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Abstract—Edge computing offers cloud-like services closer to
users and IoT devices, providing high speed and accessibil-
ity for network users. Edge computing, often called Mobile
Edge Computing (MEC), is a distributed paradigm that uti-
lizes heterogeneous computational and storage resources with
well-provisioned capabilities rather than relying on the ample
resources of the cloud. In addition, edge users usually refer
to portable and mobile devices that connect to and disconnect
from the network at will. Therefore, scheduling tasks at the
appropriate time and allocating the right resources can be
modeled as a multi-objective optimization problem in MEC.
Moreover, each task has specific requirements, further adding
to the complexity of the optimization problem. In this study,
we formulate the scheduling problem as a Markov Decision
Process (MDP) to schedule the tasks. The learning time of the
task scheduler is minimized when it faces new users and edge
servers. Subsequently, we employ the Q-learning (QL) algorithm
from the Reinforcement Learning (RL) paradigm to address
the optimization problem and effectively adapt the proposed
scheduler to the dynamic nature of MEC. Accordingly, we
designed the valid state space, action space, and reward function
with appropriate conditions and proper rewards for the proposed
QL-based technique. We conducted comprehensive experiments
to validate the results of the proposed solution, taking into
account the inherent randomness of the QL-based technique. The
experimental results demonstrate that the proposed technique
achieves the lowest learning time compared to Deep learning-
based and Deep RL-based approaches. Furthermore, on average,
the proposed technique obtains a 72% faster runtime compared
to previous works, using 58% fewer computation cycles and 50%
less memory. These improvements make the proposed approach
an efficient and lightweight task scheduler for MEC.

Index Terms—Edge Computing, Mobile Edge Computing,
Machine Learning, Reinforcement Learning, Task Scheduling,
Markov Decision Process.

I. INTRODUCTION

The quick progress in data processing and transmission
technologies has enabled the development and deployment
of mobile and Internet of Things (IoT) applications with
bandwidth-intensive, computational-intensive, data-intensive
(BCD-intensive), and strict Quality of Service (QoS) re-
quirements [1]. The applications are implemented in diverse
domains, such as entertainment, healthcare, vehicular, satellite,
and industrial sectors, consisting of various devices, including
sensors, actuators, smartphones, and tablets [2]. Despite the
intensive demands of the applications, the devices that im-
plement them are limited by constrained hardware resources,
including processing power, memory capacity, and battery
capacity [3]–[5].

The reasonable response to the limitations of device re-
sources is to offload tasks to servers that have sufficient
resources; thus, the initial solution was to utilize cloud servers.
While cloud computing provides abundant computation power
and memory capacity, the collaboration between devices and
cloud can lead to network congestion and high transmission
delays. This is primarily due to the fact that modern IoT
and mobile applications generate an equal or even greater
amount of data compared to what they consume [6]. In addi-
tion, Cisco has forecasted that the number of connected IoT
devices will surpass 100 billion by 2030 [7]. As a result, data
communication is expected to become a significant concern for
networks. Furthermore, delays and jitters in Wide Area Net-
works (WANs) pose significant obstacles to the transmission
of data for IoT and mobile applications. In fact, controlling
delays in WANs is a significant challenge [8]. Finally, specific
applications demand cost-effective services that may exceed
affordability when utilizing cloud computing.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 539



