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Abstract—Some real-world engineering problems are offline
data-driven mixed-variable optimization problems, which involve
optimizing both continuous and discrete variables using only
historical experimental data. The main challenges are handling
mixed variables and utilizing surrogate models effectively. We
propose a novel algorithm that uses a step-wise strategy to
optimize the discrete and continuous variables in two stages.
In the first stage, we use different radial basis function networks
models as surrogates and a voting method to select a promising
subspace of discrete variable values. In the second stage, we fix
the discrete variable values and use a selective ensemble strategy
to optimize the continuous variables. We test our algorithm on 30
test problems and compare it with two representative algorithms.
The results show that our algorithm is superior and more stable
on most problems, especially on complex multimodal problems.
Our algorithm is an effective and flexible framework for handling
mixed variables and improving search efficiency and quality.

Index Terms—Offline data-drive, Mixed-variable optimization
problems, Surrogate model, Selective ensemble method, Voting
strategy

I. INTRODUCTION

In the engineering field, mixed-variable optimization prob-
lems (MVOPs) are a common type of optimization problems
[1]. In general, MVOPs can be formulated as follows:

y = min
x∈X

f(x), (1)

where x = (xc,xd) is a mixed-variable vector, containing
continuous vector xc = (x1

c , x
2
c , . . . , x

n1
c ) and discrete vector

xd = (x1
d, x

2
d, . . . , x

n2

d ), n1 is the number of continuous
variables, n2 is the number of discrete variables, X = Xc×Xd

is the search space, which is defined by the definition domain
of continuous vector Xc ⊆ Rn1 and the sets for values
of the discrete vector Xd =

{
S1, S2, . . . , Sn2

}
; Si is the

candidate set of xi
d. Since the evaluation of f(x) can only

be performed based on limited data and no new data can
be obtained during the optimization process, this poses a
difficulty for evolutionary algorithms (EAs). Such problems
are known as offline data-driven optimization problems [2].
A possible way to solve such problems is to use surrogate-
assisted evolutionary algorithms (SAEAs) [3], which employ
approximated models trained based on a small amount of
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data to replace the unavailable objective functions. Various
machine learning models, such as artificial neural networks
(ANNs) [4], polynomial regression (PR) [5], Kriging model
[6], and radial basis function networks (RBFNs) [7], have
been used as surrogates in SAEAs. Moreover, SAEAs use
model management techniques to balance the exploration and
exploitation during the optimization process.

Offline data-driven MVOPs face two main challenges:
handling mixed variables and using surrogate models effec-
tively with limited data. Various evolutionary operators have
been proposed to handle mixed decision variables [1], such
as discretization, relaxation, and two-partition. Discretization
transforms continuous variables into discrete ones. Relaxation
changes discrete variables into continuous ones and rounds
them to the nearest feasible values. Two-partition separates
the continuous and discrete variables and applies different
operators to them. The two-partition method is better than the
other two because it preserves the accuracy of the decision
variables and avoids invalid search. However, handling mixed
variables in surrogate modeling is also difficult. Some methods
have been developed to deal with this problem. For example,
Merch’an et al. [8] convert the discrete input variables into
integers or one-hot vectors; Bartz-Beielstein et al. [9] use
different distances in the kernel function; Kim et al. [10] build
a tree-based model that can handle mixed variables naturally.

To manage the surrogate models effectively in offline data-
driven optimization, multiple models are employed to over-
come the challenges of limited data and inaccurate approx-
imation. For example, Wang et al. [11] propose a selective
surrogate ensemble method, which constructs many surrogate
models before optimization and selects a small diverse subset
of them adaptively during the optimization for the best local
approximation accuracy. A method that uses three RBFNs as
surrogate models and selects candidate solutions with high-
confidence fitness predictions to enrich the training data is
proposed by Huang et al. [12] to overcome the lack of training
data. Similarly, Huang et al. [13] develop a stochastic ranking-
based ensemble of four RBFNs with different kernels to handle
high-dimensional offline data-driven optimization problems.

