
Uncertainty Quantification for Efficient and
Risk-Sensitive Reinforcement Learning

1st Mohamed-Harith IBRAHIM
Mines Saint-Etienne, Univ. Clermont

Auvergne, CNRS, UMR 6158 LIMOS, Institut
Henri Fayol, F-42023, Saint-Etienne, France.

mharith.ibrahim@emse.fr

2nd Stéphane LECOEUCHE
IMT Nord Europe, Institut

Mines-Télécom, Univ. Lille, Centre for
Digital Systems, F-59000 Lille, France.
stephane.lecoeuche@imt-nord-europe.fr

3rd Jacques BOONAERT
IMT Nord Europe, Institut

Mines-Télécom, Univ. Lille, Centre for
Digital Systems, F-59000 Lille, France.

jacques.boonaert@imt-nord-europe.fr

4th Mireille BATTON-HUBERT
Mines Saint-Etienne, Univ. Clermont

Auvergne, CNRS, UMR 6158 LIMOS, Institut
Henri Fayol, F-42023, Saint-Etienne, France.

batton@emse.fr

Abstract—In complex real-world decision problems, ensuring
safety and addressing uncertainties are crucial aspects. In this
work, we present an uncertainty-aware Reinforcement Learning
agent designed for risk-sensitive applications in continuous ac-
tion spaces. Our method quantifies and leverages both epistemic
and aleatoric uncertainties to enhance agent’s learning and
to incorporate risk assessment into decision-making processes.
We conduct numerical experiments to evaluate our work on
a modified version of Lunar Lander with variable and risky
landing conditions. We show that our method outperforms
both Deep Deterministic Policy Gradient (DDPG) and TD3
algorithms by reducing collisions and having significant faster
training. In addition, it enables the trained agent to learn a
risk-sensitive policy that balances performance and risk based
on a specific level of sensitivity to risk required for the task.

Index Terms—Reinforcement Learning, Uncertainty quantifi-
cation, Risk-sensitive control

I. INTRODUCTION

Reinforcement Learning (RL) has been successfully ap-
plied to solve a wide range of sequential decision-making
problems in video games, board games, robotics, energy
management and various other domains. However, apply-
ing RL approaches to real-world problems may face major
challenges. First of all, one of the main challenges lies in
developing agents that can make robust and safe decisions in
complex environments. Traditional RL approaches typically
focus on maximizing the expected value of return which
is not always suitable to real-world problems with high
variability in return and risky tasks. On the other hand, RL
often requires a significant number of interactions between
the agent and its environment to learn an optimal policy,
leading to high sample-complexity. To address these chal-
lenges, researchers have developed various RL methods to
reduce sample-complexity and to consider risk in decision-
making. According to [1], the notion of risk in RL is actually
related to the stochastic nature of the environment and the
fact that even an optimal policy may perform poorly in some
cases. This is because maximizing the expected return does
not prevent rare occurrences of large negative outcomes.

In this work, we suggest to tackle these challenges by
quantifying uncertainties and incorporating them into the
learning process to explore efficiently and to learn a risk-
sensitive policy. In fact, agents in RL encounter two types of
uncertainties: aleatoric uncertainty and epistemic uncertainty.
Aleatoric uncertainty arises due to the inherent stochastic
nature of the environment, stemming from factors such as
stochastic rewards, transition dynamics, or policies. On the
other hand, epistemic uncertainty, also known as model
uncertainty, expresses the agent’s lack of knowledge about
the problem. The first can be used to quantify variability and
to consider risk in decision-making, while the second can
be used to evaluate agent’s knowledge to guide the learning
process.

In this paper, we focus on continuous control tasks within
environments characterized by variable and risky conditions.
We use an actor-critic architecture based on DDPG [2] and
introduce several modifications. These adaptations primarily
focus on enhancing the random exploration process and
refining the risk-neutral criterion commonly employed in
methods like DDPG and TD3 [3]. To accomplish this, we use
Distributional Reinforcement Learning (DRL) methods and
ensemble bootstrapping to quantify both types of uncertainty.
Instead of modeling the expected value of return, DRL allows
to learn the complete distribution of return which can be more
informative and can model intrinsic randomness of return.
Furthermore, the distribution can be leveraged to incorporate
a risk-sensitive criterion, enabling the consideration of risk
in the decision-making process.

