of decision variables.

• In most studies, the number of decision variables is set to
a small number, typically less than 10, and the maximum
number of function evaluations is set to 300.

• When the number of decision variables is larger than 10,
some algorithms fix the number of initial solutions (e.g.,
100) and keep the maximum number of function eval-
uations constant. Other algorithms continue to initialize
11d − 1 solutions but increase the maximum number of
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function evaluations as d increases (e.g., 11d+ 119).
• Most of these algorithms are usually examined on

DTLZ [38] and WFG [39] test suites.
This paper aims to answer the following two questions:
1) In the literature, researchers in expensive multiobjective

optimization have shown a preference for using the
LHS method over the random initialization method in
surrogate-based MOEAs. However, is the LHS method
really better than the random method in terms of use-
fulness for choosing initial solutions? Is there any other
good initialization mechanism?

2) Different algorithms generate initial solutions in vary-
ing quantities, but many algorithms produce 11d − 1
solutions. How does the setting of the initial solu-
tion quantity affect the performance of surrogate-based
MOEAs? Is there any other appropriate number of initial
solutions?

The remainder of this paper is as follows. Section II presents
the preliminaries of this paper. The employed surrogate-based
MOEAs and examined initialization methods are presented.
Section III shows the numerical results and answers the two
research questions. The paper is concluded in Section IV.

II. PRELIMINARIES

A. Investigated Surrogate-based MOEAs

To examine the usefulness of the LHS method in selecting
initial solutions and determine the impact of the number
of initial solutions on the performance of surrogate-based
MOEAs, six widely used surrogate-based MOEAs are in-
vestigated in this paper. These algorithms are divided into
two categories based on the type of employed surrogate
models: (1) regression-based MOEAs and (2) classification-
based MOEAs.

1) Regression-based MOEAs: Regression-based MOEAs
are a type of surrogate-based MOEAs that use regression
models to evaluate the quality of solutions. By using regres-
sion models to learn the landscape of objective functions,
regression-based MOEAs can effectively reduce the required
number of function evaluations and thus reduce the computa-
tional cost of solving expensive MOPs. Three regression-based
MOEAs are briefly introduced as follows.

1) MOEA/D-EGO [18]: This algorithm combines the EGO
algorithm with MOEA/D [9] algorithm. It solves MOPs
by decomposing them into several single-objective opti-
mization subproblems. Then, a Gaussian model is used
to learn the landscape of each subproblem. The quality
of offspring solutions is evaluated using the correspond-
ing Gaussian models. The expected improvements of
subproblems are then used to select candidate solutions
for expensive function evaluations.

2) K-RVEA [19]: This algorithm combines a Kriging
model with the reference vector guided evolutionary
algorithm (RVEA) [40]. The Kriging model is used
to approximate each objective function of MOPs. The
algorithm employs uncertainty information from the

Kriging model to effectively balance both exploitation
and exploration of the solution space.

3) EDN-ARMOEA [26]: This algorithm applies an efficient
dropout neural network (EDN) model to the indicator-
based MOEA with reference point adaptation (AR-
MOEA) [7] algorithm. The EDN model is used to
estimate approximate objective values and confidence
levels. A model management method based on two sets
of reference vectors is used to select candidate solutions
for expensive function evaluations.

2) Classification-based MOEAs: Classification-based
MOEAs are the other type of surrogate-based MOEAs that
use classification models to evaluate the quality of solutions.
By using classifiers to learn the dominance or crowding
relation between solutions, classification-based MOEAs can
balance the trade-off between convergence and diversity
of solutions. Three classification-based MOEAs are briefly
introduced as follows.

1) CSEA [21]: This algorithm uses a feedforward neural
network model to learn the dominance relation between
a new solution and reference solutions. The uncertainty
information from the model is used to select candidate
solutions for expensive function evaluations.

2) MCEA/D [30]: This algorithm applies multiple support
vector machine models to MOEA/D algorithm. It de-
composes an MOP into a set of single-objective opti-
mization subproblems. Each subproblem is solved using
a separate support vector machine model. The distance
between the solution and the decision boundary is used
to select solutions for expensive function evaluations.

3) DFC-MOEA [41]: This algorithm is based on a dual
fuzzy-classifier-based surrogate model. Two fuzzy clas-
sifiers are used to evaluate the quality of unevaluated
solutions. One fuzzy classifier is used to learn the Pareto
dominance relation among solutions, while the other
is used to learn the crowdedness of solutions. This
way, both convergence and diversity of solutions can
be maintained. As a general algorithm framework, any
MOEAs can be integrated into DFC-MOEA. This paper
conducts experiments by using DFC-SMS-EMOA.

