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Abstract—Exploration poses a fundamental challenge in
Reinforcement Learning (RL) with sparse rewards, limiting
an agent’s ability to learn optimal decision-making due
to a lack of informative feedback signals. Self-Imitation
Learning (self-IL) has emerged as a promising approach for
exploration, leveraging a replay buffer to store and reproduce
successful behaviors. However, traditional self-IL methods,
which rely on high-return transitions and assume singleton
environments, face challenges in generalization, especially in
procedurally-generated (PCG) environments. Therefore, new
self-IL methods have been proposed to rank which experiences
to persist, but they replay transitions uniformly regardless of
their significance, and do not address the diversity of the
stored demonstrations. In this work, we propose tailored self-IL
sampling strategies by prioritizing transitions in different ways
and extending prioritization techniques to PCG environments.
We also address diversity loss through modifications to
counteract the impact of generalization requirements and
bias introduced by prioritization techniques. Our experimental
analysis, conducted over three PCG sparse reward environments,
including MiniGrid and ProcGen, highlights the benefits of
our proposed modifications, achieving a new state-of-the-art
performance in the MiniGrid-MultiRoom-N12-S10 environment.

Index Terms—Reinforcement Learning, Self-Imitation
Learning, Experience Replay Buffer, Generalization, Diversity

I. INTRODUCTION

Exploration is a fundamental challenge in Reinforcement
Learning (RL), especially in scenarios with sparse rewards
where the agent may struggle to learn optimal decision-making
due to a lack of informative feedback signals [1]–[5].

One promising approach to improve exploration is
self-Imitation Learning (self-IL), which uses a replay
buffer to store past successful behaviors. In this way,
the agent can reproduce and exploit rare instances of
good exploration. This idea has traditionally been achieved
by selecting high-return transitions that provide positive
advantage [3]–[8]. However, they often assume that agents
operate in singleton environments, using the same environment
for training and testing. Yet, recent studies have unveiled
that this approach’s susceptibility to overfitting hampers its
generalization capabilities [9], [10]. To address this issue, the
adoption of procedurally-generated (PCG) environments has

been proposed [11], where a different environment is generated
in each episode. Unfortunately, self-IL approaches often yield
poor results in PCG environments, as the agent may not be
able to encounter a high-return transition more than once [12].

In previous work we proposed Ranking the Episodes
(RAPID) [12], which takes into account the whole episode
rather than isolated transitions, effectively distinguishing
good exploration behaviors that handle state space changes
affecting the pursued generalization capacity. We discovered
that episode-level selection can significantly boost the sample
efficiency in PCG environments [12]. However, RAPID
solely focuses on which experiences to store, and replays
data uniformly from the buffer, indirectly implying that all
experiences of such self-collected demonstrations are equally
valuable. Furthermore, it does not guarantee diversity of
behaviors between the stored episodes [13], [14], potentially
resulting in over-fitted policies incapable of generalizing.

To address the above limitations, in this work, we propose
methods to specifically tailor self-IL sampling strategies
(Section III-A). Instead of treating all transitions as equally
significant, we prioritize them in different ways. Moreover,
we extend prioritization techniques that have been previously
evaluated with off-policy methods in singleton environments
to PCG environments. Furthermore, we propose modifications
to counteract the diversity loss stemming from the tasks’
generalization requirements and the bias introduced by
prioritization techniques (Section III-B). The resulting analysis
demonstrates the performance benefits of our modifications
through experiments conducted in three PCG sparse reward
environments: MultiRoom and ObstructedMaze from
MiniGrid [11] and Ninja from ProcGen [15] (Section IV).
In particular, our approach establishes a new state-of-the-art
in the MiniGrid-MultiRoom-N12-S10 environment.