To tackle the challenges posed by offline data-driven
MVOPs, we propose a novel offline data-driven mixed-variable
optimization algorithm using a step-wise strategy (DDEA-
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SW), which optimizes the discrete and continuous variables
in two stages. The main contributions of this paper can be
summarized as follows:

1) We use a step-wise strategy to perform a global search
for discrete variables and a local search for continuous
variables sequentially. In the global search stage, a
voting method is used to determine the best discrete
variable values. In the local search stage, the best dis-
crete variable values are fixed and a selective ensemble
strategy based on ranking and grouping is used to op-
timize the continuous variables. This strategy can avoid
being trapped in local optimal in the discrete variable
space and balance the exploration and exploitation of
the search space.

2) We propose a voting method to select a consensus
subspace of discrete variable values from multiple can-
didate solutions generated by different RBFN models,
which are surrogate models trained with different center
vectors. This method can help us find the promising
regions of interest in the discrete variable space.

The remainder of this paper is organized as follows. In
section II, the related techniques, such as the radial basis
function network based on Gower-distance and two-partition
evolutionary algorithm are introduced. A comprehensive de-
scription of the proposed algorithm framework is provided in
Section III. Section IV will present the experiment settings,
as well as the design of comparative experiments studies and
result analysis. At last, Section V concludes the study and
discusses future work.

II. RADIAL BASIS FUNCTION NETWORK BASED ON
GOWER-DISTANCE

RBFN based on the Gower Distance is a method to approx-
imate functions with mixed variables. Given the initial offline
data consists of N sample points X = (x1,x2, . . . ,xN )T ,
whose true value f =

(
f
(
x1

)
, f

(
x2

)
, . . . , f

(
xN

))T
; and

the center vector c = (c1, c2, ..., cm) can be obtained by the
K-means clustering. RBFN can be expressed as f̂(x) = w0+∑m

i=1 wiφ(x; c
i), where φ(x; ci) is kernel function to map

the distance between x and i-th center vector ci; each ci =
(cicon, c

i
dis) is a mixed-variable vector that contains continu-

ous and discrete components; and W = (w0, w1, . . . , wm)
T

is the weight vector and can be calculated by pseudo-inverse
method [14].

When the input variables are mixed, we can use the Gower
distance as the kernel function of the RBFN. The Gower
distance between the decision vector x and i-th center ci could
be expressed [15]:

d
(
x, ci

)
=

1

n1 + n2

 n1∑
j=1

∣∣∣xconj
− ciconj

∣∣∣
∆xconj

+

n2∑
j=1

S
(
xdisj , c

i
disj

) ,

(2)

where n1 is the number of continuous variables; n2 is the
number of discrete variables; ∆xconj is range of the j-th
continuous variable; and the S(xdisj , c

i
disj

) is defined as:

S
(
xdisj , c

i
disj

)
=

{
0, if xdisj = cidisj
1, otherwise

.

Furthermore, we use the Gaussian kernel as the basis func-
tion for the RBFN, whose hyper-parameter β is determined
by several factors, such as n, the maximal distance between
sampling points Dmax, the dimension of the decision vector
d, and the number of training data N [16]. The Gaussian

Kernel is expressed as φ(x; ci) = − exp

(
d(x;ci)

β

)
, where

β = 24·(n−1) · Dmax · (dN)
−1
d . In our work, we use β with

n = 4 for the Gaussian kernel, and RBFN based on the Gower
distance as the surrogate model.

III. PROPOSED ALGORITHM

We propose an offline data-driven mixed-variable optimiza-
tion algorithm using a step-wise strategy to optimize the mixed
variables. Our method consists of three modules: initializa-
tion module, global search module and local search module.
The initialization module trains different RBFN models for
the given offline data. The global search module produces
a number of candidate solutions and selects a promising
subspace of discrete variables from the candidate solutions
by a majority voting method. The local search module refines
the continuous variable with a selective ensemble surrogate.
The overall framework of the algorithm is shown in Fig. 1.
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Fig. 1: The Framework of the Proposed Algorithm

The main steps of our algorithm are as follows:
1) Initialization: Given the offline dataset, the proposed

algorithm builds a set of T RBFN models (denoted by
M1, ...,MT ). Each RBFN model is trained on the whole
offline dataset, but their diversity is ensured by using
different random RBFN clustering centers.
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2) Global search module: This module consists of two
sub-modules, namely candidate solution generation and
majority voting. In the candidate solution generation
sub-module, a single RBFN model assisted two-partition
evolutionary algorithm is used to obtain the best can-
didate solution (denoted by C1, ..., CT ) for each base
learner. These candidate solutions are stored in a can-
didate pool and their predicted values (denoted by
P1, ..., PT ) are also recorded. In the majority voting sub-
module, the proposed algorithm extracts the best discrete
variable values (denoted by B = {b1, b2, ..., bn2

}) for
the mixed-variable solutions in the candidate pool by a
majority voting method.