The reminder of the paper is structured as follows. Section
II provides an overview of related works focusing on uncer-
tainty quantification in RL. In Section III we present back-
ground information on Markov Decision Processes (MDP)
and DRL. This section aims to provide readers a fundamental
understanding of the key concepts and techniques that form
the basis of our proposed method. Section IV details our
method, outlining the key components and steps involved

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1429

in our framework. Finally, in Section V, we examine the
effectiveness and performance of our method by presenting
experimental results and discussions that highlight the advan-
tages of the proposed approach.

II. RELATED WORK

Uncertainty quantification in RL is used to learn risk-
sensitive policies, to train uncertainty-aware agents or to
improve sample-complexity. Uncertainties are modeled using
different methods. Authors in [4] provide an overview of
existing techniques for uncertainty-aware RL.

Learning a risk-sensitive policy in RL can be achieved
by incorporating a risk-sensitive criterion within the DRL
framework. Different methods have been proposed to learn
the return distribution such as C51 [5] that parameterizes the
return distribution as a categorical distribution, QR-DQN [6]
and IQN [7] that use quantile functions. Empirically, DRL
methods have shown improvements in final performance
and sample complexity over non-distributional methods. In
addition, they have been used to improve the critic of a policy
gradient algorithm called D4PG [8], achieving state-of-the-
art performance in continuous control tasks.

Previous studies have explored using the return distribution
to compute risk-sensitive measures. Authors in [9] suggest to
approximate the return distribution as a Gaussian distribution
and to use the Bellman equation for the mean and the
variance to learn its moments. By doing so, the Gaussian
distribution is used to calculate a risk-sensitive measure,
the Conditional Value at Risk (CVaR), in a closed-form.
Additionally, authors in [10] and in [11] suggest to learn
the full return distribution using DRL methods in order to
compute the CVaR or other risk-sensitive measures as in [12].

Estimating epistemic uncertainty is also important to train
an uncertainty-aware agent. It is used as a measure to evaluate
an agent’s knowledge about its environment. Multiple works
use epistemic uncertainty to improve sample-complexity by
guiding the agent to explore unknown situations with limited
knowledge [13] [14] [15]. In addition, epistemic uncertainty
has been used in RL to train agents safely [16] [17].

To train an uncertainty-aware agent, ensemble RL methods
are employed, which have gained popularity for quantifying
uncertainties. In RL, ensemble methods serve various pur-
poses, including efficient exploration [18] [13] [19] [20] and
to reduce the overestimation bias of Q-values. Authors in [14]
propose a unified framework combining mentioned benefices
of ensemble RL.

Most prior work quantifies one of the two types of
uncertainty to improve learning or to learn a risk-sensitive
policy. However, some papers are interested in both for
applications with discrete action spaces [21] [22] or to learn
a risk-sensitive evaluation metric [23]. In this paper, we
consider both uncertainties to design an uncertainty-aware
framework for risk-sensitive applications with continuous
action spaces. To the best of our knowledge, few papers deal
with both uncertainties to solve problems with continuous
action spaces. Perhaps most closely related is the work of
authors in [24] who also train multiple distributional critics

for risk-sensitive applications and for efficient exploration. As
a main difference, in this paper, we build our framework on
well known exploration methods that make use of ensemble
learning [18] and epistemic uncertainty [13] using UCB
(Upper-Confidence Bound) exploration technique. Further-
more, we propose to use noisy networks [25] to reduce the
number of trained neural networks in our framework.

III. PRELIMINARIES

We consider standard RL setting where the interaction of
an agent with an environment is modeled as an MDP defined
by a tuple (S,A, R, P, γ). Here, S, A denote the continuous
state and continuous action spaces respectively, R(s, a, s′) :
S ×A×S → R is the reward function, P (s′, a|s) : S ×A×
S → [0, 1] specifies the probability of transitioning to a state
s′ from state s and executing action a and finally γ ∈]0, 1]
is the discount factor.