Moreover, data security is the primary concern in healthcare
and financial applications. Device-cloud collaboration can
potentially lead to data exposure because the cloud is a public
and long-distance service [9]. Mobile edge computing (MEC),
in contrast, offers computational and memory facilities in
proximity to users and devices. Consequently, data-sensitive
applications can be processed by local edge servers instead
of being offloaded to a public or long-distance cloud servers.
In addition to the aforementioned data-sensitive applications,
there are also time-sensitive applications, such as autonomous
vehicles, that rely on consistent response times and real-time
processing. However, cloud servers are located at a lengthy
distance away from autonomous vehicles, which can result
in latency in their data processing [10]. Therefore, a rational
solution would involve leveraging road-side units (RSU) as
edge servers to enable MEC and provide processing re-
sources in close proximity to autonomous vehicles. Regarding
bandwidth-intensive applications and systems, such as artifi-
cial intelligence-powered surveillance cameras, the application
might experience adverse impacts due to the increased time
needed to transmit data to the cloud [11]. Nevertheless, MEC
provides processing and memory services near end-user and
IoT devices. Accordingly, leveraging MEC can potentially
decrease data transmission overhead in the network, thereby
improving users’ QoS and Quality of Experience (QoE) [12].
Hence, MEC allows users to run BCD-intensive applications
with stringent computation, storage, latency, and security re-
quirements [13]. Finally, MEC offers secure processing of
sensitive data, facilitates reliable response times, improves
accessibility to remote applications in geographically distant
locations, and minimizes internet bandwidth usage.

MEC is delivered to end-users and IoT devices through
various communication infrastructures, such as Base Stations
(BS), Rpi, Macro-cell Stations (MS), Access Points (AP),
Femtocells, and RSUs [10]. Whilst the cloud predominantly
comprises homogeneous computation and storage elements,
the edge servers are characterized by their heterogeneous
processing units, such as Central Processing Unit (CPU),
Graphics Processing Unit (GPU), Digital Signal Processor
(DSP), and Field Programmable Gate Arrays (FPGA) [14].
Additionally, MEC involves resource units that are geograph-
ically distributed across the network instead of the cloud’s
centralized resources. Furthermore, since the users of MEC
may move over the networks, the task scheduler should con-
sider the user’s mobility in its scheduling procedure. Thus, task
scheduling in MEC is defined as a multi-objective optimization
problem that is NP-hard [10]. As an optimization problem,
there are various methods for modeling it, including Mixed In-
teger Programming (MIP), Integer Linear Programming (ILP),
Mixed Integer Linear Programming (MILP), Mixed Integer
Non-Linear Programming (MINLP), Lyapunov, Markov De-
cision Process (MDP), and Game Theory [10], [14]. Conse-
quently, the task scheduler technique aims to maximize the
optimization goal defined in the problem model. Finally, the
study makes the following contributions:

• This paper clarifies the three-layer MEC network archi-
tecture, explains reinforcement learning, and comprehen-
sively reviews task scheduling techniques in MEC.

• A task scheduling technique based on Q-learning is
proposed to address the optimization problem formulated
by MDP. The number of default state spaces in the
Q-learning technique has been reduced to expedite the
proposed task scheduler and minimize learning time,
computation cycles, and memory usage.

• The proposed task scheduling technique is evaluated
alongside previous works and is assessed based on differ-
ent criteria, such as scheduling processing time, required
computation cycles, and memory usage.

The rest of this paper is structured as follows. Section 2
provides an overview of current task scheduling techniques
in MEC, while Section 3 explains the proposed solution. The
experimental results of the proposed and previous works are
presented in Section 4. Finally, Section 5 concludes the study
and highlights the research opportunity for future work.

II. BACKGROUND REVIEW

Network computing is comprised of three major layers,
including cloud, edge, and users, which is depicted in Fig. 1
[13]. The cloud layer possesses ample computation and storage
resources; thus, the cloud is a reliable solution for enterprise
and large-scale applications. The geographical distance be-
tween users and the cloud leads to data transmission overheads
and delays. As a result, the cloud requires assistance to fulfill
the QoE and QoS requirements of BCD-intensive applications
in the network.

The edge layer comprises geographically distributed com-
munication infrastructures and processing resources in the
three-layer MEC network architecture. The edge is positioned
between the cloud and users, serving as a connection point that
helps reduce data transmission overhead by providing compu-
tation and storage resources for users. Moreover, the user layer
contains diverse users with different software, hardware, and
requirements. Although each user or device possesses local
computation and storage resources, these resources are limited
and dependent on constrained battery capacity and power
availability. Accordingly, offloading tasks for processing to
either the edge or cloud server could be a reasonable and
practical solution for meeting the QoS and QoE requirements
of users.