B. Initialization Methods in Surrogate-Based MOEAs

Initialization is a crucial component of MOEAs. Various
initialization methods have been used in MOEAs [42]. The
random initialization method, which randomly samples a set
of solutions as initial solutions, is widely used in conven-
tional MOEAs. Recently, the Latin hypercube sampling (LHS)
method has gained popularity for initialization in surrogate-
based MOEAs. In the LHS method, a grid of solution positions
is defined as a Latin square if there is only one solution in each
row and column. The Latin hypercube extends this concept
to multiple dimensions, where each solution is the only one
in each axis-aligned hyperplane. To sample N solutions, the
LHS method first divides the range of each dimension into N
uniform intervals. Then, N solutions are sampled to satisfy the
Latin hypercube conditions. This makes the LHS method as
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a space-filling design method that can effectively ensure the
accuracy of the constructed surrogate models. Typically, the
number of initial solutions sampled using the LHS method is
set to 11d − 1, where d is the number of decision variables.
This is based on the recommendation of Jones et al. [16],
who proposed that about 10d solutions are needed in the initial
design. But with a convenient finite-decimal value for solution
spacing, they suggested deviating slightly from the “10d”
rule, for example, using 21 solutions for two dimensions,
33 for three dimensions, and 65 for six dimensions. This
11d − 1 setting has been widely applied to many surrogate-
based MOEAs [15], [18], [19], [26].

III. NUMERICAL RESULTS

This section examines the effectiveness of the LHS method
in selecting initial solutions and explores the impact of the
number of initial solutions on surrogate-based MOEAs. Six
surrogate-based MOEAs, as mentioned in Section 2.1, are
examined on two commonly used test suites. The experimental
settings are presented in Section 3.1, followed by an examina-
tion of the usefulness of the LHS method in generating initial
solutions in Section 3.2. Finally, Section 3.3 explores the effect
of the number of initial solutions.

A. Experimental Settings

This section outlines the experimental settings for exam-
ining the usefulness of the LHS method and the effect of
the number of initial solutions on surrogate-based MOEAs.
Six surrogate-based MOEAs and two widely used test suites
are selected for experiments. The following details outline the
specifications for the algorithms, test problems, population
size, number of executions, number of decision variables,
termination condition, performance metrics, and parameter
settings used in experiments.

1) Algorithms studied: Six surrogate-based MOEAs, in-
cluding three regression-based algorithms (MOEA/D-
EGO [18], K-RVEA [19], and EDN-ARMOEA [26]),
and three classification-based algorithms (CSEA [21],
MCEA/D [30], and DFC-MO-EA [41]).

2) Test problems: The DTLZ1–7 [38] and WFG1–9 [39]
test problems with three objectives (i.e., M = 3) are
considered.

3) Population size: N = 50 is used for EDN-ARMOEA,
CSEA, and DFC-MOEA, and N = 45 is used for K-
RVEA and MCEA/D.

4) Number of executions: Each algorithm is run 21 times
independently on each test problem.

5) The number of decision variables and termination con-
dition: Experiments are conducted with three values of
decision variables, d = 10, 30, and 50. The number of
maximum function evaluations is 300 for d = 10, 500
for d = 30, and 800 for d = 50.

6) Performance metrics: The performance of each algo-
rithm is evaluated using the inverted generational dis-
tance (IGD) metric [43], calculated using reference
points from PlatEMO [44].

7) Platform and parameter settings: All experiments are
performed on the PlatEMO platform [44] with default
parameter settings.

B. The Usefulness of the LHS Method
To examine the usefulness of the LHS method in

surrogate-based MOEAs, this section compares the per-
formance of using the LHS method and the random
method for initialization. MOEA/D-EGO, K-RVEA, EDN-
ARMOEA, CSEA, MCEA/D, and DFC-SMS-EMOA are
used in the experiments. Each algorithm with two ini-
tialization methods are compared. The resulted algo-
rithms are MOEA/D-EGO-LHS, MOEA/D-EGO-random, K-
RVEA-LHS, K-RVEA-random, EDN-AR-MOEA-LHS, EDN-
ARMOEA-random, CSEA-LHS, CSEA-random, MCEA/D-
LHS, MCEA/D-random, DFC-SMS-EMOA-LHS and DFC-
SMS-EMOA-random. The number of decision variable is
d = 10. The maximum number of function evaluations is 300.

Table II shows the mean and standard deviation (std) IGD
values obtained by the six pairs of compared algorithms when
the number of initial solutions is NI = 11d − 1 after 300
function evaluations on the DTLZ1–7 and WFG1–9 test prob-
lems. The Wilcoxon rank-sum test at the 5% significance level
is used to evaluate the statistical difference between the LHS-
based algorithm and the random-based algorithm. “+,−,∼”
indicates that the results obtained by the LHS-based algorithm
are better than, worse than, or similar to those obtained by
the random-based algorithm, respectively. Statistically better
result is shaded. Table II shows that algorithms with the LHS
method and random method for initialization have almost
similar performance on these test problems when the number
of initial solutions is NI = 11d− 1.

Fig. S1 in the supplementary file1 plots the mean IGD
values versus the number of function evaluations obtained
by K-RVEA-LHS and K-RVEA-random on DTLZ1–7 test
problems. The results in Fig. S1 also show that K-RVEA-LHS
and K-RVEA-random have similar performance on most test
problems.

To further examine the effectiveness of the two compared
initialization methods. The six pairs of compared algorithms
are examined when the number of initial solutions is the same
as the population size (NI = N ). Table S1 in the supplemen-
tary file shows the mean and standard deviation (std) values
obtained by the six pairs of compared algorithms after 300
function evaluations on the 16 test problems. The results also
show that the performance of the compared algorithms are
almost same on these test problems.