II. PRELIMINARIES

This section begins with a background on self-Imitation
Learning (Section II-A), followed by a discussion regarding
the Experience Replay Buffer adoption (Section II-A). Then
we formally describe our research goal (Section II-C).
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A. Self-Imitation Learning

Self-imitation learning (self-IL) is a promising approach to
foster exploration by leveraging good behaviors exhibited in
the past. Initially introduced in the so-called SIL [7], this
method employs a replay buffer to retain historical state-action
pairs, imitating only those pairs that yielded greater returns
than the agent’s value estimate in previous episodes. By
leveraging good past behaviors, the agent achieves enhanced
exploration capabilities, ultimately leading to improved sample
efficiency [7].

However, SIL [7] assumes that agents operate solely within
singleton environments, meaning that the same environment
is employed for both training and testing purposes. Recent
studies have revealed that training an agent in such a manner
renders it susceptible to overfitting, hindering its ability to
generalize [9], [10]. Thus, the utilization of PCG environments
has been advocated [11]. By generating distinct environments
for each episode, the agent is encouraged to learn generalizable
skills.

To enable self-IL in PCG environments, we proposed
RAPID in our previous work [12]. The idea behind RAPID is
to facilitate agents to replicate good episode-level exploration
behaviors. This is accomplished by assigning a score to the
entire trajectory and rank all the past trajectories in a small
replay buffer, based on the following formulation:

S = w0 · Sext + w1 · Slocal + w2 · Sglobal, (1)

where Sext determines the extrinsic Monte Carlo return, Slocal

promotes diversity of states within the episode, Sglobal fosters
the lifelong training exploration, and all the w∗ are used to
balance the weight given to each score. Building upon RAPID,
our previous work further introduced Intrinsic Motivation (IM)
to enable better exploration [13].

While RAPID [12] and RAPID+IM [13] have achieved
promising performance, their utilization of a strict
ranking-based buffer and uniform replay strategy may
result in certain state-action pairs overpowering the learning
process. This can potentially lead to learning divergence, as
exemplified in the MultiRoom-N12-S10 environment [12].

B. Experience Replay Buffer

One pivotal component of self-IL is the Experience Replay
Buffer [16], [17], a data structure designed to retain past
experiences. This buffer empowers the agent to effectively
reuse previous experiences to enhance learning efficiency. In
the past, numerous strategies have been proposed to enhance
experience replay. These strategies can be broadly categorized
into two groups: 1) defining how to replay experiences from
the buffer, and 2) determining which experiences to store.

1) How to replay: Various non-uniform reply strategies
have emerged, such as using the TD-error as proxy
[6], applying importance sampling [6], [18], minimizing
meaningless updates with episode-level sampling [19],
adopting hierarchical experience replay [20], sampling
frequently visited transitions [21], and optimizing the use of
the buffer with meta-learning approaches [22], [23].

2) Which experiences to store: The most fundamental
approach is the First-In-First-Out (FIFO) strategy, which
employs a fixed-size memory to sequentially store data [17].
The works in [18], [24], [25] uncovered the significant
impact of different sizes of Experience Replay Buffers on
performance. Subsequently, a range of strategies has been
proposed to enhance its utility. These strategies include
increasing the diversity of experiences employing short-term
and long-term buffers [26]–[28], prioritizing the storage of
experiences with high rewards in a greedy manner [29],
continuously refreshing the buffer according to the current
policy [30], utilizing multiple buffers representing different
event types [31], [32], as well as employing Hindsight
Experience Replay [33].

C. Research Objective

Despite the aforementioned efforts, none of the strategies
to manage the Experience Replay Buffer were specifically
designed for self-IL, nor have they been tested in PCG
environments. There lies the research goal pursued in this
work: to examine the impact of various experience replay
strategies for self-IL approaches within PCG environments.
Our objectives to accomplish this goal are threefold: 1)
to assess the efficacy of prioritization strategies in replay
mechanisms, 2) to empirically evaluate the effectiveness of
filtering strategies to avoid meaningless updates, and 3) to
explore whether improving data diversity in the buffer could
contribute positively to the learning process.