Reinforcement Learning (RL) is a machine learning (ML)
algorithm in which an agent learns how to act in a given
environment by receiving rewards or punishments as signals
for positive or negative actions. The ultimate goal of the
agent is to maximize the cumulative reward over time [15].
The agent learns which action should be taken next time,
depending on the rewards or punishments it receives. Each
RL algorithm consists of several fundamental components, as
outlined below:

• Input: The input should represent the starting point for
the model.
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Fig. 1: Three-layer MEC network architecture. The Users layer
consists of IoT devices with restricted resources, including
computation, memory, and power capacity. The Edge layer
comprises diverse edge servers located near the IoT devices,
but they have limited resources compared to Cloud. The Cloud
offers ample resources despite being located far from IoT
devices.

• Output: There are a variety of solutions to a particular
problem due to multiple existing possible solutions.

• The output of the defined model is a state resulting from
training, and the user decides to provide a negative or
positive reward to the model derived from the output.

• The model contains training, and then the best solution
is decided based on the maximum reward.

• The model contains training, and then the maximum
reward determines the excellent solution.

III. RELATED WORK

The methods from related works are categorized into three
subsections: heuristic algorithms, meta-heuristic algorithms,
and AI-based methods.

A. Task Scheduling Using Heuristic Algorithms

A heuristic ranking-based task scheduler named COFE is
introduced in [16], which considers task dependency for exe-
cuting the tasks in the workloads and applications. COFE of-
floads the tasks on both Edge servers and Cloud. COFE’s task
scheduling algorithm aims to minimize the average makespan.

In [17], Task Continuation Affinity (TCA) is a heuristic-
based task scheduler aiming to arrange each task in close
proximity to its immediate predecessor. Furthermore, Most
Powerful CPU (MPCPU) is another algorithm heuristic that
assigns tasks to the processor with the most computing power.

Wu et al. [18] scheduled the tasks of vehicles over MEC
using a combination of the greedy algorithm and tabu search
algorithm. Indeed, minimizing the response time is the goal
of the optimization problem in [18]. Moreover, the tasks
and Edge servers modeled as Poisson stream and the M/M/1
queuing system, respectively.

The authors of [19] proposed a method to schedule tasks
by considering the tasks’ dependencies in a Directed Acyclic
Graph (DAG). Therefore, they proposed a heuristic scheduling
algorithm anointed CaGTS, which aims to minimize the delay
of task response. In addition, in [19], a fault-tolerant task
scheduling algorithm called DaTR was designed to reschedule
the tasks when an edge server fails.

Liu et al. [20] proposed a priority-aware scheduling algo-
rithm by taking into account tasks’ dependencies in vehicular
edge computing (VEC). The objective of their technique is
to minimize the average completion time of the tasks, and
they employed RSU as edge servers and offloaded the tasks
of vehicles to them.

B. Task Scheduling Using Meta-Heuristic Algorithms

The proposed multi-objective optimization model [21],
called OWPSO, which stands for Opposition-Based Whale
Optimization Algorithm with Particle Swarm Optimization to
model NP-hard cloud task scheduling problem.

Saravanan et al. [22] presented an Improved Wild Horse
Optimization (IWHO) to address the long scheduling time,
costly consumption, and the application with high QoS and
QoE requirements in cloud computing task scheduling.

Alboaneen et al. [23] addressed joint task scheduling and
virtual machine placement (JTSVMP) problems in cloud com-
puting networks. With regard to capacity restrictions in cloud
data centers, the presented co-optimization process allocates
the chosen virtual machines to the most heavily used physical
host while scheduling jobs with the lowest execution costs.

C. Task Scheduling Using AI-based Algorithms

Gao et al. [24] proposed a deep reinforcement learning
(DRL) based approach for the task scheduling problem in
mobile blockchain networks for IoT applications installed at
Small-cell Base Station (SBS). The objective is to maximize
SBS’s long-term mining reward while reducing resource costs.