The results in Table II and Table S1 show that the surrogate-
based MOEAs use the LHS method and the random method
for initialization have similar performance on the DTLZ and
WFG test suites. From these results, we can conclude that we
do not have to use LHS for initialization since (almost) the
same results can be obtained from random initialization.

To investigate whether there are any other good initializa-
tion mechanisms for surrogate-based MOEAs, we examine

1https://github.com/HisaoLabSUSTC/SSCI-2023
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TABLE II
THE mean(std) IGD VALUES OF THE COMPARED ALGORITHMS WHEN THE NUMBER OF INITIAL SOLUTIONS IS 11d− 1.

Problem M d MOEA/D-EGO-LHS MOEA/D-EGO-random K-RVEA-LHS K-RVEA-random EDN-ARMOEA-LHS EDN-ARMOEA-random
DTLZ1 3 10 1.7170e+2 (3.95e+1) ≈ 1.5931e+2 (3.29e+1) 1.7478e+2 (3.90e+1) ≈ 1.6499e+2 (3.84e+1) 2.0036e+2 (3.78e+1) ≈ 2.1339e+2 (4.45e+1)
DTLZ2 3 10 3.3145e-1 (2.69e-2) ≈ 3.2168e-1 (2.42e-2) 1.5677e-1 (2.71e-2) ≈ 1.4351e-1 (3.47e-2) 3.1030e-1 (2.22e-2) ≈ 2.9986e-1 (3.04e-2)
DTLZ3 3 10 1.9679e+2 (2.12e+1) ≈ 2.0740e+2 (2.88e+1) 2.1631e+2 (3.68e+1) ≈ 2.1780e+2 (4.22e+1) 3.0266e+2 (5.87e+1) ≈ 3.0419e+2 (5.47e+1)
DTLZ4 3 10 6.2757e-1 (6.38e-2) ≈ 6.4940e-1 (9.19e-2) 4.0708e-1 (9.31e-2) ≈ 3.7859e-1 (8.11e-2) 2.3313e-1 (3.75e-2) ≈ 2.6871e-1 (8.55e-2)
DTLZ5 3 10 3.3433e-1 (4.86e-2) ≈ 3.2335e-1 (4.37e-2) 9.7996e-2 (2.56e-2) ≈ 9.7750e-2 (2.65e-2) 1.9190e-1 (3.11e-2) ≈ 1.9116e-1 (4.02e-2)
DTLZ6 3 10 2.4845e+0 (7.26e-1) ≈ 2.1658e+0 (7.15e-1) 3.0742e+0 (4.81e-1) ≈ 3.1184e+0 (6.08e-1) 6.2788e+0 (3.31e-1) ≈ 6.3453e+0 (3.29e-1)
DTLZ7 3 10 1.6368e-1 (5.51e-2) ≈ 1.9386e-1 (9.77e-2) 7.9201e-2 (1.00e-2) ≈ 8.5212e-2 (1.34e-2) 6.4129e-1 (1.64e-1) ≈ 6.6864e-1 (1.95e-1)
WFG1 3 10 8.6936e-1 (6.67e-2) ≈ 8.7119e-1 (5.90e-2) 6.6011e-1 (4.80e-2) ≈ 6.7678e-1 (4.53e-2) 7.6512e-1 (2.76e-2) ≈ 7.6639e-1 (1.95e-2)
WFG2 3 10 2.2665e-1 (1.30e-2) ≈ 2.1934e-1 (1.68e-2) 1.3068e-1 (2.68e-2) ≈ 1.4136e-1 (3.02e-2) 2.2124e-1 (1.24e-2) ≈ 2.1805e-1 (1.87e-2)
WFG3 3 10 2.9572e-1 (1.98e-2) ≈ 2.9843e-1 (1.85e-2) 1.8915e-1 (3.83e-2) ≈ 1.9915e-1 (3.66e-2) 3.1168e-1 (2.05e-2) ≈ 3.0485e-1 (1.95e-2)
WFG4 3 10 1.5440e-1 (3.97e-3) ≈ 1.5287e-1 (9.92e-3) 1.4366e-1 (6.29e-3) ≈ 1.4180e-1 (6.38e-3) 1.4452e-1 (4.33e-3) ≈ 1.4623e-1 (6.09e-3)
WFG5 3 10 1.5608e-1 (8.63e-3) ≈ 1.5679e-1 (8.24e-3) 9.5690e-2 (9.37e-3) ≈ 9.4900e-2 (9.47e-3) 1.7504e-1 (1.01e-2) ≈ 1.7992e-1 (9.77e-3)
WFG6 3 10 2.1414e-1 (8.52e-3) ≈ 2.1396e-1 (1.29e-2) 2.1628e-1 (7.27e-3) ≈ 2.1201e-1 (1.27e-2) 2.4417e-1 (8.45e-3) ≈ 2.4216e-1 (7.77e-3)
WFG7 3 10 1.8979e-1 (5.23e-3) ≈ 1.8731e-1 (6.38e-3) 1.8453e-1 (6.39e-3) ≈ 1.8150e-1 (8.88e-3) 1.9119e-1 (5.43e-3) ≈ 1.9114e-1 (4.68e-3)
WFG8 3 10 2.5283e-1 (1.01e-2) ≈ 2.4856e-1 (1.08e-2) 2.1067e-1 (1.05e-2) ≈ 2.1019e-1 (7.52e-3) 2.3587e-1 (6.44e-3) ≈ 2.4023e-1 (8.81e-3)
WFG9 3 10 2.2651e-1 (1.41e-2) ≈ 2.2583e-1 (1.70e-2) 2.0105e-1 (1.96e-2) ≈ 1.9741e-1 (2.11e-2) 2.1683e-1 (2.26e-2) ≈ 2.2681e-1 (1.93e-2)