We use DRL methods to model return distribution. For
a policy π, the return, Zπ(s, a) =

∑T
t=0 γ

tRt(s, a, s
′), is

considered as a random variable representing the sum of
discounted rewards observed after taking action a in state
s while following policy π. To learn the return distribution,
we exploit the distributional Bellman equation of returns for
policy evaluation:

T Zπ(s, a) = R(s, a, s′) + γZπ(s′, a′), (1)

where a′ is the optimal action from state s′ and the equality
is in the sense of probability laws.

We follow [6] and represent the return distribution through
its quantile function. Let F−1

Z denote the quantile function
of a random variable Z. By definition, F−1

Z (τ) = inf{z ∈
R : τ ≤ FZ(z)} where τ is the probability that Z takes on a
value less or equal to z and FZ is the Cumulative Distribution
Function (CDF) of Z. In the rest, we denote F−1

Z (τ) := zτ .
Given a state s and an action a, the action value distribution
is approximated by N quantile values zτ̂i assigned to τ̂i =
τi−1+τi

2 , for 1 ≤ i ≤ N where τi =
i
N . These quantile values

are estimated by training a neural network to minimize:

N∑
i=1

1

N

N∑
j=1

ρκτ̂i(R(s, a, s′) + γzτ̂j (s
′, a′)− zτ̂i(s, a)), (2)

where ρκτ is the quantile Huber loss with threshold κ,

ρκτ (u) = |τ − 1{u<0}|Lκ(u), (3)

with Huber loss,

Lκ(u) =

{
1
2u

2 if |u| ≤ κ,
κ(|u| − 1

2κ) otherwise. (4)

We leverage the quantile representation to compute risk
measures which map a real-valued distribution to a real
number and quantify the probability of occurrence of an
event away from the expectation [26]. Some well-known risk
measures used in risk-sensitive RL are variance, Value at Risk
(VaR) and CVaR [27]. In this work, we use the CVaR which

1430

represents the expected return we should experience in the
worst α% of cases defined as:

CV aRα = E[Z(s, a)|Z(s, a) ≤ zα], (5)

where α ∈ [0, 1] and zα denotes the α-quantile of the
distribution Z(s, a).

IV. METHOD

In this section, we introduce UA2-MDC (Uncertainty-
Aware Actor with Multiple Distributional Critics) a method
designed for RL problems with continuous action spaces. Our
approach effectively deals with both aleatoric and epistemic
uncertainties, enabling the learning of a risk-sensitive policy
and enhancing exploration efficiency. We use an actor-critic
architecture based on DDPG with a number of modifications:
i) using a noisy neural network for a unique actor, ii)
training M distributional critics to quantify both types of
uncertainties, iii) optimizing a risk-sensitive criterion to learn
a policy that prioritizes risk mitigation, and iv) employing
UCB exploration for efficient learning.

Each critic is denoted as {Zϕk
}Mk=1 where ϕk is the set of

parameters of the kth distributional critic while the actor is
denoted as µθ̃ where θ̃ is the set of noisy parameters.

A. Noisy Actor

Instead of training multiple actors, as commonly done in
ensemble RL methods, we suggest to train one actor that
uses a noisy network [25], denoted as µθ̃, with learnable
parameters θ̃. Noisy neural networks allow to model the
distribution of parameters by assuming they follow a normal
distribution, rather than learning single values. This approach
involves adding noise directly to the parameters (weights and
biases) of the actor, instead of injecting noise into the greedy
action recommended by the actor. As a result, for the same
input st, the output µθ̃(st) of the actor can vary at each
iteration, particularly during initial stages of training.

We suggest to use of a noisy neural network instead
of training M neural networks for several reasons. Firstly,
employing a noisy neural network helps to reduce the number
of parameters that need to be trained. This reduction in
parameters can lead to more efficient learning. Secondly,
the addition of parameter noise helps to enhance overall
performance and facilitate state-dependent exploration. By
introducing noise directly to the actor’s parameters, we
can encourage exploration in a more adaptive and effective
manner. Finally, in our method, as we handle continuous
action spaces, the noisy actor allows to generate a diverse
set of candidate actions, facilitating the application of UCB
in action selection (refer to Subsection IV-D).