3) Local search module: The proposed algorithm ranks
and divides all the base learners into Q groups ac-
cording to their predicted values in the predicted value
pool. Then, it randomly chooses one base learner from
each group to form an ensemble model (denoted by
M1, ...,MQ). Then, the ensemble model assisted EA is
run again in the continuous subspace with fixed discrete
part obtained in the previous step. The EA stops when
the termination condition is reached and outputs the
optimal solution.

A. Majority Voting Strategy for Promising Subspace

The goal of the majority voting strategy is to find a
promising subspace of discrete variable that can improve the
algorithm performance. A promising subspace is a subset
of discrete values that are most common among the best
candidate solutions. By selecting a promising subspace, we
can simplify the search space and focus on the optimal regions
[17].

Our method is to use majority voting to identify the promis-
ing subspace from candidate solutions generated by different
RBFN models. The majority voting counts the frequency of
each discrete value for every position of the discrete variable
among all candidate solutions (cdt1, . . . , cdtT ). Then, the
most frequent value (b1, . . . , bn2

) is selected for that position.
This approach uses the diversity and quality of the candidate
solutions to find the common features of the best solutions
and guide the search process.

To implement the majority voting strategy, we use RBFN
models solved by independently run EA to obtain the best
candidate solutions. For each position of the discrete variable,
we extract and count the corresponding discrete values of all
the best candidate solutions. Then, we select the most frequent
value as the value of that position. We repeat this for all posi-
tions of the discrete variable, resulting in a promising subspace
of discrete variable values. The details of the majority voting
strategy are in Algorithm 1.

B. Local Search for Continuous Variables

The local search for continuous variables aims to refine the
solutions obtained by the global search by further optimizing
the continuous variables.

Algorithm 1 Majority Voting Strategy for Discrete Variable

Input: A set of candidate solutions cdt =
{cdt1, cdt2, ..., cdtT }, where each candidate solution
cdti has a discrete variable part Di = {di1, di2, ..., din2},
1 ≤ i ≤ T and 1 ≤ j ≤ n2.

Output: The best discrete values B = {b1, b2, ..., bn2
}, where

bj is the value of the j-th position of the discrete variable
that has the highest frequency in D1:n2 .

1: B ← an empty list of size n2;
2: for j ← 1 to n2 do
3: F ← a frequency list for the j-th position of the discrete

variable;
4: for i← 1 to T do
5: Fdij

← Fdij
+ 1;

6: end for
7: bj ← argmax(Fdij );
8: Bj ← bj ;
9: end for

10: return B;

To perform the local search, we build an ensemble model
that can provide more accurate and robust predictions than a
single RBFN model [18]. The ensemble model is constructed
by a selective ensemble strategy that can balance the global
ensemble accuracy and the fitting accuracy of each RBFN
model. Given the offline dataset, we use T RBFN models
independently with different clustering centers. These RBFN
models (base learners) are fixed and form the model pool.
However, not all base learners are equally useful for the
ensemble model. Some base learners may have similar or
average performance, which may reduce the diversity and
effectiveness of the ensemble. Therefore, we select Q models
from T models by ranking and grouping them (denoted by
M1, . . . ,MT ) according to their predicted values (P1, . . . , PT )
of the best candidates, and randomly selecting one model from
each group. This way, we can ensure that the selected models
have different fitting accuracy and capture different aspects
of the data. To elaborate on the selective ensemble strategy,
we first sort the T RBFN models in descending order based
on their predicted values. Then, we divide the sorted models
into Q groups, each containing n models. For example, the
first group contains the first to the nth models in the sorted
order (denoted by G1

1, . . . , G
n
1 ), and the last group contains the

last n models (denoted by G1
Q, . . . , G

n
Q). Then, we randomly

choose one model from each group and repeat this process Q
times. This way, we obtain Q models that form the ensemble
model (M1, . . . ,MQ).