Tang et al. [25] proposed an AI-based method, a container-
based task scheduling method in cloud-edge computing envi-
ronments. The suggested methodology utilizes a multi-criteria
method and a priority-based greedy outline to specify the best
container to implement a task based on response time, power
consumption, and cost of executing the task.

Zhan et al. [26] used the concept of DRL in a VEC
scheduling problem for compute offloading. The presented
model is based on a Markov decision process and the proximal
policy optimization algorithm to optimize the scheduling of
tasks.

In [27], a distributed deep learning-based scheduling algo-
rithm is proposed, called DDLO, to optimize energy conser-
vation and QoS. The optimization problem is formulated as a
MIP problem. Since the dimension of the considered problem
is high, the authors of [27] distribute the deep learning-based
solution. Consequently, several parallel Deep Neural Networks
(DDN) are utilized to solve the decision-making of binary
offloading in MEC. In addition to parallel DDNs, a shared
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memory is implemented to accelerate the training phase of
DNNs.

Huang et al. [28] suggested a scheduling technique founded
upon a Deep Reinforcement Learning algorithm named DROO
to schedule the tasks in MEC. The total goal is to improve
the data processing capacity of low-power networks like the
IoT. The proposed method uses a binary offloading procedure
to solve combinatorial optimization problems by immediately
adjusting decision-making about offloading the tasks to the
suitable edge server and allocating the wireless resources
regarding the dynamic wireless channel conditions over time.
It reduces the need to solve combinatorial optimization prob-
lems. Then, it could decrease the computational complexity,
especially in high-demanding networks.

IV. PROPOSED TASK SCHEDULING MODEL

Q-learning (QL) is a commonly utilized model-free RL
algorithm that employs a table called the Q-table. This table
is gradually updated during the learning procedure to store
estimated future rewards when transitioning from a “current
state” to the next state using a selected action [29]. Con-
sidering the complexity of task scheduling in MEC, which
encompasses numerous potential server allocation solutions,
we propose a method for task scheduling based on QL. The
QL-based approach leverages the capabilities of QL to handle
complex and dynamic environments effectively. Inspired by
the earliest deadline first (EDF) scheduling algorithm for real-
time systems, we adopt the rule of prioritizing tasks with the
closest deadline as high-priority in the proposed task scheduler.

MDP is a mathematical framework used to simulate
decision-making scenarios where the outcome of an action
depends on both the agent’s state at the time of the action and
its current state. QL models can effectively address various
decision-making problems, especially those characterized by
extensive state and action spaces. Therefore, the proposed
problem is formulated as a MDP due to the numerous potential
solutions involved in task scheduling.

A. Proposed priority-based Q-learning (QL)

1) Define the State Space by Priority Consideration: The
problem is defined with a set of n tasks, represented by
{T1, T2, ..., Tn}, which can be requested by a group of m
users {U1, U2, ..., Um} to be executed on one or more different
edge servers. The edge server will be allocated from a pool
of available servers, denoted as {S1, S2, ..., Sk}, ensuring that
the selected server can fulfill the operational requirements of
each task.

As a preliminary step, we must generate the state spaces
of the QL-based method, composed of potential permutations
of binary offloading decisions. Accordingly, each state is
represented by a binary matrix with m rows and k columns;
each cell of the decision matrix shows which server is allocated
to a requested task. As shown in Eq. (1), this is a decision
matrix, T1 and T3 are allocated to S2 and S1, respectively.

Definition 1 :

S1 S2

T1

T2

T3

T4


0 0
0 1
1 0
0 0

 (1)

2) Actions – Choosing Next State: The agent takes an
action based on a randomly generated number at each step.
If the generated random number is below “0.9”, the agent
selects the state with the highest reward from the Q-table.
Nonetheless, if the generated random number is higher than
“0.9”, the agent randomly selects the next state. The Q-table is
initialized with “zero” values at the beginning of the learning
process.

