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Abstract—An increasing number of Intrusion Detection Sys-
tems (IDSs) rely on Artificial Intelligence (AI), specifically Ma-
chine Learning (ML) algorithms, to distinguish between benign
and malicious data and detect cyber attacks. However, using
ML algorithms exposes IDSs to Adversarial Machine Learning
(AML) attacks during the training and test phase. These AML
attacks aim to deceive ML algorithms by misclassifying data,
posing significant disruptions to the system and its users. Two
critical categories of AML attacks are White-box and Black-
box attacks, with Black-box attacks being more practical and
representative of real-world scenarios. This paper investigates the
impact of adversarial examples on supervised ML models in IDSs
and proposes an ensemble learning-based detection approach.
The study uses a power system dataset and employs Random
Forest, AdaBoost, and Decision Tree classifiers to achieve this.
During the test phase, adversarial examples are generated using
the decision boundary and HopSkipJump attacks, two types
of Black-box decision-based attacks. The research applies a
deep neural network to the dataset containing the generated
adversarial examples to detect these AML attacks, achieving an
accuracy of 98% to 99%.

Index Terms—Adversarial Machine Learning attacks,
Decision-based attacks, Industrial Control Systems, and
Intrusion Detection systems.

I. INTRODUCTION

Industrial Control Systems (ICSs) play a critical role in
infrastructures like transportation, healthcare, power grids,
and water plants. Given their interconnectedness through net-
works, ICS assets are susceptible to cyber-attacks, posing
risks to operations and consumers [1]. To address this, In-
trusion Detection Systems (IDSs) have been integrated into
ICSs to detect anomalies and malicious events. Leveraging
Artificial Intelligence (AI) techniques like machine learning
(ML) algorithms can enhance IDSs’ ability to distinguish
malicious behavior. However, ML algorithms are vulnerable to
Adversarial Machine Learning (AML) attacks, where attackers
perturb datasets during training or testing to evade detection
and cause misclassification of critical events like cyber attacks
in IDSs. Thus, designing robust IDSs that can withstand AML
attacks is essential [2], [3].

AML attacks can be categorized based on their charac-
teristics [4]. They fall into targeted and untargeted settings,
depending on whether the objective is to misclassify data
points to a specific class or any classes except the original
target class, respectively. Another classification is based on
the attackers’ accessibility to the model parameters, leading

to two main groups: black-box attacks (only access to model
outputs) and white-box attacks (complete knowledge of the
model). These attacks can also be further divided into targeted
and untargeted settings.

Black-box attacks are regarded as more sophisticated and
representative of real-world scenarios, making their detection
a critical concern. Identifying and mitigating such attacks is
of paramount importance in the field of machine learning
security.

Motivated by the threat of such sophisticated attacks, this
paper aims to evaluate machine learning algorithms’ robust-
ness in the presence of decision-based AML attacks. Then,
apply ensemble adversarial training to defend against such
attacks in this context. The contributions of this paper are as
follows:

• The paper implements two classes of decision-based
attacks, namely the Decision Boundary Attack and Hop-
SkipJump attack, during the test phase to evaluate the
performance of the classifiers under consideration.

• A specially tuned deep learning neural network as an
ensemble learning algorithm has been proposed. This
ensemble approach effectively handles newly labeled
datasets and detects AML attacks more accurately.

• The proposed algorithm is trained by various scenarios
of generated adversarial attacks to enhance its robustness
against this class of AML attacks.

The paper is structured as follows: Section II presents a
brief review of related works. Section III provides an in-depth
introduction to decision-based attacks. Section IV explains the
methodology used in this study. In Section V the results of
applying decision-based attacks to various ML algorithms. The
paper concludes in Section VI with a summary and mentions
potential future research to enhance this study.

II. LITERATURE REVIEW

AML attacks are classified into two main groups: black-box
and white-box attacks. In the white-box attack scenario, also
known as gradient-based attacks, adversaries exploit the gra-
dient of the loss with respect to the model input. Conversely,
black-box attacks, called gradient-free attacks, do not rely on
gradient information. An overview of existing AML attacks is
provided in Table I.

In the black-box category, attacks are divided into score-
based and decision-based attacks. Score-based attacks lever-
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TABLE I
ADVERSARIAL MACHINE LEARNING ATTACKS.