After building the ensemble model, the proposed algorithm
runs the EA to optimize the continuous variables. The discrete
part is fixed by the best discrete variable values obtained
by the majority voting strategy, while the continuous part is
manipulated by simulated binary crossover and polynomial
mutation. The fitness value of each candidate solution is
evaluated by using the ensemble model. The EA stops when
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the maximum number of iterations is exceeded and outputs
the optimal solution.

IV. EXPERIMENTAL STUDIES

A. Test Problems and Parameters Settings

1) Test Problems: To comprehensively evaluate the perfor-
mance of our proposed algorithm, we adopted 30 artificial test
problems F1-F30 that were proposed by Liu et al. [19].

In our experiments, the Latin-hypercube sampling (LHS)
method is modified to encode the discrete variables as integers
and generates initial offline data for both continuous and
discrete variables, and all algorithms start with 100 initial
samples generated by LHS [20].

2) Parameter settings: In our experiments, RBFN consists
of a number of centers, which is set to half of the training
sample size [N/2], where N represents the total number of
training samples. And we use 100 generations for each base
learner to generate candidate solutions. The optimization pro-
cess for all the compared algorithms involves both continuous
and discrete operators. The continuous operator employs the
simulated binary crossover (SBX) operator with a distribution
index η = 1, and the polynomial mutation operator with η = 1.
On the other hand, the discrete operator utilizes the two-point
crossover and random mutation techniques. The population
size is set to 100, and the termination condition is met after
100 generations. The probabilities for crossover and mutation
are set to 0.9 and 0.1, respectively. These parameters are fixed
for all the algorithms in the following experiments.

To assess the performance and stability, each problem is
tested through 20 independent runs and the best objective
values obtained in each run are recorded. These values are
evaluated by the true function f(x), but the evaluation of
true function is not used in the optimization process. The
performance indicators are the mean and standard deviation
of these values. To compare the algorithms in a statistically
meaningful way, Wilcoxon’s rank-sum tests are conducted
with a significance level of α = 0.05 [21]. The symbols +, =,
and − indicate that the proposed algorithm has a significantly
better, similar, or substantially worse performance than the
algorithm being compared, respectively.

B. Parameter Analysis

The number of base learners T affects the efficiency and
accuracy of the algorithm. The number of base learners
determines how many surrogate models can be used in the
optimization process. A larger T may increase the diversity
and reliability of the surrogate models, but also increase the
computational cost and complexity of the algorithm.

We conduct this experiment to analyze the sensitivity of
this parameter and find a suitable value, as it affects both the
global search stage and local search stage of the algorithm.
We test the algorithm with different numbers of base learners
(T ∈ 10, 20, 30, 50, 70, 100, 150, 200) on two test functions
(F27 and F29), which both contain 5 continuous variables
and 5 discrete variables. F27 and F29 represent complex
multimodal and unimodal problems, respectively. We run each

T for 20 independent experiments and record the best objective
values obtained in each experiment. The experimental results
are shown in Fig. 2, which shows the mean and standard
deviation of the best objective values under different numbers
of base learners. From Fig. 2, we can see that when T = 50,
the algorithm achieves optimal performance and stability on
both F27 and F29, with the lowest mean objective values
and relatively small standard deviations. When T < 50, the
algorithm lacks global search ability and may not find a
promising subspace of discrete variable values. When T > 50,
the selective ensemble surrogate is more likely to randomly
choose inferior base learners from each group, which can
impact the quality of the ensemble model and the optimization
of continuous variables. Therefore, T = 50 is a suitable value
that can balance the global search and local search effects.
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Fig. 2: Average best objective value obtained by DDEA-SW
with different numbers of base learners on F27 and F29

C. Effects of Global Search Module

To investigate the effect of the global search module, we
design a variant algorithm DDEA-SW(no GS) by removing
the global search module from DDEA-SW. The global search
module uses a voting method to select a promising subspace
of discrete variables from the candidate solutions. The local
search module uses a selective ensemble strategy based on
ranking and grouping to optimize the continuous variables.
DDEA-SW(no GS) only retains the local search module and
does not fix the discrete variables. The DDEA-SW(no GS) will
utilize the selective ensemble surrogate-assisted two-partition
EA to evaluate the population.

We select eight test functions with different proportions of
continuous and discrete variables, as well as different modality
properties. These test functions are F16, F17, F19, F20, F26,
F27, F29, and F30, which are derived from four continuous
functions. F16, F19, F26 and F29 are unimodal functions,
while F17, F20, F27 and F30 are multimodal functions. The
purpose of this selection is to test the performance of the
voting method in different situations.