B. Distributional Critics

To capture both aleatoric and epistemic uncertainties, our
approach relies on distributional critics. As mentioned pre-
viously, the distribution provides more informative insights
than the expected value alone and effectively models the
inherent randomness of returns. Additionally, ensemble meth-
ods are used to quantify the lack of knowledge about the

problem. In this work, we represent the return distribution
through its quantile function, following the approach pro-
posed in [6] as introduced in Section III. To learn quantile
values, we parameterize the quantile function through a
neural network Zϕ with learnable parameters ϕ. For each
state-action pair, the neural network outputs N quantile
values. We also use a target network with parameters ϕ′ to
compute quantile target values.

To train an ensemble of critics, we adopt the approach out-
lined in [18]. Each critic’s model is initialized independently
and randomly to introduce diversity among the models.
Furthermore, different samples are used to train each critic
separately. Specifically, for each critic k, after an experience
is played at time step t, a binary mask mt,k is generated
from a Bernoulli distribution of parameter p ∈]0, 1]. Each
bootstrap mask is associated to an experience to determine
whether parameters of critic k should be updated using the
played experience. Consequently, parameters {ϕk}k=1,...,M

are updated by taking gradient descent of the critic loss
function:

Lcritic(ϕk) = E(s,a,r,s′,m)∼DK
m×

N∑
i=1

1

N

N∑
j=1

ρκτ̂i(uij), (6)

with

uij = R(s, a, s′) + γzj(s
′, µθ̃′(s

′)|ϕ′
k)− zi(s, a|ϕk), (7)

where ρκτ is the quantile Huber loss and zj(s
′, µθ̃′(s′)|ϕ′

k)
represents the jth quantile target value computed using the
kth critic’s target network and the actor’s target network.
Each critic is trained on a batch DK of K experiences
(s, a, r, s′,m) drawn from an experience replay memory D.

C. Risk-Sensitive Policy

To train an agent to learn a risk-sensitive policy, we
consider the use of a different optimization criterion. We
denote the risk measure as ζ which represents a mapping
from return distributions to a real number. In this work,
we use the CVaR of returns. Unlike other risk measures,
the CVaR is a coherent risk measure that can capture the
tail risk which is crucial for capturing extreme events. In
addition, using the CVaR allows to control the desired risk
level through the choice of the CVaR level, enabling to adopt
a customized risk management strategy. We denote ζα the
CVaR of returns where α is a hyperparameter referring to
the CVaR level. The actor is trained to maximize the risk-
sensitive measure computed using all critics. The gradient of
the loss function of the actor network is computed as:

∇θ̃J(θ̃) = Es∼DK
∇θ̃(

1

M
×

M∑
k=1

ζα(s, µθ̃(s)|ϕk)), (8)

where ζα(s, µθ̃(s)|ϕk) is the CVaR of level α computed
using quantile values estimated by the kth critic.

1431

D. Uncertainty-Aware Agent and Action Selection

In addition to improving agent’s performances and reduc-
ing learning time, training multiple critics can quantify the
agent’s uncertainty. An uncertainty-aware agent can estimate
its lack of knowledge regarding a specific situation. The en-
semble of distributional critics can be leveraged for efficient
exploration based on epistemic uncertainty estimates. Instead
of exploring randomly, this uncertainty can guide the agent
to explore unknown situations with limited knowledge.