+/ − / ≈ 0/0/16 0/0/16 0/0/16

Problem M D CSEA-LHS CSEA-random MCEA/D-LHS MCEA/D-random DFC-SMS-EMOA-LHS DFC-SMS-EMOA-random

DTLZ1 3 10 1.1134e+2 (3.76e+1) ≈ 1.1829e+2 (2.33e+1) 1.3901e+2 (4.37e+1) ≈ 1.2230e+2 (4.21e+1) 1.8054e+2 (3.74e+1) ≈ 1.5834e+2 (4.72e+1)
DTLZ2 3 10 2.2791e-1 (3.15e-2) ≈ 2.2881e-1 (3.42e-2) 2.1922e-1 (3.12e-2) ≈ 2.2239e-1 (3.79e-2) 2.3882e-1 (2.55e-2) ≈ 2.3772e-1 (2.27e-2)
DTLZ3 3 10 1.4681e+2 (3.92e+1) ≈ 1.4775e+2 (4.36e+1) 1.5813e+2 (2.50e+1) ≈ 1.4043e+2 (5.51e+1) 1.9971e+2 (4.87e+1) + 2.3654e+2 (5.45e+1)
DTLZ4 3 10 3.8930e-1 (1.21e-1) ≈ 4.5935e-1 (1.66e-1) 7.0096e-1 (1.64e-1) ≈ 6.3977e-1 (1.76e-1) 4.3593e-1 (1.21e-1) + 5.6660e-1 (1.64e-1)
DTLZ5 3 10 1.5189e-1 (2.86e-2) ≈ 1.5331e-1 (3.81e-2) 9.9108e-2 (2.51e-2) ≈ 9.8916e-2 (2.57e-2) 1.7866e-1 (4.84e-2) ≈ 2.0418e-1 (4.18e-2)
DTLZ6 3 10 6.0482e+0 (6.11e-1) ≈ 6.0515e+0 (4.94e-1) 2.9375e+0 (9.67e-1) ≈ 2.9853e+0 (7.34e-1) 6.5606e+0 (2.92e-1) ≈ 6.4608e+0 (3.98e-1)
DTLZ7 3 10 7.2587e-1 (2.17e-1) ≈ 7.4885e-1 (2.96e-1) 9.4096e-1 (3.30e-1) ≈ 9.5360e-1 (3.02e-1) 1.2911e+0 (2.12e-1) ≈ 1.2436e+0 (2.04e-1)
WFG1 3 10 6.6952e-1 (3.52e-2) ≈ 6.6501e-1 (5.48e-2) 8.3935e-1 (2.14e-2) ≈ 8.4161e-1 (2.46e-2) 8.3333e-1 (5.04e-2) ≈ 8.3473e-1 (5.68e-2)
WFG2 3 10 1.7167e-1 (1.88e-2) + 1.8469e-1 (2.02e-2) 2.0961e-1 (2.72e-2) ≈ 1.9997e-1 (2.15e-2) 1.9155e-1 (1.99e-2) ≈ 1.9249e-1 (2.27e-2)
WFG3 3 10 2.5575e-1 (1.92e-2) ≈ 2.4738e-1 (2.01e-2) 2.2948e-1 (3.03e-2) ≈ 2.3914e-1 (2.89e-2) 2.4593e-1 (2.67e-2) ≈ 2.4338e-1 (3.00e-2)
WFG4 3 10 1.3339e-1 (7.96e-3) ≈ 1.3246e-1 (1.04e-2) 1.4839e-1 (1.03e-2) ≈ 1.4930e-1 (1.09e-2) 1.3390e-1 (1.04e-2) ≈ 1.3294e-1 (8.15e-3)
WFG5 3 10 1.3866e-1 (1.13e-2) ≈ 1.3400e-1 (1.14e-2) 1.4212e-1 (1.60e-2) ≈ 1.4835e-1 (1.54e-2) 1.8177e-1 (9.40e-3) ≈ 1.8431e-1 (1.19e-2)
WFG6 3 10 2.0191e-1 (1.18e-2) + 2.1245e-1 (1.44e-2) 2.0560e-1 (1.15e-2) ≈ 2.0809e-1 (1.27e-2) 2.1177e-1 (1.55e-2) ≈ 2.1730e-1 (1.20e-2)
WFG7 3 10 1.6518e-1 (9.82e-3) ≈ 1.6605e-1 (9.44e-3) 1.5818e-1 (8.95e-3) ≈ 1.6149e-1 (1.05e-2) 1.5650e-1 (6.98e-3) ≈ 1.6115e-1 (9.75e-3)
WFG8 3 10 2.3651e-1 (1.03e-2) ≈ 2.3565e-1 (1.32e-2) 2.5020e-1 (1.55e-2) − 2.3917e-1 (1.62e-2) 2.3209e-1 (9.28e-3) − 2.2579e-1 (1.07e-2)
WFG9 3 10 1.9332e-1 (3.11e-2) ≈ 1.9751e-1 (2.49e-2) 1.7943e-1 (1.81e-2) ≈ 1.7493e-1 (1.28e-2) 1.8603e-1 (1.75e-2) ≈ 1.8096e-1 (1.63e-2)