The experimental results are shown in Table I, which
presents the mean and standard deviation of the best objective
values obtained by DDEA-SW and DDEA-SW(no GS) on
different test functions. From Table I, we can see that DDEA-
SW outperforms DDEA-SW(no GS) on four test functions
(F16, F19, F20, and F30), especially on multimodal functions.
On the other four test functions (F17, F26, F27, and F29),
there is no significant difference between DDEA-SW and
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TABLE I: Average best results (shown as mean±std) obtained
by DDEA-SW and DDEA-SW (no GS) on 8 test problems,
and the best results are highlighted in bold

Test Function DDEA-SW DDEA-SW (no GS)
F16 1692.25±1203.18 3624.13±2441.89 (+)
F17 30.67±10.35 34.96±15.53 (=)
F19 28.08±21.59 83.17±59.35 (+)
F20 22.68±19.26 41.11±27.43 (+)
F26 2406.36±1144.00 2678.96±855.05 (=)
F27 58.95±17.06 67.60±13.22 (=)
F29 38.97±17.41 51.93±29.61 (=)
F30 14.23±7.88 27.89±12.74 (+)

+/ = /− 4/4/0

DDEA-SW(no GS). This result indicates that the global search
module is an effective component to improve the performance
of the algorithm on some problems, especially those with
complex multimodal landscapes. The global search module
can help the algorithm find promising subspaces of discrete
variable values by using the voting method. Without this
module, the algorithm may fall into local optima or miss
some potential solutions. The global search module is more
useful for problems with more discrete variables or more
multimodalities. For problems with fewer discrete variables
or unimodality, the global search module may not have much
effect.

D. Comparative Experiment

To further examine the performance of DDEA-SW, we
compare it with SADEmv [1] and DDEA-SEmv [11] on 30
test functions (F1-F30) with different types and proportions
of mixed-variables. Both algorithms use the same stopping
criterion as the original papers. The main characteristics of
the compared algorithms are shown below:

1) SADEmv: A single surrogate model (RBFN based on
the Gower distance) assisted two-partition evolutionary
algorithm for optimizing mixed-variables.

2) DDEA-SEmv: A selective surrogate ensemble method
that uses RBFN based on the Gower distance as the
base learners and two-partition evolutionary algorithm
as the search method for handling mixed variables. It
uses bootstrap sampling [22] for model training, and the
number of base learners is fixed at 50 in the optimization
process.

We use the same general settings of initialization and stop
after 100 generations. We use the default values of the specific
parameters for the compared algorithms as given in above.
The average best objective value obtained by DDEA-SW and
two compared algorithms over 20 independent runs on 30 test
functions are shown in Table II. From the results, we can see
that DDEA-SW performs better on most of problems, except
F3, F8 and F23. From the results in Table II, it can be seen
that DDEA-SW obtains the best performance with 22 best
results on 30 test functions, followed by DDEA-SEmv with 3
best results. It is important to optimize discrete variables as
well as continuous variables on these test functions. This is

why DDEA-SW has superior performance to other compared
mixed-variable optimization algorithms on many of these test
functions, especially on multimodal problems.

We also plot the convergence curves of DDEA-SW,
SADEmv and DDEA-SEmv on four test functions (F21, F25,
F26 and F29) in Fig. 3. The convergence curves are the average
of 20 independent runs for each algorithm. We can see that
DDEA-SW converges faster and better than SADEmv and
DDEA-SEmv on these test functions. This result shows that
DDEA-SW can find promising solutions in the early stage of
optimization by using the voting method to determine the best
subspace of discrete variable values. This method can reduce
the search space and improve the efficiency of optimization.
Moreover, DDEA-SW can further improve the solutions in
the later stage of optimization by using the selective ensemble
strategy to optimize the continuous variables. This strategy can
balance the exploration and exploitation of the search space,
and avoid falling into local optima.
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Fig. 3: Convergence profiles of offline DDEAs on F21, F25,
F26 and F29

Therefore, we can conclude that DDEA-SW is a superior
algorithm for optimizing mixed variables, and can achieve
better performance than SADEmv and DDEA-SEmv on most
test functions. The stepwise optimization algorithm framework
is an effective and flexible framework for handling mixed
variables.