To achieve this, we adopt the concept of UCB, as demon-
strated in [13]. UCB is constructed by combining the em-
pirical standard deviation with the empirical mean of action
values computed using all critics. In our approach, the agent
exploits the action with the highest CVaR value, representing
the lowest risk, while also actively exploring actions where
critics produce high uncertainties:

at = argmax
a

ζmean
α (st, a) + λ× ζstdα (st, a), (9)

where λ ∈ R+ is a hyperparameter that controls the
degree of exploration. This encourages the exploration of
state-action pairs with high epistemic uncertainties by adding
an exploration bonus. UCB was initially proposed for ef-
ficient exploration in discrete action spaces. However, in
[14], authors adapted UCB for continuous action spaces by
generating multiple action candidates using separate actors
and critics trained with different agents. In our approach,
we leverage the capabilities of our actor, which employs a
noisy neural network capable of producing different values
for the same input, to generate action candidates. This allows
us to effectively apply UCB in the context of UA2-MDC.
The summarized algorithm for UA2-MDC can be found in
Algorithm 1.

Algorithm 1: UA2-MDC
Set M , T , α, λ, p, K, γ, N
Initialize noisy actor network µθ̃, M distributional critic
networks {Zϕk

}Mk=1, and target networks µθ̃′ , {Zϕ′
k
}Mk=1

Initialize experience replay memory D of size T
for episode = 1, 2, . . . do

episode starts at s1
for t = 1, 2, ... do

Create a set of M action candidates:
A = {at,k ∼ µθ̃(st), with k ∈ {1, . . . ,M}}
Select the action that maximizes the UCB:

at = argmaxa∈A ζmean
α (st, a) + λζstdα (st, a)

Execute action at and get next state st+1 and
reward rt+1

Sample bootstrap mask mt ∼ Ber(p)
Store experience (st, at, rt+1, st+1,mt) in D
Sample a random batch DK of size K from D
Update each critic according to (6)
Apply the gradient in (8) to update the actor
Soft update target networks

TABLE I
LANDING CONDITIONS DURING TRAINING.

Training scenarios
Wind power
values

[0, 5] [5, 10] [10, 15] [15, 20]

Turbulence
power values

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]

Proportion
of learning
conditions

50% 25% 12.5% 12.5%

V. EXPERIMENTAL RESULTS

To evaluate our approach, we compare multiple agents
using different methods: the first agent using DDPG, the
second agent using TD3 and the third agent using UA2-
MDC. Our method is designed to enable efficient learning
and risk-aware decision-making in continuous action spaces.
To demonstrate this, we train all agents in a risky environment
with variable conditions. We choose the Lunar Lander envi-
ronment available in gymnasium with wind effects applied
to the lander [28]. In order to simulate an environment
with diverse conditions and stochastic transition dynamics,
we introduce variable wind power levels across episodes
during the training process. Our main objective is to train
an agent to safely solve the Lunar Lander environment with
a variety of landing conditions that can occur over time. For
more details about wind effects, please refer to gymnasium
documentation. In Table I, we give more information on
wind power during training. For instance, 50% of training
episodes featured wind power levels ranging from 0 to 5,
coupled with turbulence power levels ranging from 0 to 0.5.
It is important to mention that all agents are trained on the
exact same conditions including wind power time appearance
during training. All hyperparameters used for UA2-MDC in
experiments are also listed in Table II.

We compare our method with DDPG and TD3 that are
usually used for continuous control tasks. In Fig. 1, we show
the progression of both collision and success rates throughout

TABLE II
HYPERPARAMETERS OF UA2-MDC.

Hyperparameter Value

Memory size (T) 1000000

Number of episodes 1000

Discount factor (γ) 0.99

Number of hidden layers (actor and critics) 2

Number of nodes (actor and critics) 256
Number of quantiles (N) 16

Activation function for hidden layers ReLU
Activation function for the output (actor) Tanh

Batch size (K) 128
Learning rate of the actor (β1) 0.0005
Learning rate of the critic (β2) 0.0005

Number of critics (M) 5
Degree of exploration (λ) 1

Binary mask probability (p) 0.75
CVaR level (α) 0.25

1432

0 200 400 600 800
Episodes

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
ra

te

DDPG
TD3
UA2-MDC

0 200 400 600 800
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s

ra
te

DDPG
TD3
UA2-MDC

Fig. 1. Learning curves for the Lunar Lander environment. Each learning curve is averaged over 5 different random seeds and shaded by the standard
deviation.