+/ − / ≈ 2/0/14 0/1/15 2/1/13

three other initialization mechanisms. The improved Latin
hypercube sampling (LHSmax) method [45], the Sobol se-
quence (Sobol) [46] method, and the opposition-based learning
(OBL) [47] are used for examination. Detailed explanations
of these three methods are shown in the supplementary file.
The three methods and the random method are applied to
MOEA/D-EGO, K-RVEA, CSEA, and MCEA/D for exper-
iments, respectively. Each algorithm with three initialization
methods is compared to the algorithm with the LHS method.

Table S2–Table S5 in the supplementary file show the mean
and standard deviation (std) IGD values obtained by four
groups of compared algorithms when the number of initial
solutions is NI = 11d − 1 after 300 function evaluations
on the DTLZ1–7 and WFG1–9 test problems. The Wilcoxon
rank-sum test at the 5% significance level is used to evaluate
the statistical difference between the LHS-based algorithm and
the other initialization method-based algorithms. “+,−,∼” in-
dicates that the results obtained by other initialization method-
based algorithms are better than, worse than, or similar to those
obtained by the LHS-based algorithm, respectively. Table III
summarized the statistical results of Table S2–Table S5. These
results show that algorithms with the random, LHSmax, OBL,
and LHS method for initialization have similar performance on
these test problems, where algorithms with the Sobol method
outperform the LHS method on more test problems. The
reason is that the Sobol method can generate some solutions

close to the Pareto set of these test problems (e.g., DTLZ1).
From the above results, we can use the Sobol method for
initialization in surrogate-based MOEAs since it can obtain
better results.

TABLE III
STATISTICAL TEST RESULTS OF THE WILCOXON RANK-SUM TEST OF
MOEA/D-EGO, K-RVEA, CSEA, AND MCEA/D WITH DIFFERENT

INITIALIZATION METHODS.

Basic Algorithm random LHSmax Sobol OBL
MOEA/D-EGO 0/0/16 1/0/15 9/1/6 0/0/16

K-RVEA 0/0/16 1/1/14 5/1/10 1/1/14
CSEA 0/2/14 0/1/15 8/0/7 1/0/14

MCEA/D 1/0/15 1/0/15 5/1/10 1/1/14

C. The Effect of the Number of Initial Solutions

To examine the effect of the number of initial solutions
on surrogate-based MOEAs, this section compares the perfor-
mance of surrogate-based MOEAs with different numbers of
initial solutions. The LHS method is used for initialization.
MOEA/D-EGO, K-RVEA, CSEA, and MCEA/D are used for
experiments.

We compare the performance of each algorithm with 20,
40, 60, 80, 100, 11d− 1(109), 120, 140, 160, 180, 200, 220,
240, 260, 280, 300 initial solutions. The number of decision
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TABLE IV
THE mean RANK VALUES OF EACH ALGORITHM WITH 20, 40, 60, 80, 100, 11d− 1(109), 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 INITIAL

SOLUTIONS ON THE DTLZ AND WFG TEST SUITES WHEN d = 10 AND THE MAXIMUM NUMBER OF FUNCTION EVALUATIONS IS 300.

Basic algorithm Probelms 20 40 60 80 100 11d − 1 120 140 160 180 200 220 240 260 280 300

MOEA/D-EGO
DTLZ 10.00 10.00 7.71 4.86 7.71 7.71 6.14 8.86 5.57 7.43 7.14 8.71 9.43 9.29 12.14 13.29
WFG 13.00 11.78 10.44 7.56 6.33 7.78 5.33 5.22 5.22 6.67 6.22 8.00 7.89 10.11 11.67 12.78

K-RVEA
DTLZ 12.14 8.14 6.43 5.14 6.57 4.86 4.86 6.29 6.86 5.29 7.43 9.43 10.71 12.57 14.00 15.29
WFG 12.67 10.89 9.33 7.11 5.22 4.22 4.78 4.67 4.89 5.89 7.67 8.22 10.56 11.67 13.11 15.11

CSEA
DTLZ 3.00 3.86 4.14 4.00 4.71 5.14 6.43 7.86 8.86 8.29 10.14 11.86 12.86 13.86 15.00 16.00
WFG 2.33 3.22 3.11 4.00 4.67 5.89 7.67 7.33 8.44 9.11 10.33 12.11 13.00 14.00 14.78 16.00

MCEA/D
DTLZ 7.14 3.86 4.43 4.29 5.43 6.57 6.14 7.57 8.43 10.00 9.71 9.86 11.71 12.43 13.43 15.00
WFG 12.00 4.33 2.00 2.33 4.33 5.78 4.56 6.89 7.11 9.22 9.89 11.33 13.33 12.78 14.67 15.44

variables is d = 10. The maximum number of function eval-
uations is 300. The mean IGD values obtained by MOEA/D-
EGO, K-RVEA, CSEA, and MCEA/D are shown in Table S6,
Table S7, Table S8, and Table S9 in the supplementary file,
respectively. The IGD values obtained by algorithms with each
number of initial solutions are ranked. The rank values are
shown in the tables. The best result for each test problem is
shaded. Table IV shows the mean rank value of each algorithm
with each number of initial solutions on DTLZ and WFG test
suites.

