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Abstract—K-nearest neighbor is one of the simplest and most
intuitive binary classification methods providing robust results
on a wide range of data. However, classification results can be
improved by using a decision method that is capable of assigning,
if necessary, the minority label from the list of neighbors of
a tested instance. In this paper, we propose using a simple
game-theoretic model to assign labels based on the neighbors’
information to enhance its performance for binary classification.

Index Terms—kNN, game theory, Nash equilibrium, CMA-ES

I. INTRODUCTION

While the field of machine learning is filled with a plethora
of classification methods adjusted for various types of appli-
cations, most of them rely on a set of approaches that can
be considered classic and that are combined, improved, and
adapted in order to yield better results on a meaningful set of
data.

In [1], a list of the top 10 algorithms in machine learning
is presented, and most current approaches are based on one of
the methods presented there. Among them, kNN, the k-nearest
neighbor classification method [2] is listed as one of the most
simple and elegant approaches. To classify an instance, the
decision is made by looking at the most similar elements in the
training data-set, making the decision based on some majority
rule. Moreover, it has appealing theoretical properties; it is
known that if we have k/N → 0, for N →∞ where N is the
total number of training instances, the error of kNN converges
to the Bayes error almost surely. [3], [4].

There are three main issues that influence the efficiency
of kNN: the number of neighboring nodes k, the similarity
measure used to select the neighbors, and the rule that is used
to make the decision based on the information provided by
the neighbors [1].

In this paper, the use of a new decision rule based on a
game theoretic approach is proposed. While the information
provided by only k neighbors may not be enough to use a
classification model, such as logistic regression or probit [5]
successfully, the game theoretic model provides a method to

This work was supported by a grant of the Romanian Ministry of Education
and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-
2360, within PNCDI III.

capture interactions among neighboring instances having the
same label to enhance the results of the decision process. We
denote the kNN variant that employs this method kNN−g.

II. kNN−g
Consider the binary classification problem expressed as

follows: we are given a set of data X composed of N
instances xi ∈ Rp labeled by yi ∈ {0, 1}, i = 1, . . . , N .
Y = {yi}i=1,...,N is the set of labels. We need to find a
model that, given a new instance x, assigns to it a label y
in a ”correct” manner. The ”correctness” of labels assigned
by the model is typically evaluated by testing some instances
with known labels.

A. kNN

Standard kNN assigns class y to a test instance x based
on information provided by its k neighbors by using a voting
mechanism [6], [7]. If simple majority rule is used then:

y = argmax
l

∑
(xi,yi)∈Nx

I(yi = l), (1)

where Nx is the neighborhood of x, having k instances defined
based on some similarity measure and I(·) is an indicator
function with value one if its argument is true and 0 otherwise.
For real data, Euclidean distance is mostly used. The model
actually consists in storing the training data for reference and
computing Nx during the test phase. The efficiency of kNN is
affected by the choice of k, the choice of similarity measure
used to define the neighbors of an instance, and that of the
voting mechanism.

Thus, some approaches to improve KNN study the optimal
number of neighbors k [8]–[10]. Others try to adapt the
similarity measure used to compute Nx to the specificity of the
data [11], [12]. The approach presented in this paper replaces
the voting mechanism with a game theoretic approach in order
to predict a class by using only the local information provided
by the k neighbors, without the need for feature weights or
new parameters.

B. A binary classification game

The game theoretic approach used by kNN−g is de-
rived from the Framework for Optimization and game theory
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(FROG) in [13]. Within kNN−g a normal form game Γ(Nx)
with k players consisting of the instances of the neighborhood
Nx is constructed. The strategies of the players consist of
choosing their class. Thus the set of pure strategy profiles of
the game is S = {0, 1}k and an element s = (s1, . . . , sk) ∈ S
consists of the choices of each player, i.e. if si = 0 it means
that player i has chosen label 0.

The payoff of each player depends on its choice and on
the choices of all other players with the same label and is
computed as:

ui(s1, . . . , si, . . . , sk) =

{
1, si = yi

2T (yi)
2T (yi)+F (yi)

, si ̸= yi
, (2)

where T (yi) counts how many players having label yi have
chosen it, and F (yi) how many players with label yi have
chosen differently. The ratio in the payoff ui is computed in
a similar manner with the F1 score but without taking into
account the actions of the players with different labels in order
to decentralize the search for an equilibrium.