3) Estimating Reward Value: After selecting the next state
at each learning round, the reward value would be updated
based on the conditions below:

• In the stage where the “next state” causes the edge servers
to transition into an “idle” state, the agent receives the
highest negative reward, as depicted in Eq. (2). Conse-
quently, the episode concludes with a “GAME OVER”
message.

new reward = total reward − ((k × (n× k))n) (2)

• If the agent assigns task Ti to server Si or task Tj to
server Sj in the current state and reassigns them to server
Sj and Si, respectively, a negative reward is incurred.
This transition involves the transmission of tasks from
one server to another, resulting in data transmission,
bandwidth overhead, preempting task execution, and ad-
ditional caching and queuing processes.

new reward = total reward − (k × (n× k)) (3)

• If the next state is equal to the current state while there
exists “execution time” for the assigned tasks, then the
agent receives the positive reward.

new reward = total reward + (k × (n× k)) (4)

• As much as the servers are allocated to the tasks, it gets
more positive rewards.

new reward = total reward + (k × (n× k)) (5)

In the following, Q-table updates regarding “current state”,
“next state”, and new reward value using the equation Eq. (6):

Q table[Sc, Sn]+ =

α× (r + γ ×max(q table[Sn])− q table[Sc, Sn])) (6)

where:
• “Q table[Sc, Sn]” is the updated reward value upon

reaching the next state, denoted as Sc, through the
transition from the current state, represented by Sc.

• “α” is the learning rate that specifies the weight assigned
to the new reward in contrast to the previous reward.
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• “r” is the reward received after moving to the chosen
next state.

• “γ” is the discount factor, which regulates how much
importance is placed on future rewards in comparison to
present rewards.

4) Proposed Accelerating for QL-based Task Scheduling:
The abundance of state spaces can decrease the speed of
the learning process or require substantial memory allocation
when utilizing the QL-based method for solving large-scale
problems. This is because QL is one of the RL algorithms
where the number of state spaces significantly increases as the
number of variables rises. Since a state space is represented
by a matrix, as the variables of the RL algorithm increase, the
size of the matrix also grows. Furthermore, as the number of
variables in the RL algorithm increases, the abundance of state
spaces will also increase because the number of state spaces
equals the possible variations of the variables.

For example, the number of all possible state spaces in with
four users and one server is 16 = (21×4), and a 1× 4 matrix
represents each state space. Moreover, a network with four
users and two servers would have 256 = (22×4) state spaces,
each of which is a 2 × 4 matrix. Consequently, the learning
process would be faster with 16 state spaces rather than 256
state spaces. In addition to the number of state spaces, the
state space’s size also impacts the learning process’s pace.
Therefore, eliminating the invalid, repeated, or any state spaces
that can be deleted would accelerate the QL-based algorithm.

As displayed in Fig. 2, we are implementing the following
steps to accelerate the proposed task scheduling technique:

• We eliminate all the state spaces that only offload tasks to
a single server when we have two or more servers in the
edge network. Additionally, this elimination is beneficial
for load balancing, as the proposed method aims to utilize
all the available servers in the edge network instead of
leaving one or more servers idle while overloading the
others.

• We eliminate the state spaces when a task is partitioned
and offloaded to two or more servers because this would
prevent the other tasks from being served, as a single task
occupies all the servers.

• In the interest of both acceleration and prioritization,
we only consider m (i.e., m refers to the number of
edge users in a network) tasks with the earliest deadlines
among all tasks at each step of scheduling. Therefore,
the proposed technique does not consider all tasks in
gigantic matrices; instead, it divides the tasks and then
constructs the matrices and state spaces. For instance,
we consider a network with two servers and five users,
each of whom has five tasks. Instead of representing the
state spaces with 25×2 matrices, our proposed technique
considers 5× 2 matrices. At each step of scheduling, our
technique only takes into account the five earliest deadline
tasks. Consequently, computing and handling the 5 × 2
matrices is more straightforward than dealing with the
25× 2 matrices.

Fig. 2: Workflow of the proposed technique’s acceleration
steps.