From Table S6, Table S7, and Table IV, we can see that
the regression-based MOEAs with a small number of initial
solutions (NI ≤ 100) and a large number of initial solutions
(NI ≥ 160) perform worse when d = 10. When the number of
initial solutions is between 100 and 160, the algorithms usually
have similar performance. The reason is that regression-based
MOEAs usually build regression models to approximate the
objective functions. When using a small number of initial
solutions as training data, the regression models may have low
approximation accuracy. However, when the number of initial
solutions is large, many solutions are used for model building
at the beginning of optimization. The number of generated new
solutions is limited. A large number of initial solutions may
also lead to overlap and reduce the generalization of models.

The results in Table S8, Table S9, and Table IV show that
classification-based MOEAs with a small number of initial
solutions usually outperform algorithms with a large number
of initial solutions. The reason is that classification-based
MOEAs usually build classification models to predict the
dominance relation between solutions. A small number of
training data may be enough for constructing the classification
boundary, while a large number of training data may reduce
the performance of model.

To further examine the performance of surrogate-based
MOEAs with different numbers of initial solutions, we conduct
two experiments based on K-RVEA as follows.

• We compare the performance of K-RVEA with 100, 150,
200, 250, 300, 11d − 1(329), 350, 400, 450, 500 initial
solutions. The number of the decision variables is d = 30.
The maximum number of function evaluations is 500.

• We also compare the performance of K-RVEA with 100,
150, 200, 250, 300, 350, 400, 450, 500, 11d − 1(549),
600, 650, 700, 750, 800 initial solutions. The number of
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Fig. 1. The mean rank values of K-RVEA with 100, 150, 200, 250, 300,
11d − 1(329), 350, 400, 450, 500 initial solutions when d = 30 and the
maximum number of function evaluations is 500 on DTLZ and WFG test
suites.

the decision variables is d = 50. The maximum number
of function evaluations is 800.

The mean IGD values obtained from the above two ex-
periments are shown in Table S10 and Table S11 in the
supplementary file. The rank value of K-RVEA with each
number of initial solutions on each test problem is presented.
Fig. 1 and Fig. 2 plot the mean rank value of K-RVEA with
each number of initial solutions on DTLZ and WFG test suites,
respectively. The experimental results in Fig. 1 and Fig. 2 also
show that K-RVEA with a small number of initial solutions
(NI ≤ 200) and a large number of initial solutions (NI ≥ 300
when d = 30 and NI ≥ 500 when d = 50) perform worse.
The better results are obtained with 250, 300 initial solutions
when d = 30 and with 300, 350, 400, 450, initial solutions
when d = 50.

To further examine the performance of classification-based
MOEAs with different numbers of initial solutions, we com-
pare the performance of MCEA/D with 20, 40, 60, 80, 100,
250, 11d− 1(329), 400, 500 initial solutions. The number of
the decision variables is d = 30. The maximum number of
function evaluations is 500. The mean IGD values obtained
by MCEA/D with each number of initial solutions are shown
in Table S12 in the supplementary file. The rank value of
MCEA/D with each specification on each test problem is
calculated. Fig. 3 plots the mean rank value of MCEA/D
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Fig. 2. The mean rank values of K-RVEA with 100, 150, 200, 250, 300,
350, 400, 450, 500, 11d−1(549), 600, 650, 700, 750, 800 initial solutions
when d = 50 and the maximum number of function evaluations is 800 on
DTLZ and WFG test suites.

with each number of initial solutions on DTLZ and WFG test
suites, respectively. The results show that MCEA/D with 40,
60, and 80 initial solutions obtain better results than other
specifications when d = 30.
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Fig. 3. The mean rank values of MCEA/D with 20, 40, 60, 80, 100, 250,
11d − 1(329), 400, 500 initial solutions when d = 30 and the maximum
number of function evaluations is 500 on DTLZ and WFG test suites.

From the above results, we can conclude that regression-
based algorithms have bad performance when the number
of initial solutions is too large or too small. They usually
have good performance when the number of initial solu-
tions is around half of the maximum number of function
evaluations. Classification-based algorithms usually have good
performance when the number of initial solutions is small.
Based on these experimental results, we suggest that the
appropriate number of initial solutions for regression-based
MOEAs can be MaxFEs/2 for MaxFEs ∈ [100, 800]
where MaxFEs is the total number of examined solutions. The
appropriate number of initial solutions for classification-based
algorithms can be MaxFEs/10 + 10.