Example 1: Consider Nx = {x1, x2, x3} with labels 0, 0, 1.
Game Γ(Nx) has three players, and a possible situation of the
game can be s = (0, 1, 0) in which player 1 chooses label 0,
player 2 chooses label 1 and player 3 chooses label 0. In this
case, the payoff of player 1 will be equal to 1, as it chooses
its correct label, while the payoff of player 2 will be:

u2(s) = u2(0, 1, 0) =
2 · 1

2 · 1 + 1
=

2

3
.

Player 3 will have a payoff of 0.
The Nash equilibrium (NE) strategy [14] of a game repre-

sents a situation in which no player can improve its payoff
by unilateral deviation. The Nash equilibrium of game Γ
corresponds to the correct classification of the training data,
which, in the case of kNN−g represent the k nodes of a
neighborhood Nx.

By considering strategies in mixed form we can make the
connection between game Γ and a probabilistic classification
model. A mixed strategy profile consists of probability dis-
tributions over the strategy set of each player, i.e. the set
of labels {0, 1}. Since we have only two possible values,
it is enough to denote by σi the probability that a player
chooses the label 1. Then a mixed strategy profile of the game
σ = (σ1, . . . , σk) ∈ [0, 1]k is evaluated by considering the
expected payoff for each player.

The probit classification model [5] uses the standard normal
distribution to assign an instance the probability to have a label
of 1 (or 0 respectively. The model parameter β ∈ Rp used to
compute the probability:

P (yi = 1|Nx) = Φ(βx), i ∈ {1, . . . , k} (3)

is estimated by maximizing the log-likelihood function

logL(β;X,Y ) =

k∑
i=1

[yi log Φ(βxi)+(1−yi) log(1−Φ(βxi))],

(4)

where Φ(·) represents the cumulative distribution function for
the standard normal distribution, and βx represents the dot
product of β and x.

If we consider

σi = σi(β) = P (yi = 1|Nx) = Φ(βx), i ∈ {1, . . . , k},

then, by searching for the Nash equilibrium of Γ in mixed form
we can find parameters β for the probit model that provide
an approximation of the equilibrium which represents also
the correct classification of the training data. In this manner,
interactions among players with the same label are captured
by the game and further included in the probit model.

To approximate the NE in mixed form the game can be
converted into an optimization problem [15] by constructing
a function v(σ):

v(σ) =
∑
i∈N

(1− ui(σ))
2. (5)

having as optima with value 0 the NEs of the game [13].
The optima of this function can be approximated by any
optimization heuristic. In this approach, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) is used [16].

CMA-ES is a search heuristic that evolves the mean and
covariance matrix of a randomly generated population fol-
lowing a normal distribution, designed to solve nonlinear
or nonconvex continuous optimization problems. It is highly
adaptable and requires as parameters only a starting point
for the search and initial value for the standard deviation of
the population, which comes also with a recommended value.
However, because the optimization function is based on the
payoffs ui in eq. (2), in some instances there are multiple β
values that yield a minimum of 0 for the optimized function.
Because of that, and also because of the stochastic nature of
CMA-ES, the heuristic is run multiple times and the average of
optimal β values is used for the prediction of x. Furthermore,
since the optimum value of v is known to be 0, the search of
CMA-ES is stopped when this value is reached by the fitness
value.

The outline of kNN−g is presented in Algorithm 1. For
each tested value x the set Nx of neighbors is computed. If
all instances in Nx have the same label, there is no need for
further computations, that label is assigned to x. Otherwise,
parameters β that approximate the NE of game Γ(Nx) are
computed by running CMA-ES multiple times. Since the
values of k are relatively small, there is no computational
challenge in running CMA-ES for this game. The m values
of β resulting in m runs of CMA-ES are averaged and are
used to compute the probability that x has label 1 based on
the probit model. If the resulting probability is greater than
0.5 that the label 1 is assigned to x, otherwise it is 0. The
probability is stored in order to compute the AUC measure
during numerical experiments.