III. DESIGNED STRATEGIES FOR EFFICIENT EXPERIENCE
REPLAY IN SELF-IMITATION LEARNING

We now introduce methods to prioritize the sampling from
the buffer (Section III-A) and modifications to promote the
diversity of transitions therein stored (Section III-B).

A. Prioritization & Filtering

Uniform sampling strategy has been largely adopted in
experience replay due to its simplicity. However, an agent
could learn more effectively from some transitions than from
others. Motivated by this, we designed several prioritization
and filtering methods for self-IL.

1) Prioritization: The idea is to replay some experiences
with more frequency due to their significance in learning. We
extend the idea of PER [6] considering three different proxies
for prioritization:
• TD-error → δ = rt + γ · V (st+1) − V (st), where rt is

the reward, V (·) is the value function, γ is the discount
factor. It represents how surprising or unexpected a given
transition is with respect to the knowledge retained at the
agent. It has been shown to work well in practice with
algorithms that have already computed the TD-error for
updating its parameters (e.g., Q-learning or SARSA [17],
[34], [35]). However, it can be a poor estimate under some
circumstances, such as partial observability, sparse rewards,
and stochastic transitions [6], which are common in PCG
environments.
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• Log-Likelihood →
∑

(st,at)∼B ln(π(at|st)), where
π(at|st) is the probability of selecting action at given the
current state st. It suggests how likely an action may occur
in a given state. The log-likelihood prioritization promotes
frequent actions.

• Novelty → 1/
√
N(st), where N(st) stands for the state

visitation counts throughout the whole training. It aims
to promote transitions that are more novel, fostering the
exploration in those states in which the agent is uncertain
about its captured knowledge.
Once the score pi of each transition has been calculated

according to any of the above proxies, the probability P (i) of
sampling a given transition i is defined as:

P (i) =
pαi∑
k p

α
k

, (2)

where α is a hyperparameter used to determine how much
prioritization is applied1.

2) Filtering: Instead of prioritizing the experiences based
on different proxies/scores like those explained above, an
alternative strategy is to sample uniformly from the buffer, but
apply some filters to avoid undesired updates. We consider the
following filtering objectives:
• Non-zero Return Trajectories → Gt > 0, where the

discounted return is given by Gt =
∑∞

k=0 γ
krt+k. It grants

priority to those trajectories that represent a valid/success
example2 to complete the task. When no success trajectories
are available in the buffer, the agent samples them uniformly.
However, when a valid demonstration exists, the agent will
imitate those experiences greedily.

• Positive Advantage → [Gt − V (st)]+, where Gt is the
discounted return, V (·) is the value function, and [·]+ =
max(·, 0). Akin to SIL [7], this option only considers
experiences that are expected to have a positive impact on
the agent’s learning process. Therefore, if a {s, a} tuple has
a worse return (Gt) than the one expected by the agent
(V (st)), that transition is not considered for replay.

• Unique states → I{Ne(st+1)}, where I{·} takes value 1
if its argument is 1 (0 otherwise), and Ne(st+1) stands
for the state visitation counts within an episode. Motivated
by episodic exploration success approaches [36]–[38], with
this filter w foster exploration by preventing the replay of
transitions in the same trajectory that lead to the same st+1.

B. Data Diversity

RAPID focused exclusively on episode-level scores, without
considering whether the stored demonstrations are closely
related and provide a comprehensive representation of the
required diversity. In previous studies conducted in PCG
environments, it was observed that optimal solutions – and
V (st) – can significantly vary from one level to another,
even within the same task [13], [14]. As a result, certain
levels may yield a superior extrinsic return, Gt, which can

1In Expression (2), α = 0 refers to the uniform sampling case, whereas
α = 1 stands for maximum prioritization.