B. Architecture

Although the MEC network architecture consists of cloud,
edge, and user layers, as illustrated in Fig. 1, the proposed
scheduling technique, called the priority-based QL technique
(PBQ), takes into account user-edge collaboration. PBQ sched-
ules the tasks of users based on the number of available edge
servers. Hence, PBQ can incorporate new edge servers into
its scheduling procedure parameters as soon as they join the
network or become available for serving. In contrast, previous
works can only handle a single edge server, such as DDLO
[27] and DROO [28]. In addition, the task schedulers in MEC
offload the tasks utilizing two primary methods: binary and
partial. These methods are employed for scheduling tasks on
servers within MEC. In binary, the user offloads entire tasks to
the edge server; conversely, the user intends to offload some
of its tasks to the edge server and execute the remaining tasks
using local resources [10]. PBQ is designed and implemented
to schedule the tasks in a binary manner; thus, all the users’
tasks must be executed on Edge servers.

V. EVALUATION

A. Dataset

To the best of our knowledge and regarding the state-
of-the-art, there is no widely-used dataset and a standard
benchmark for evaluating task scheduling algorithms in MEC.
Consequently, we produce a dataset comprising the indexes
of users, the execution time (ci) that each task needs to be
completed, and the deadline (di) for each task. Indeed, the
amount of required process time by each task (τi) is called
task utilization (ui) and is obtained by Eq. (7).

ui =
ci
di

(7)
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A set of tasks is feasible to be executed entirely if the sum of
all tasks’ utilization becomes lower or equal to the number of
servers, which is indicated by Eq. (8) [30].

U =

n∑
i=0

ui (8)

U =

{
(U ≤ k) feasible
(U > k) infeasible

Accordingly, we adhere to the feasibility rule in producing the
tasks’ parameters in our dataset. As a result, all of our datasets
for the 24, 48, and 96 tasks are entirely feasible.

B. Implementation
In this section, The effectiveness of the proposed model is

assessed and compared to two other task scheduling methods,
DDLO [27] and DROO [28], in MEC networks. We considered
the same implementation conditions to compare algorithms in
a fare setting. The implementation environment was Google
Colab, a virtual machine environment to run our Python codes.
The allocated memory was 12 GB, and an Intel Xeon CPU
with 2.20 GHz frequency.

TABLE I: Duration of PBQ Learning Process for 31 Indepen-
dent Scheduling Rounds. The PBQ is a QL-based technique
that learns by making stochastic-based decisions. Statistical
analyses demonstrate that the 31 independent runs would be
sufficient to ensure reliable results.

Execution Round
Scheduling Process (seconds)