0 200 400 600 800
Episodes

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
ra

te

α = 1
α = 0.75
α = 0.5
α = 0.25

Fig. 2. Collision rate using UA2-MDC for the Lunar Lander environment
with different α values.

the training process. Collision rate is calculated by dividing
the number of episodes in which the agent crashes by the
number of played episodes, while the success rate indicates
the number of episodes in which the agent safely solves
the task divided by the number of played episodes. We use
the collision rate as a metric to assess performance under
risk, while the success rate serves as an indicator of learning
efficiency. We conducted simulations with 5 random seeds to
ensure meaningful results.

Results in Fig. 1 show that UA2-MDC (with α = 0.25)
outperforms both DDPG and TD3 to solve the Lunar Lander
environment under variable conditions. One notable advan-
tage of our method is its lower collision rate during training,
indicating a reduced number of failures encountered by the
agent in comparison to other methods when attempting to
solve the task. This advantage can be attributed to the
use of a risk-sensitive optimization criterion. Additionally,
UA2-MDC achieves a higher success rate and learns faster
than DDPG and TD3. By leveraging the benefits of state-

dependent exploration, as well as the advantages of DRL
and ensemble methods, UA2-MDC significantly improves
learning.

It is worth noting that the level of risk sensitivity can
be controlled through the hyperparameter α. In our UA2-
MDC approach, we trained several agents using different
CVaR values α. Fig. 2 illustrates the impact of varying this
hyperparameter on the collision rate during training. When
α = 1, the collision rate is similar to that achieved by TD3
(see Fig. 1), as it corresponds to maximizing the expectation
of returns.

The trained agents are then evaluated by attempting to
land in 100 episodes with variable landing conditions as in
training and 100 episodes with extreme landing conditions
characterized by maximum wind. Table III and Table IV
present performance metrics for each method, including the
average sum of rewards, the average number of steps to solve
the task, the number of crashes, the number of successful
landings across all episodes and the number of trained
parameters.

Overall, UA2-MDC needs fewer iterations for each landing
attempt and manage to keep the vehicle safe in all landing
conditions compared to other existing methods. Results pre-
sented in Table III demonstrate that our method successfully
finds a policy that offers a compromise between performance
and risk. It prioritizes vehicle safety in all episodes, ensuring
robustness and mitigating potential risks. Moreover, in the

TABLE III
PERFORMANCES WITH VARIABLE LANDING CONDITIONS.

Methods UA2-MDC Other methods
α = 0.25 DDPG TD3

Rewards 232 206 248
Steps 318 518 349
Crashes 0 3 8
Success 83 74 90
Parameters 413 449 137 475 206 340

1433

TABLE IV
PERFORMANCES WITH EXTREME LANDING CONDITIONS.

Methods UA2-MDC Other methods
α = 0.25 DDPG TD3

Rewards 214 171 190
Steps 307 616 437
Crashes 0 5 8
Success 78 57 73

most extreme conditions (as shown in Table IV), UA2-MDC
outperforms other existing approaches, showcasing its ability
to handle variability in the environment effectively. Our
method’s ability to anticipate variability in the environment
contributes to its significant advantage, especially in safety-
critical systems. It is worth noting that all methods encoun-
tered these extreme conditions in less than 12.5% of their
training episodes, highlighting the robustness of the learned
policy by the agent.

VI. CONCLUSION

This work introduces UA2-MDC an uncertainty-aware
agent designed for risk-sensitive applications in continuous
action spaces. Our method is an off-policy actor-critic algo-
rithm that effectively utilizes both epistemic and aleatoric
uncertainties to learn a risk-sensitive policy efficiently. In
comparison to DDPG and TD3, our approach demonstrates
superior performance in a modified version of the Lunar
Lander environment, particularly under extreme landing con-
ditions. Our method not only outperformed other approaches
in terms of learning speed and effectiveness but also inte-
grates risk considerations into the decision-making process,
establishing its relevance for real-world applications.

However, it is important to note that quantifying both
types of uncertainty in our proposed method requires more
computational resources and a larger number of parameters
to train compared to DDPG and TD3. Furthermore, given
the limited availability of risky environments with diverse
conditions in continuous action spaces, our approach was
primarily evaluated in a single environment. To validate the
effectiveness of our approach, further evaluation in future
environments with similar conditions would be beneficial.