2We refer as valid success examples to any trajectory with Gt ̸= 0.

inadvertently bias the diversity of the trajectories considered
by RAPID, and lead to behavioral overfitting. Furthermore,
the data replay strategies introduced earlier can induce an
additional bias toward the selected proxy. We propose two
strategies to alleviate such issues:
• On-policy Novelty (Intrinsic Motivation): The on-policy

updates are decoupled from the off-policy ones. Therefore,
novelty-seeking techniques such as Intrinsic Motivation [1],
[2] can be used not only to promote the exploration, but
also as a tool to prevent the agent from getting stuck in a
local optimum due to low-diversity off-policy updates.

• Forced Diversity. Instead of considering any episode
belonging to any level, we constrain the buffer so that it
always contains a fixed number of episodes per level, forcing
diversity among the levels represented in the buffer.

IV. EXPERIMENTS & RESULTS

This section describes the experimental setup used to assess
the performance of the aforementioned strategies. Specifically,
the environments and selected hyperparameter values are given
in Section IV-A, whereas results are analyzed and discussed
in Section IV-B.

A. Experimental Setup

a) Environments: Performance evaluations are carried
out over MiniGrid and Procgen PCG environments, where the
agent position, background, and even configuration of objects
randomly change from episode to episode. We only consider
sparse reward tasks that constitute an exploration challenge:
• MiniGrid [11]: Within this benchmark, we evaluate the

solutions over a MultiRoom environment with 12 rooms
and a maximum room size of 10 –MN12S10– where the
agent has to open doors and move forward until reaching
a far green square goal. In addition, we also consider an
ObstructedMaze scenario – O1Dlhb – in which the agent
must find out where a hidden key is, move a ball that
obstructs the opening of the locked door, and move forward
to another room where the goal is accomplished when
picking up the ball placed in it. The agent is fed with
a partially observable state of dimensions 7 × 7 × 3 that
represents the surroundings in a compact manner. The agent
is capable of executing up to 7 possible discrete actions.

• ProcGen [15]: Among the 16 possible environments, we opt
for Ninja as the agent is only rewarded with either a +0
or +10 reward depending on whether the agent succeeds in
the completion of the task. The agent has to move forward
while avoiding bombs that can kill itself, so it has to jump
and move through multiple elevated platforms carefully. The
input observation consists of a 64×64×3 image, while the
action space consists of 15 possible discrete values.

b) Hyperparameters: For MiniGrid, we use the
hyperparameters and neural network architectures proposed
in [13]. That is, we use Proximal Policy Optimization (PPO)
[39] with an actor-critic framework, using 64-64 Multi-Layer
Perceptron. Besides, we select the best value resulting from
a grid search for α ∈ [0.2, 0.4, 0.6, 0.8, 1.0] in Equation (2)
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when using any of the prioritizing strategies explained in
Section III-A. That is, we useα = 0.6 in MN12S10 and
α = 1.0 in O1Dlhb for Novelty prioritization; for the rest
of cases, we opt for α = 0.2. As for ProcGen, we adopt the
hyperparameters and architectures used in [15]. Furthermore,
when IM is employed, we use BeBold [2] as in [13].

B. Results and Discussion

We report the mean and standard deviation of the average
return calculated over the last 100 episodes for each
experiment. Such statistics are computed over 3 different runs
to account for the statistical variability of the results. In
addition, we consider two batch sizes (BIL) for self-IL; unless
otherwise stated, solid curves represent results obtained with
BIL = 256, whereas dash-dotted lines indicate that the batch
size in use is BIL = 2048.

PPO RAPID TD-error Log Likelihood Novelty

Fig. 1: Performance of the agent when adopting prioritization
strategies in MN12S10 and O1Dlhb tasks.