24 Tasks 48 Tasks 96 Tasks
1 Server 2 Servers 1 Server 2 Servers 1 Server 2 Servers

1 772.18 112.92 2403.84 166.74 1619.02 315.22

2 987.37 106.71 3593.38 195.7 2722.01 266.3

3 1120.61 81.03 2201.19 147.36 2579.61 382.46

4 1766.8 84.15 3361.45 131.07 2786.19 307.81

5 1163.95 89.07 1368.31 131.16 2992.64 213.79

6 356.3 112.34 1182.795 100.59 3930.66 330.26

7 1517.84 91 1973.44 158.53 4176.3 340.65

8 1471.22 81.09 2945.48 190.82 4240.91 399.39

9 1856.75 82.09 1871.2 101.43 3598.52 293.36

10 814.13 53.83 2259.39 130.61 3925.08 259.06

11 804.41 123.34 1777.69 133.01 3430.33 443.26

12 779.43 78.5 2419.53 134.94 3227.23 384.8

13 966.02 60.7 2000.62 156.05 3998.82 256.86

14 405.93 65.86 1343.62 216.04 2374.61 345.07

15 445.57 83.16 3263.64 164.35 1993.46 330.57

16 733.9 78.11 1543.78 142.07 3185.83 294.03

17 949.72 126.94 3260.79 159.75 3490.27 385.54

18 1539.35 49.3 2335.29 153.77 4046.78 317.71

19 1393.58 76.29 1913.99 157.35 2130.13 212.71

20 1652.37 131.05 2655.29 225.41 2944.2 328.24

21 940.96 61.23 904.67 132.55 3674.31 313.76

22 985.43 76.56 2778.32 183.84 2643.03 373.93

23 730.16 46.4 1399.93 203.74 3536.76 295.04

24 1710.87 29.47 1226.39 156.89 4060.69 288.94

25 1058.81 70.4 583.08 220.35 2812.25 309.62

26 855.31 64.41 1329.21 223.69 2159 232.06

27 1259.54 122.27 1363.47 178.16 3216.87 300.8

28 1499.83 50.62 2089.51 121.52 2575.58 397.74

29 440.34 86.61 2466.39 120.74 3137.97 308.76

30 1076.21 92.05 2578.18 140.29 3289.98 308.76

31 630.9 63.37 1263.34 169.42 2711.56 280.22

Average 1054.38 81.64 2053.45 159.61 3186.38 316.67
Standard Deviation 421.69 25.43 772.05 34.58 648.11 54.91

C. Validation of Results

Since the proposed model selects the next resource alloca-
tion states stochastically, we run our model independently 31
times [31] to verify the validity of our results. Table I presents
the results of all 31 independent rounds of task scheduling for
24, 48, and 96 tasks. The average and standard deviation of 31
different scheduling independent rounds is calculated for all
number of tasks. Indeed, the standard deviation is calculated
to indicate the distribution of the results around the average
values.

According to Table I, PBQ is a scalable task scheduler
capable of handling any number of edge servers. This feature
gives PBQ a distinct advantage in load balancing compared to
other task scheduler techniques. Moreover, these advantages
contribute to improved algorithm’s runtime, computation cost,
and memory utilization compared to previous works.

The significant difference in learning time between PBQ
with one server and two servers lies in the size of the state
space matrix and the number of tasks executed in each step.
In particular, the scheduler executes the task of only one user
out of six at each step in a network with a single server.
However, employing two servers allows PBQ to schedule two
users in each step, thereby speeding up the execution of users’
tasks and reducing the learning procedure time. Nevertheless,
there is a balance between the number of servers added and
the speed of the learning process. Therefore, if additional
servers are added beyond a certain threshold, the network
will experience an increase in the duration of the learning
process instead of accelerating it. Moreover, as the network
adds more servers, it will encounter general issues such as
communication overhead, synchronization overhead, and load
balancing. These challenges are commonly faced in parallel
and distributed computing paradigms. In addition, PBQ will
specifically face issues related to a larger state space matrix,
resulting in more complex and time-consuming calculations
and increased memory overhead.

D. Parameter Setting and Experimental Results

We consider 24, 48, and 96 tasks with various deadlines and
execution times. We assume that six users have requested these
tasks, and there are two available edge servers in the network.
Furthermore, we executed the proposed model 31 times to
account for the stochastic nature of the proposed technique.
Subsequently, we computed the average of the results obtained
from these 31 iterations for comparison with other works.

One advantage of PBQ is its ability to scale smoothly with
respect to the number of users and edge servers in the network.
The state space matrix of PBQ expands both vertically and
horizontally as the number of users and edge servers changes,
respectively. As a result, PBQ is not limited to a specific
number of users and edge servers. Instead, it can handle User-
Edge collaborations with varying numbers of users and edge
servers. Consequently,

As illustrated in Fig. 3, PBQ improved the runtime of task
scheduling by approximately 77% and 78%, 55% and 53%,
and 26% and 17% in comparison to previous works DDLO
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Fig. 3: Runtime of Scheduling Algorithms. The runtimes of
all algorithms are recorded to compare the time it takes for
each algorithm to learn task scheduling for users. In contrast to
previous approaches, PBQ is a scalable technique capable of
handling multiple servers in MEC. Scalability is a significant
feature of an algorithm, particularly in the context of the
dynamic nature of the MEC paradigm.

and DROO with 24, 48, and 96 tasks, respectively, when
there is only one edge server in the network. In addition,
PBQ leverages its scalability and load-balancing features when
the network has more than one edge server. Consequently,
PBQ achieved improvements of over 98%, 95%, and 91%
compared to DDLO and DROO in scenarios involving 24,
48, and 96 tasks on the network with two servers. Indeed,
DDLO and DROO can only consider an edge network with
a single edge server, while PBQ can scale to manage varying
numbers of edge users and edge servers. Since we intentionally
eliminate invalid and unnecessary state spaces in the proposed
customized QL method, the state space of PBQ becomes
smaller and more efficient. Therefore, the PBQ can learn at a
faster rate, resulting in significant improvements in the runtime
of the algorithms when compared to DDLO and DROO.