V. CONCLUSIONS

In this paper, we address the problem of offline data-driven
mixed-variable optimization, which is a common and chal-
lenging problem in engineering fields. The problem involves
optimizing both continuous and discrete variables with limited
data, which poses difficulties for handling mixed variables
and building reliable surrogate models. We propose a novel
algorithm that uses a step-wise strategy to optimize the discrete
and continuous variables separately. Our algorithm consists of
two stages: a global search stage and a local search stage.
The global search stage aims to find a promising subspace of
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discrete variable values by using multiple RBFN models and
a voting method. The local search stage aims to optimize the
continuous variables by using a selective ensemble strategy
that combines different base learners. We evaluate our algo-
rithm on 30 artificial test problems with different types and
proportions of mixed variables, as well as different modality
properties. We compare our algorithm with two representative
algorithms, namely SADEmv and DDEA-SEmv. The exper-
imental results demonstrate that our algorithm outperforms
the compared algorithms on most test problems, especially on
complex multimodal problems. The convergence curves also
indicate that our algorithm can converge faster and better than
the compared algorithms.

TABLE II: Average (shown as mean±std) obtained optimum
by DDEA-SW and two compared algorithms on all 30 test
problems, and the best results are highlighted in bold.

Test
Function DDEA-SW SADEmv DDEA-SEmv

F1 1010±286 1675±573 (+) 2526±859 (+)
F2 85.88±24.65 90.90±18.98 (=) 90.18±17.49 (=)
F3 16.57±1.40 17.19±1.79 (=) 14.26±1.82 (-)
F4 19.65±6.51 26.78±7.95 (+) 55.11±31.05 (+)
F5 8.28±3.08 15.82±7.54 (+) 30.32±10.43 (+)
F6 1408±508 2401±832 (+) 3331±1045 (+)
F7 88.94±19.26 101.44±22.81 (=) 93.12±21.84 (=)
F8 16.81±1.25 16.81±1.73 (=) 13.56±1.63 (-)
F9 31.52±10.40 57.27±22.19 (+) 83.57±39.45 (+)

F10 13.52±5.82 24.79±12.74 (+) 34.88±9.59 (+)
F11 83±68 292±233 (+) 904±540 (+)
F12 13.26±9.67 18.05±7.18 (+) 32.27±17.53 (+)
F13 10.11±2.17 10.66±2.15 (=) 9.74±2.33 (=)
F14 0.99±0.82 3.11±1.93 (+) 39.88±35.69 (+)
F15 2.06±0.78 4.61±1.63 (+) 34.08±18.34 (+)
F16 1710±1258 4837±3929 (+) 5230±3135 (+)
F17 25.31±17.10 48.22±18.49 (+) 50.90±23.57 (+)
F18 7.91±3.29 10.97±2.86 (+) 11.47±3.48 (+)
F19 35.93±29.95 133.28±100.38 (+) 131.54±111.27 (+)
F20 23.79±21.35 67.18±54.09 (+) 78.58±50.48 (+)
F21 755±378 1220±565 (+) 3834±1499 (+)
F22 54.50±12.66 56.34±15.98 (=) 66.94±15.70 (+)
F23 13.50±2.08 14.27±2.20 (=) 11.79±2.29 (-)
F24 8.18±2.57 13.25±5.13 (+) 39.77±20.60 (+)
F25 5.60±2.09 10.97±6.25 (+) 28.40±11.49 (+)
F26 2319±1036 5040±2858 (+) 7910±3026 (+)
F27 66.27±20.22 71.19±16.09 (=) 76.59±23.66 (=)
F28 11.45±2.30 13.63±1.87 (+) 11.90±2.68 (=)
F29 35.51±20.37 94.27±47.38 (+) 120.83±76.04 (+)
F30 18.54±7.50 42.19±19.56 (+) 51.98±32.78 (+)

+/ = /− 22/8/0 22/5/3

For the future work, we plan to extend our algorithm in
several aspects. For example, we can explore other machine
learning methods to further refine the continuous variable
search part, such as using multiple surrogate models and
selecting candidate solutions with high-confidence fitness pre-
dictions, which can enrich the training data and improve
the approximation accuracy. Some adaptive methods also can
be used to adjust the number or the type of base learners
according to the problem characteristics, which can enhance
the diversity and reliability of the surrogate models. We can
also test our algorithm on some engineering applications to
demonstrate its applicability.
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