1) Prioritization & Filtering: According to the results in
Figures 1 and 2, the following observations can be made:

Firstly, prioritization (Figure 1) based on Novelty (gray)
consistently outperforms uniform sampling (green) in terms
of sample efficiency for learning optimal policies. By contrast,
using TD-error (magenta) as a proxy for prioritization yields
poor results, only enabling learning over MN12S10 with large
batch sizes and failing in other cases. Moreover, the proposed

Log-Likelihood prioritization strategy (yellow) manages to
learn a good policy, but requires more interactions than
uniform sampling.

PPO RAPID Non-zero Advantage Unique

Fig. 2: Performance of the agent when adopting filtering
strategies in MN12S10 and O1Dlhb tasks.

When it comes to filtering strategies, Figure 2 reveals that
these methods render faster learning compared to uniform
sampling (green). In fact, the best result on MN12S10
is achieved with the Unique filtering strategy. However, it
is worth noting that adopting these filtering methods can
potentially lead to a loss of diversity, as the agent tends to
overfit to a subset of the entire experience distribution (e.g.,
Non-zero, magenta color, gets stuck in local optima solutions
despite beginning to learn earlier on training). In contrast,
uniform sampling (green) maintains diversity but at the cost
of a slower learning and a lower sample efficiency.

Last but not least, increasing the batch size (BIL =
2048) improves sample efficiency and the likelihood of
obtaining a successful policy compared to a smaller batch
size (BIL = 256). This trend is consistent across all scenarios
and cases, where the agent converges faster and/or achieves
a valid policy. Increasing the batch size ensures that larger
amounts of information are considered within each update,
maximizing the probability of receiving valuable feedback and
minimizing variance. This aspect is particularly critical in PCG
environments, where generalization is essential for effective
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learning and exploration [13]. However, it is important to note
that while increasing the batch size reduces learning variance,
it may also introduce a trade-off by potentially increasing bias.
This trade-off is observed in scenarios such as MN12S10
with the Non-zero filtering strategy and in O1Dlhb across
all algorithmic approaches, where a larger batch size leads to
faster learning, but poses challenges in attaining the optimal
expected performance.

Based on these observations, it is hypothesized that
by ensuring diversity while employing the aforementioned
prioritization and filtering techniques, both sample efficiency
and the agent’s learning capacity can be improved.

2) Analysis of Data Diversity:
a) Intrinsic Motivation: In prior work [13], the

combination of self-IL and IM in PCG environments was
demonstrated to be a successful framework for improving
sample efficiency. However, the influence of IM on diversity
remained unexplored. Figure 3 exposes that prioritization and
filtering methods that previously resulted in suboptimal
performance (e.g., non-zero) can now converge to the
optimal policy when utilizing BeBold.

PPO

PPO+BeBold

RAPID

RAPID+BeBold

Novelty

Novelty + BeBold

Non-zero

Non-zero + BeBold

Unique

Unique + BeBold

Fig. 3: Performance of the agent when fostering the diversity
of self-IL with IM while adopting prioritization and filtering
strategies in MN12S10 and O1Dlhb tasks.

More importantly, the proposed modifications poses a new
landmark performance level in terms of sample efficiency

[13]. This is evident when comparing the number of samples
required to reach a specific performance level. For instance,
in MN12S10, the Novelty prioritization (brown) and Unique
filtering (black) methods converge to the expected optimal
policy in approximately 3.8M steps, while uniform sampling
(yellow) requires around 5M steps3. That is, the same
optimal solution is achieved with 24% fewer interactions.
Similarly, the Non-zero filtering (blue) approach improves
sample efficiency by approximately 10%. In the case of
O1Dlhb, sample efficiency gaps are less noticeable. However,
the Non-zero filtering approach (blue) still dominates by
reducing the number of required steps by about 11%.

b) Forced Diversity: We recall that in Section III-B we
indicate the potential need for addressing the lack of diversity
in the stored trajectories. In light of the results reported in
Section IV-B1, the diversity should be addressed. One way to
do this is by imposing a fixed number of episodes per level
(i.e., 1 episode per level, 1 ep, or 4 episodes per level, 4 ep),
so that the representation of all levels in the buffer is always
guaranteed. We evaluate this idea in Figure 4, with 10 training
levels for task O1Dlhb. Neither 1 ep nor 4 ep achieve better
results with respect to the Default setup executed with RAPID
regardless of diversity issues.