IV. CONCLUSION

In this paper, we analyzed the effects of the LHS method
and the number of initial solutions on six commonly used
surrogate-based MOEAs, including three regression-based

MOEAs and three classification-based MOEAs. The experi-
ments were conducted on two widely used test suites and the
results were evaluated using the IGD metric. First, the findings
showed that the LHS method and the random method produced
similar performance results for surrogate-based MOEAs. The
experiments of using other initialization methods (LHSmax,
Sobol, and OBL method) showed that Sobol performs better
than LHS method and could be used for initialization. Then,
the findings showed that regression-based MOEAs performed
better when the number of initial solutions was close to
half of the maximum number of function evaluations, while
classification-based MOEAs performed better with a smaller
number of initial solutions. We suggest to use MaxFEs/2 as
the number of initial solutions for regression-based MOEAs
and MaxFEs/10+10 for classification-based MOEAs. Since
classification-based algorithms need less initial solutions, it
seems that they are more useful under a very limited compu-
tational resources (e.g., 100 solution evaluations in total) in
comparison with regression-based algorithms. For the same
reason, classification-based algorithms may be more useful
for large-scale problems with many decision variables (e.g.,
100, 500, 1000) and many objectives (e.g., 5 and 10). For
example, in [30], DTLZ and WFG with 11 objectives and 150
decision variables are used to demonstrate the usefulness of a
classification-based algorithm. Based on these results, future
research can focus on developing new and improved surrogate-
based algorithms by using other initialization methods and
using other number of initial solutions.

REFERENCES

[1] L. Jia, Y. Wang, and L. Fan, “Multiobjective bilevel optimization
forproduction-distribution planning problems using hybrid genetic al-
gorithm,” Integrated Computer-Aided Engineering, vol. 21, no. 1, pp.
77–90, Jan. 2014.

[2] T. Chugh, K. Sindhya, K. Miettinen, Y. Jin, T. Kratky, and P. Makkonen,
“Surrogate-assisted evolutionary multiobjective shape optimization of
anair intake ventilation system,” in Proceedings of the 2017 IEEE
Congresson Evolutionary Computation (CEC 2017), Donostia, Spain,
Jul. 2017, pp. 1541–1548.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[4] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland, Tech. Rep. 103, 2001.

[5] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” European Journal of
Operational Research, vol. 181, no. 3, pp. 1653–1669, Sep. 2007.

[6] E. Zitzler and S. Kunzli, “Indicator-based selection in multiobjective
search,” in Proceedings of International Conference on Parallel Problem
Solving from Nature (PPSN 2004), Birmingham, UK, Sep. 2004, pp.
832–842.

[7] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based
multiobjective evolutionary algorithm with reference point adaptation
for better versatility,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 4, pp. 609–622, Aug. 2018.

[8] T. Murata and H. Ishibuchi, “MOGA: multi-objective genetic algo-
rithms,” in Proceedings of 1995 IEEE Congress on Evolutionary Com-
putation (CEC 1995), Perth, Australia, Nov. 1995, pp. 289–294.

[9] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

939



[10] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated Pareto sets, MOEA/D and NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 2, pp. 284–302, Apr. 2009.

[11] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, Jun. 2011.

[12] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on
handling computationally expensive multiobjective optimization prob-
lems with evolutionary algorithms,” Soft Computing, vol. 23, no. 9, pp.
3137–3166, Dec. 2019.

[13] K. Deb, R. Hussein, P. C. Roy, and G. Toscano-Pulido, “A taxonomy for
metamodeling frameworks for evolutionary multiobjective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 1, pp.
104–116, Feb. 2019.

[14] Z. Song, H. Wang, C. He, and Y. Jin, “A Kriging-assisted two-archive
evolutionary algorithm for expensive many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 25, no. 6, pp.
1013–1027, Dec. 2021.

[15] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape ap-
proximationfor expensive multiobjective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50–66,
Feb. 2006.

[16] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455–492, Dec. 1998.

[17] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, “Multiobjective
optimization on a limited budget of evaluations using model-assisted S-
metric selection,” in Proceedings of International Conference on Parallel
Problem Solving from Nature (PPSN 2008), Dortmund, Germany, Sep.
2008, pp. 784–794.

[18] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective
optimization by MOEA/D with Gaussian process model,” IEEE Trans-
actions on Evolutionary Computation, vol. 14, no. 3, pp. 456–474, Jun.
2009.

[19] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A
surrogate-assisted reference vector guided evolutionary algorithm for
computationally expensive many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 22, no. 1, pp. 129–142, Feb.
2018.

[20] A. Habib, H. K. Singh, T. Chugh, T. Ray, and K. Miettinen, “A
multiple surrogate assisted decomposition-based evolutionary algorithm
for expensive multi/many-objective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 6, pp. 1000–1014, Dec. 2019.

[21] L. Pan, H. Cheng, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A
classification-based surrogate-assisted evolutionary algorithm for expen-
sive many-objective optimization,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 1, pp. 74–88, Feb. 2019.

[22] D. Guo, Y. Jin, J. Ding, and T. Chai, “Heterogeneous ensemble-based
infill criterion for evolutionary multiobjective optimization of expensive
problems,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 1012–
1025, Mar. 2019.