White-box Black-box
Score-based Decision-based

Targeted L-BFGS-B [5] Zoo [7] Decision
JSMA [6] Boundary [8]

Untargeted FGSM [10] Local HopSkipJump [9]
DeepFool [11] Search [12]

age access to the model’s prediction probabilities. Examples
include the Zoo attack [7] in the targeted setting and Local
Search [12] in the untargeted setting.

On the other hand, decision-based attacks involve adver-
saries who only know the model’s predicted labels (i.e.,
the final decision). Some previous works have attempted to
design black-box attacks similar to decision-based attacks,
but these often required knowledge of data distribution or
involved substantial perturbations [13], [14]. Addressing this
limitation, the decision boundary attack was introduced in [8],
which is a pure decision-based attack. This iterative algorithm
rejects samples initialized in the target class and generates
perturbations from the required distribution to minimize the
distance from the original input. However, this attack requires
numerous model queries. To enhance query efficiency, re-
searchers in [9] proposed the HopSkipJump attack, a query-
efficient decision-based attack that optimizes the minimum
l2 norm distance without relying on additional transferability
assumptions.

Several approaches have been introduced regarding defense
against AML attacks, such as adversarial training, ensemble
adversarial training, defensive distillation, and stateful detec-
tion [10], [16]–[18], which are commonly used to defend
against white-box attacks. However, it is essential to note that
these defenses have less impact on black-box attacks, particu-
larly decision-based ones. Defensive distillation, for example,
was examined against the decision boundary attack in [8] and
found ineffective. This paper uses ensemble learning [16] as a
defense mechanism against decision-based adversarial attacks.

In the context of Industrial Control Systems (ICSs), sig-
nificant research has been conducted to empower Intrusion
Detection Systems (IDS) with AI tools. Common classifiers
used in ICSs include Random Forest [19]–[24], Decision Tree
[19]–[23], Recurrent Neural Networks (RNNs) such as Long
Short Term Memory (LSTM) [25]–[27], Naı̈ve Bayes [21]–
[23], Adaboost [21], and Support Vector Machines (SVM)
[21], [22], [28].

While AML attacks have been extensively studied in image
classification, voice recognition, and e-mail spam classifica-
tion, their application in IDS for ICS has received limited
attention in the literature. Some notable works include [3],
where a class of white-box AML attacks was applied to an
ICS dataset. The perturbations in this work were manually
generated to evaluate the classifier’s robustness. Additionally,
[29] focused on the Fast Gradient Sign Method (FGSM)
and Jacobian-based Saliency Map Attack (JSMA) to assess

Random Forest and J48 classifiers, attempting to improve
accuracy through adversarial training as a defense mechanism.
Furthermore, a model evasion attack against the Multi-Layer
Perceptron (MLP) network was implemented in [29], demon-
strating a significant decrease in classifier accuracy in the
presence of this attack. This attack aimed to misclassify ma-
licious network traffic in network-based IDS datasets. In [31],
FGSM, DeepFool, and Jacobian-based saliency map attacks
were generated to evaluate the performance of deep neural
networks in Cyber-Physical Systems (CPS). To minimize the
influence of FGSM attacks on network-based IDS, a min-
max optimization problem was introduced in [32]. Moreover,
a robust method was proposed in [33] to defend against
generated adversarial examples in an IoT network intrusion
detection system.

It is essential to highlight that many of these works primarily
focused on white-box attacks, which are relatively simplistic
and may not accurately represent real-world attack scenarios.
Consequently, evaluating ML algorithms in the presence of
decision-based attacks on ICS datasets remains relatively un-
explored and represents a significant research gap in the field
of AML for IDS in ICS.

III. DECISION-BASED ATTACKS

AML attacks are categorized based on complexity and
knowledge about the learning model [6]. This study focuses
on black-box attacks, specifically decision boundary attacks
and HopSkipJump attacks, which are sophisticated methods
for misclassifying ML models [8], [9].

Throughout the paper, the following notations and equa-
tions are used: x represents the original input, y = F (x)
denotes the probability of the model’s final prediction, ymax =
argmaxF (x) is the predicted label, x′ is the perturbed input,
and x′

k refers to the perturbed input at the k-th step of
the attack algorithm. The distance between the original and
perturbed inputs, d(x, x′) = x− x′

2, is defined as the l2 norm.
An adversarial region is the targeted region where the original
data point will be placed. In a targeted setting, the attacker
chooses this region knowingly, while in an untargeted setting,
it can be any region except the original one.