REFERENCES

[1] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[3] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[4] O. Lockwood and M. Si, “A review of uncertainty for deep reinforce-
ment learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 18, no. 1, 2022,
pp. 155–162.

[5] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional per-
spective on reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2017, pp. 449–458.

[6] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional
reinforcement learning with quantile regression,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[7] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile
networks for distributional reinforcement learning,” in International
conference on machine learning. PMLR, 2018, pp. 1096–1105.

[8] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
D. Tb, A. Muldal, N. Heess, and T. Lillicrap, “Distributed distributional
deterministic policy gradients,” arXiv preprint arXiv:1804.08617,
2018.

[9] Y. C. Tang, J. Zhang, and R. Salakhutdinov, “Worst cases policy
gradients,” arXiv preprint arXiv:1911.03618, 2019.

[10] R. Singh, Q. Zhang, and Y. Chen, “Improving robustness via risk averse
distributional reinforcement learning,” in Learning for Dynamics and
Control. PMLR, 2020, pp. 958–968.

[11] N. A. Urpı́, S. Curi, and A. Krause, “Risk-averse offline reinforcement
learning,” arXiv preprint arXiv:2102.05371, 2021.

[12] X. Ma, L. Xia, Z. Zhou, J. Yang, and Q. Zhao, “Dsac: Distribu-
tional soft actor critic for risk-sensitive reinforcement learning,” arXiv
preprint arXiv:2004.14547, 2020.

[13] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, “Ucb exploration
via q-ensembles,” arXiv preprint arXiv:1706.01502, 2017.

[14] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel, “Sunrise: A simple uni-
fied framework for ensemble learning in deep reinforcement learning,”
in International Conference on Machine Learning. PMLR, 2021, pp.
6131–6141.

[15] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor,
“Uncertainty-aware action advising for deep reinforcement learning
agents,” in Proceedings of the AAAI conference on artificial intelli-
gence, vol. 34, 2020, pp. 5792–5799.

[16] B. Lütjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 8662–8668.

[17] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-
aware reinforcement learning for collision avoidance,” arXiv preprint
arXiv:1702.01182, 2017.

[18] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” Advances in neural information processing
systems, vol. 29, 2016.

[19] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized ensembled
double q-learning: Learning fast without a model,” arXiv preprint
arXiv:2101.05982, 2021.

[20] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka,
“Dropout q-functions for doubly efficient reinforcement learning,”
arXiv preprint arXiv:2110.02034, 2021.

[21] W. R. Clements, B. Van Delft, B.-M. Robaglia, R. B. Slaoui, and
S. Toth, “Estimating risk and uncertainty in deep reinforcement learn-
ing,” arXiv preprint arXiv:1905.09638, 2019.

[22] H. Eriksson, D. Basu, M. Alibeigi, and C. Dimitrakakis, “Sentinel:
taming uncertainty with ensemble based distributional reinforcement
learning,” in Uncertainty in Artificial Intelligence. PMLR, 2022, pp.
631–640.

[23] G. Liu, Y. Luo, O. Schulte, and P. Poupart, “Uncertainty-aware
reinforcement learning for risk-sensitive player evaluation in sports
game,” Advances in Neural Information Processing Systems, vol. 35,
pp. 20 218–20 231, 2022.

[24] T. Kanazawa, H. Wang, and C. Gupta, “Distributional actor-critic
ensemble for uncertainty-aware continuous control,” in 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2022,
pp. 1–10.

[25] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin et al., “Noisy networks
for exploration,” arXiv preprint arXiv:1706.10295, 2017.

[26] G. Szegö, “Measures of risk,” Journal of Banking & finance, vol. 26,
no. 7, pp. 1253–1272, 2002.

[27] R. T. Rockafellar, S. Uryasev et al., “Optimization of conditional value-
at-risk,” Journal of risk, vol. 2, pp. 21–42, 2000.

[28] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

1434