Moreover, DDLO and DROO only support a single edge
server and are incapable of scheduling users’ tasks in sce-
narios where the edge network comprises multiple servers. In
contrast, PBQ is a scalable and flexible scheduling algorithm
that scales up and down based on the number of edge servers
and users. Indeed, one of the significant differences between
cloud and edge is that edge comprises multiple geographically
distributed servers with varying hardware features, whereas
cloud is a centralized computation paradigm that utilizes
centralized homogeneous resources. Accordingly, an effective
task scheduling technique in MEC must be capable of con-
sidering and managing multiple servers for task allocation.
Consequently, our experiments investigate the PBQ technique
by considering two servers for scheduling dataset tasks.

In addition to improving runtime, we also examine
hardware-related parameters such as computation cost and
memory usage to analyze the PBQ method compared to other
methods comprehensively. The computation cost refers to the
number of computation cycles an algorithm requires for its
execution. According to Fig. 4, PBQ requires the fewest

Fig. 4: Computing Cost of Scheduling Algorithms. MEC has
limited computational power compared to cloud computing.
Therefore, it is reasonable to consider the computational cost
of algorithms designed for MEC. Hence, a computationally ef-
ficient algorithm would be more practical. Consequently, PBQ
demonstrates superior computational efficiency compared to
previous works.

computation cycles; compared to DDLO and DROO, PBQ
reduces computation cycles by approximately 77% and 79%,
63% and 67%, and 27% and 36% in 24, 48, and 96 tasks,
respectively. Furthermore, PBQ consumes the least memory

Fig. 5: RAM Utilization of Scheduling Algorithms. There is
no memory pool in MEC, and memory crash is a challenge
for algorithms that consume a large amount of memory in
MEC. Thus, our intentional elimination in PBQ results in
fewer state spaces and a smaller Q-table, leading to lower
memory consumption.

compared to other methods by efficiently reducing the number
of state spaces, resulting in a smaller Q-table employed in the
learning process. As shown in Fig. 5, PBQ consumes 24% and
78%, 20% and 76%, and 25% and 77% less memory compared
to DDLO and DROO in 24, 48, and 96 tasks.
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VI. CONCLUSION

In this study, we have proposed a scalable QL-based algo-
rithm named PBQ for task scheduling in MEC networks. Our
purpose is to minimize scheduling time along with memory
consumption. Since we apply MDP method to find a sequence
of edge server allocation, creating state space of binary per-
mutations would consume a huge amount of memory. To
solve this issue, we employ a state filtering step to preserve
states which satisfy our predefined conditions. Then, we come
up with a priority-based task scheduling idea to accelerate
scheduling speed. In fact, at each step of task allocation,
we consider tasks with the earliest deadline. Moreover, we
define a customized reward function based on state trans-
action efficiencies. Finally, we compared PBQ with DDLO
and DROO scheduling methods. The experimental results
demonstrate that, on average, PBQ has achieved improvements
of 72.8% in runtime, 58.1% in computation cost, and 50% in
memory usage compared to other methods. Moreover, we ran
PBQ 31 times to check the validity of the proposed model,
considering its stochastic nature. In the future, we intend
to utilize Deep Q-learning for task offloading and consider
more users and edge servers for scheduling problems. We
also plan to take into account additional factors, including
various device types, network connectivity, and user workload
on the user and edge server sides. These extra works will give
work scheduling decisions more accurate information and help
maximize system performance.
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