III. NUMERICAL EXPERIMENTS

Numerical experiments are conducted on synthetic datasets
generated with different numbers of instances, attributes, and
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Algorithm 1 kNN−g outline
1: Input: training set X with labels Y and a test instance

(x′, y′);
2: Compute Nx, the set of size k of neighbors of x;
3: if all x ∈ Nx have the same label l then
4: Assign l to x, i.e. y ← l
5: else
6: Find β that minimizes v(σ(β))) by applying CMA-ES

for m times and averaging results;
7: Assign to x label y = 1 with probability

p = P (y = 1|Nx) = Φ(βx)

in eq. (3);
8: end if
9: Output: label y, probability p.

Fig. 1. AUC values for the 10 folds reported by kNN and kNN−g on the
synthetic data-sets with 3,6,9, and 12 attributes.

class separators [17], as well as on some real-world data-sets
in order to compare the performance of kNN−g with that of
the baseline method kNN that uses the majority voting rule.
Although better kNN variants may be considered, the purpose
of this endeavor is to show the advantages of replacing the
decision rule based only on the information provided by the
neighbors.

A. Experimental set-up

a) Implementation: Experiments are performed by using
the implementation of KNeighborsClassifier available
in the scikit-learn package in python [18]. The ma-

Fig. 2. AUC values for the 10 folds reported by kNN and kNN−g on the
synthetic data-sets with 15, 30, 40, and 50 attributes.

jority voting rule is replaced with a function that implements
the optimization of function v in eq. (5) by using CMA-ES.
The CMA-ES fmin implementation in python [19] is used
with default parameters and with the option to stop the search
when the objective function reaches 0.

b) Performance measure: The performance of each
method is evaluated by using 10-fold cross-validation [7]. For
each tested fold the ROC AUC value [20] is reported. Higher
values of AUC are considered better. The maximum of 1 is
achieved when tested instances are correctly classified. Results
reported by kNN and kNNg on the 10 folds are compared by
using a paired t-test with significance level 0.05.

B. Synthetic data

Synthetic data-sets are generated by using the
make_classification function in scikit-learn
with different number of instances, attributes, and parameters.
The tested number of instances are 100, 300, and 500, number
of attributes are 3, 6, 9, 12, 15, 30, 40, and 50 and the class
separator parameter was set to 0.1, 0.5, and 1, resulting in
72 data-sets of varying difficulty. Smaller values of the class
separator parameter generate more difficult data sets with
instances with different labels mixed with each other. All
experiments on the synthetic data sets are performed with
k = 3, in order to capture the behavior of kNN−g when
as little as possible information is available for the decision
process.

Figures 1 and 2 present boxplots of AUC values reported for
the 10 folds for each synthetic data-set, grouped by number

738



TABLE I
AUC VALUES REPORTED BY THE TWO METHODS FOR THE SYNTHETIC DATA-SETS FOR WHICH kNN−g PERFORMED SIGNIFICANTLY BETTER AND

WORSE THAN kNN. MEAN AND STANDARD DEVIATION OVER THE 10 FOLDS AS WELL AS THE p VALUE FOR THE PAIRED ttest REJECTING THE NULL
HYPOTHESIS THAT kNN AUC VALUES ARE GREATER THAN THOSE REPORTED BY kNN−g.