Decision boundary attack: The decision boundary attack
algorithm starts with selecting an initial point on a sphere
around the original point in the adversarial region (Figure 1).
It then generates a random walk toward the original output
target, satisfying two conditions: staying in the adversarial
region and reducing the distance toward the target label. The
algorithm’s primary goal is to find the slightest adversarial
perturbations according to a given adversarial criterion C(.),
achieved by generating rejection sampling with a suitable
proposal distribution.

In each step, the adversarial input will be updated by x
′

k =
x

′

k−1 + ηk where η is a random perturbation drawn from the
proposal distribution s.t. ηk ∼ P (x

′

k−1). It will continue if
x

′

k−1 + ηk is still adversarial. The proposal distribution plays
a critical role in the efficiency of the boundary attack and
depends on the input domain and the model. To draw the
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Fig. 1. Decision boundary attack.

perturbation from a maximum entropy distribution following
constraints are essential [8]:

1) The perturbed sample x
′

k−1 + ηk should lie within the
input domain.

2) The perturbation has a size of δ such that:∥ηk∥2 =
δ.d(x, x

′

k−1).
3) The perturbation reduces the distance of the per-

turbed input towards the original input w.r.t such that:
d(x, x

′

k−1)− d(x, x
′

k−1 + ηk) = ε.d(x, x
′

k−1).
However, in practice, it is difficult to sample from the

distribution as mentioned above. Hence, it is suggested to
sample from an IID Gaussian distribution ηk ∼ N(0, 1) and
as a result, (1) and (2) will be held [8].

AML attacks aim to misclassify inputs into different classes
from the original. These attacks adjust two key hyperparame-
ters: the total perturbation length (δ) and the step size towards
the original input (ε). These parameters are dynamically ad-
justed in each step. The attack process involves checking the
adversarial nature of the orthogonal perturbation, and the step
size ε is modified accordingly. The attack continues until the
perturbation successfully misclassifies the input or converges
to zero ε [8].

HopSkipJump attack: This advanced version of a bound-
ary attack utilizes an iterative algorithm that requires access to
gradient information, similar to a boundary attack. To reduce
queries, [9] introduced additional steps to optimize the attack’s
model. In each step, the attack generates a gradient from the
decision boundary and projects the point back to the boundary
(Figure 2). This iterative approach involves an optimization
problem. In the untargeted setting, the goal of this attack is
to change the class of a given input c∗ to any other class x∗,
while in the targeted setting, it aims to change the decision
to a predefined class c ∈ {m|m ̸= c∗}. This is achieved by
defining a function that proposes the difference between the
original and adversary classes of the perturbed input [9].

Sx∗ ≜

{
maxFc(x

′)− Fc∗(x
′) Untargeted

Fc′(x
′)−maxFc∗(x

′) Targeted (1)

The perturbed input x
′
is a successfully attacked data point

if and only if Sx∗ > 0. This means that the label of the given

input has been successfully changed. By redefining the l2 norm
d(x, x∗) = ∥ x− x∗∥2 and giving access to the gradient ∇Sx

, one can write [9]:

xk+1 = αkx
∗ + (1− αk){xk + ζk

∇Sx∗(xk)

∥∇Sx∗(xk)∥2
} (2)

Where ζk is a positive step size and αk is a line search
parameter s.t. αk ∈ [0, 1] . Equation (2) explains how to
get access to the next iterate xk+1 that lies on the decision
boundary [9].

The next iteration starts by re-projecting the perturbed
sample to the decision boundary. This iteration continues until
the perturbation becomes successful.

Fig. 2. Initiating the HopSkipJump attack.

A binary search is performed to find the boundary, then
x̃K → xK . The gradient of the boundary point xK will be
estimated. Then it is moving forward and updates xK → x̃K+1

. Again, a binary search would be performed, and then x̃K+1

→ xK+1 will be updated [9].

IV. PROPOSED APPROACH

To detect AML attacks, we propose an ensemble approach
utilizing Convolutional Neural Networks (CNNs). This ensem-
ble of models is trained on generated adversarial examples to
detect AML attacks effectively. This research involves three
main steps, as Figure 3 illustrates.

1) Generating adversarial examples: The first step in-
volves the generation of adversarial examples. Adversar-
ial examples are crafted by perturbing the input data to
mislead the model’s predictions. Since attackers may not
directly access the target model’s internal information,
they often use substitute models to generate adversarial
examples. A substitute model is an alternative model
trained to mimic the behavior of the target model based
on the available query access. We employ Algorithm 1
to generate decision-based adversarial examples, which
iteratively perturbs the input data to craft adversarial
samples. The details of the ”AttackGenerator” for each
specific attack are elaborated in Section III.