[23] D. Han and J. Zheng, “A Kriging model-based expensive multiobjective
optimization algorithm using R2 indicator of expectation improvement,”
Mathematical Problems in Engineering, vol. 2020, pp. 1–16, Jun. 2020.

[24] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, “An adaptive Bayesian ap-
proach to surrogate-assisted evolutionary multi-objective optimization,”
Information Sciences, vol. 519, pp. 317–331, May 2020.

[25] Z. Song, H. Wang, and H. Xu, “A framework for expensive many-
objective optimization with Pareto-based bi-indicator infill sampling
criterion,” Memetic Computing, vol. 14, pp. 179–191, Nov. 2022.

[26] D. Guo, X. Wang, K. Gao, Y. Jin, J. Ding, and T. Chai, “Evolutionary
optimization of high-dimensional multiobjective and many-objective
expensive problems assisted by a dropout neural network,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 4, pp.
2084–2097, Apr. 2022.

[27] Y. Yuan and W. Banzhaf, “Expensive multi-objective evolutionary op-
timization assisted by dominance prediction,” IEEE Transactions on
Evolutionary Computation, vol. 26, no. 1, pp. 159–173, Feb. 2022.

[28] H. Hao, A. Zhou, H. Qian, and H. Zhang, “Expensive multiobjective
optimization by relation learning and prediction,” IEEE Transactions on
Evolutionary Computation, vol. 26, no. 5, pp. 1157–1170, Oct. 2022.

[29] Q. Lin, X. Wu, L. Ma, J. Li, M. Gong, and C. A. C. Coello, “An ensem-
ble surrogate-based framework for expensive multiobjective evolutionary

optimization,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 4, pp. 631–645, Aug. 2022.

[30] T. Sonoda and M. Nakata, “Multiple classifiers-assisted evolutionary
algorithm based on decomposition for high-dimensional multi-objective
problems,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 6, pp. 1581–1595, Dec. 2022.

[31] I. Loshchilov, M. Schoenauer, and M. Sebag, “A mono surrogate for
multiobjective optimization,” in Proceedings of Genetic and Evolution-
ary Computation Conference (GECCO 2010), Portland, USA, Jul. 2010,
pp. 471–478.

[32] S. Bandaru, A. H. Ng, and K. Deb, “On the performance of classification
algorithms for learning Pareto-dominance relations,” in Proceedings
of 2014 IEEE Congress on Evolutionary Computation (CEC 2014),
Beijing, China, Jul. 2014, pp. 1139–1146.

[33] J. Zhang, A. Zhou, and G. Zhang, “A classification and Pareto domi-
nation based multiobjective evolutionary algorithm,” in Proceedings of
2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai,
Japan, May 2015, pp. 2883–2890.

[34] J. Zhang, A. Zhou, K. Tang, and G. Zhang, “Preselection via clas-
sification: A case study on evolutionary multiobjective optimization,”
Information Sciences, vol. 465, pp. 388–403, Oct. 2018.

[35] X. Lin, Q. Zhang, and S. Kwong, “A decomposition based multiobjective
evolutionary algorithm with classification,” in Proceedings of 2016
IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver,
Canada, Jul. 2016, pp. 3292–3299.

[36] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16–37,
2016.

[37] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–
245, 1979.

[38] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems
for evolutionary multiobjective optimization,” in Evolutionary Multiob-
jective Optimization, London, UK, 2005, pp. 105–145.

[39] S. Huband, L. Barone, L. While, and P. Hingston, “A scalable multi-
objective test problem toolkit,” in Proceedings of International Con-
ference on Evolutionary Multi-Criterion Optimization (EMO 2005),
Guanajuato, Mexico, March 2005, pp. 280–295.

[40] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vec-
torguided evolutionary algorithm for many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 5, pp.
773–791, Oct. 2016.

[41] J. Zhang, L. He, and H. Ishibuchi, “Dual fuzzy classifier-based evo-
lutionary algorithm for expensive multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, 2022 (Early Access).

[42] B. Kazimipou, X. Li, and A. K. Qin, “A review of population initializa-
tion techniques for evolutionary algorithms,” in Proceedings of 2014
IEEE Congress on Evolutionary Computation (CEC 2014), Beijing,
China, Jul. 2014, pp. 2585–2592.

[43] C. A. C. Coello and M. R. Sierra, “A study of the parallelization of a
coevolutionary multi-objective evolutionary algorithm,” in Proceedings
of Mexican International Conference on Artificial Intelligence (MICAI
2004), Mexico City, Mexico, Apr. 2004, pp. 688–697.

[44] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB plat-
form for evolutionary multi-objective optimization [educational forum],”
IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87,
Nov. 2017.

[45] B. Beachkofski and R. Grandhi, “Improved distributed hypercube
sampling,” in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, Denver, USA, Apr. 2002, pp. 580–
586.

[46] X. Wang and I. H. Sloan, “Low discrepancy sequences in high di-
mensions: How well are their projections distributed?” Journal of
Computational and Applied Mathematics, vol. 213, no. 2, pp. 366–386,
Apr. 2008.

[47] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Transactions on Evolutionary Com-
putation, vol. 12, no. 1, pp. 64–79, Feb. 2008.

940