Furthermore, we also consider two more ablation studies
related to the difference of optimal solutions between
levels [13], [14]: Normalized and NormalizedFlex. The first
normalizes the extrinsic return obtained from the environment
according to the optimal number of steps of each level,
preventing the agent from repleting the buffer content with
levels requiring shorter optimal paths. The second approach
–NormalizedFlex– is an extension of Normalized that assigns
a maximum return score of 1.0 to any collected trajectory that
requires 0 to 20 steps more than the actual shortest solution.
Based on these modifications, the agent manages to learn with
fewer interactions. However, all the analyzed approaches are
incapable of performing well in all the 10 selected training
levels. Concretely, they fail into learning 1 out of 10 levels.

For completeness, we extend the aforementioned results to
another environment with different state space and complexity
(Ninja). Such results are summarized in Figure 5. Indeed,
since the input is an image, RAPID cannot compute the local
and global exploration scores, as it was originally designed
for discrete state spaces [12]. Therefore, we applied RAPID
considering only the extrinsic return, i.e., S = w0 · Sext =∑

k γ
krt+k with respect to the original Equation (1). As

opposed to previous outcomes, we observe that in Ninja,
storing at least one episode per level has a positive
impact on the agent’s learning, making the difference between
learning an almost optimal policy or a policy that barely
surpasses a random agent’s performance.

V. CONCLUSIONS AND FUTURE WORK

The pivotal idea we wish readers to take away from
this research is the threefold necessity of applying self-IL,

3Measures taken for curves with BIL = 2048. Improvements are also
consistent for BIL = 256.
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1 ep 4 ep Default Normalized NormalizedFlex

Fig. 4: Average train return over 10 levels in O1Dlhb. The
expected optimal performance is approximately 0.9. All the
shown curves use RAPID+IM (i.e., BeBold) and BIL = 256.

PPO Random RAPID RAPID (1 ep)

Fig. 5: Average train return over 200 levels in ProcGen’s
Ninja task. RAPID is used with w1 = w2 = 0. The expected
optimal performance is equal to 10.

particularly for generalization over PCG environments.
Firstly, it is crucial to manage which demonstrations to

store in the buffer, showing that episode-level exploration
scores are suitable for this purpose [12]. Secondly, uniform
sampling replay strategies assume all the stored experiences
to be equally valuable, despite not being necessarily true.
The prioritizing and filtering strategies proposed in this work
have shown improvements in terms of sample efficiency, with
Novelty prioritization and Unique filtering the ones yielding
better outcomes. Notably, the latter has established a new
state-of-the-art performance in MN12S10. Moreover, we have
shown that increasing the imitation batch size increases the
probability of sampling valuable experiences, reducing the
variance of the updates and the required interactions to learn.

Last but not least, ensuring diversity is necessary for
generalization. We have concluded that Intrinsic Motivation
is an effective tool not only to foster on-policy exploration,
but also to avoid the overfitting derived from prioritization

and filtering techniques. Furthermore, in some scenarios like
MiniGrid, having a diverse set of episodes to be imitated
is not of help. However, in other tasks like Ninja from
ProcGen, forcing such diversity between episodes can boost
performance.

In the future, this research work can be extended by
using alternative techniques that guarantee the diversity
between the stored episodes. Besides Behavior Cloning, it
would be interesting to see how other techniques related
to Imitation Learning (e.g., GAIL, GASIL [8], [40]) or
Inverse Reinforcement Learning can perform in these PCG
environments. Finally, finding out effective exploration scores
suitable for continuous state spaces would allow the adoption
of RAPID to learn over wider problems.
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