Instances Attributes Class sep. k knNN mean ± std kNN−g mean ± std p
100 9 0.1 3 0.84 0.1 0.89 0.11 0.0
100 12 0.5 3 0.81 0.12 0.87 0.11 0.02
100 12 1.0 3 0.93 0.09 0.96 0.06 0.03
100 15 0.1 3 0.75 0.19 0.8 0.2 0.0
100 15 0.5 3 0.83 0.13 0.88 0.14 0.01
100 15 1.0 3 0.95 0.07 0.97 0.04 0.05
100 30 0.5 3 0.79 0.11 0.84 0.13 0.0
100 30 1.0 3 0.88 0.08 0.93 0.09 0.0
100 50 0.1 3 0.81 0.13 0.87 0.08 0.02
300 15 0.1 3 0.86 0.05 0.89 0.06 0.01
300 15 0.5 3 0.9 0.05 0.92 0.05 0.0
300 15 1.0 3 0.97 0.02 0.98 0.02 0.0
300 30 0.1 3 0.86 0.04 0.88 0.04 0.0
300 30 0.5 3 0.91 0.04 0.92 0.04 0.0
300 30 1.0 3 0.95 0.03 0.96 0.03 0.01
300 40 0.1 3 0.85 0.08 0.87 0.06 0.03
300 40 0.5 3 0.89 0.05 0.9 0.05 0.04
300 50 0.5 3 0.86 0.07 0.89 0.05 0.03
500 6 0.1 3 0.8 0.04 0.82 0.04 0.03
500 9 0.5 3 0.93 0.02 0.94 0.02 0.02
500 9 1.0 3 0.98 0.02 0.98 0.02 0.02
500 12 0.1 3 0.9 0.05 0.91 0.04 0.02
500 15 0.1 3 0.9 0.06 0.91 0.06 0.02
500 30 0.1 3 0.9 0.05 0.92 0.04 0.0
500 30 0.5 3 0.93 0.03 0.94 0.03 0.0
500 30 1.0 3 0.97 0.02 0.98 0.02 0.0
500 50 0.1 3 0.87 0.06 0.89 0.05 0.03
500 50 0.5 3 0.9 0.04 0.91 0.03 0.01
500 50 1.0 3 0.95 0.03 0.96 0.03 0.0
300 3 0.1 3 0.78 0.06 0.75 0.08 1.0
300 3 1.0 3 0.93 0.05 0.91 0.06 1.0
500 3 0.5 3 0.93 0.04 0.91 0.05 0.97
500 3 1.0 3 0.97 0.02 0.95 0.03 0.98

TABLE II
AUC VALUES REPORTED BY THE TWO METHODS FOR THE REAL DATA SETS. MEAN AND STANDARD DEVIATION OVER THE 10 FOLDS AS WELL AS THE p

VALUE FOR THE PAIRED ttest REJECTING THE NULL HYPOTHESIS THAT kNN AUC VALUES ARE GREATER THAN THOSE REPORTED BY kNN−g.

Data set k knNN mean ± std kNN−g mean ± std p
cryoptherapy 3 0.92 0.1 0.95 0.09 0.03 *
cryoptherapy 5 0.91 0.1 0.89 0.07 0.77
cryoptherapy 7 0.92 0.09 0.92 0.11 0.63

immunotherapy 3 0.48 0.21 0.47 0.13 0.56
immunotherapy 5 0.43 0.23 0.53 0.1 0.05*
immunotherapy 7 0.41 0.23 0.61 0.15 0.01*

banknote 3 1 0 1 0 10
banknote 5 1 0 1 0 10
banknote 7 1 0 1 0 10

plrx 3 0.5 0.2 0.55 0.19 0.05 *
plrx 5 0.49 0.2 0.46 0.18 0.8
plrx 7 0.46 0.15 0.47 0.19 0.42

of instances, attributes, and class separators. Out of the 72
tested data-sets, in 29 cases the performance of kNN−g was
significantly better than that of kNN. Table I presents the
settings, and corresponding AUC and p values. In four out of
the 72 tests, the performance of kNN was significantly better,
according to the ttest, and these settings are presented in the
last lines of Table I.

Results show that kNN−g performs better for a higher
number of attributes. Standard deviation values are similar,
indicating similar behavior of the two methods.

C. Real-world datasets

The following datasets from the UCI Machine Learning
repository [21] are presented here: the Cryotherapy Dataset,
with 90 instances and 7 attributes [22]; the Immunotherapy
Dataset Data Set with 90 instances and 7 attributes [22]; the
banknote authentication Data Set with 1372 instances and 4
attributes [21]; and the Planning Relax Data Set (plrx) with
182 instances and 13 attributes [23].

The size of neighborhood k was set to 3, 5 and 7. Results
are presented in Table II. kNN−g improves upon kNN for
different values of k - marked with an * in the table - and
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reports similar results in the rest of the cases. The banknote
data-set is reported to show that kNN−g does not miss clear
results reported by kNN, even if there are instances in which
it reports worse results on some folds.

IV. CONCLUSIONS AND FURTHER WORK

This paper presents a simple game theoretic replacement to
the decision-making process of the standard kNN. Numerical
results presented show that this approach can improve the
performance of kNN, and it may be used for more advanced
versions. While the improvement may not be considered
spectacular, it shows how we can extract more information
than by using simple majority voting, without adding any
weights or other conditions, even from three neighbors. The
approach can be further improved by considering different
payoffs, underlying probabilistic classification models, and
optimization methods.
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