2) Training the ensemble: The second step involves train-
ing the ensemble of models. In ensemble adversarial
training, multiple models are trained using clean data
and the generated adversarial examples. In the context of
decision-based attacks, we employ the same substitute
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Fig. 3. Process of detection of Decision-based AML attacks using Ensemble learning.

Algorithm 1: Generating Adversarial Attack.
Data: Xtest (clean data), Ytest (true labels)
Result: Xadv (adversarial examples)

1 steps = 20 (number of iterations for generating
adversarial examples);

2 for each iteration i in range(steps): do
3 Xadv ← AttackGenerator(Xadv-initial = Xtest)

model the attacker uses to generate adversarial exam-
ples for training. The ensemble models learn to defend
against these attacks by exposing them to clean and
adversarial data. Algorithm 2 provides an overview of
the labeling process for AML attacks.

Algorithm 2: Labeling AML Attacks.
Data: Xadv (adversarial examples), Ytest (true labels)
Result: Ynew (labels indicating the presence of AML

attacks)
1 Yprediction ← F (Xtest) (predictions on clean data);
2 Yadv ← F (Xadv) (predictions on adversarial examples);
3 for each data point i in the test set do
4 if Yprediction(i) = Yadv then
5 Ynew(i)← ”No AML Attack”(clean data

prediction);
6 else
7 Ynew(i)← ”AML Attack”; (AML attack

successfully changed the label)

3) Ensemble prediction: During the inference phase, the
ensemble of models is utilized to make predictions
on new input data. The predictions from each model
are combined to arrive at the final prediction. This
ensemble-based approach enhances robustness against
decision-based attacks because individual models may
exhibit different vulnerabilities and defense mechanisms,

thus reducing the effectiveness of the attacker’s strate-
gies.

By implementing this ensemble of CNNs trained on gener-
ated adversarial examples, our proposed methodology enables
accurate detection of AML attacks and enhances the overall
security and reliability of the model in real-world scenarios.
The robustness gained from the ensemble approach makes our
method particularly suitable for defending against decision-
based attacks, which have become increasingly sophisticated
and challenging to detect.

V. EXPERIMENTS AND RESULTS

The power system framework (Figure 4) implemented by
Mississippi State University, a small representation of a larger
power system, is used as the case study. The framework
consists of power generators (G1 and G2), Intelligent Elec-
tronic Devices (IEDs) (R1, R2, R3, R4), and corresponding
breakers (BR1, BR2, BR3, BR4) responsible for protecting
electrical circuits from excess current. The supervisory control
system allows manual commands to be sent to the IEDs, and
additional network monitoring devices (SNORT and Syslog
servers) are connected to the testbed. The power system com-
prises cyber and physical layers, both requiring secure mea-
sures. The framework also utilizes Synchrophasor or Phasor
Measurement Units (PMUs) technology to provide real-time
data to the energy management system (EMS) [35]. The power
system datasets used in the evaluation include 15 datasets,
each consisting of 37 power system event scenarios. These
scenarios are categorized into No Events (1), Natural Events
(8), and Attack Events (28). The scenarios include various
events such as short-circuit faults, line maintenance, remote
tripping command injection (cyber-attack event), relay setting
change (cyber-attack event), and data injection (cyber-attack
scenario). The datasets encompass 128 features, including
measurements from synchrophasors (116 features), Snort logs,
control panel logs, and relay logs (12 features). Pre-processing
of the datasets revealed that using approximately 40 features
from the available 128 can achieve comparable classification
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TABLE II
PERFORMANCE RESULTS OF MACHINE LEARNING ALGORITHMS.

Recall Precision Accuracy F1 score
Random Decision Adaboost Random Decision Adaboost Random Decision Adaboost Random Decision Adaboost
Forest Tree Forest Tree Forest Tree Forest Tree

Normal operation 0.87 0.83 0.83 0.87 0.83 0.83 0.92 0.86 0.86 0.90 0.83 0.83
Decision Targeted 0.49 0.45 0.45 0.48 0.45 0.45 0.78 0.72 0.72 0.48 0.45 0.45

Boundary Untargeted 0.47 0.67 0.66 0.63 0.72 0.72 0.50 0.78 0.78 0.50 0.67 0.67
HopSkipJump Targeted 0.49 0.45 0.55 0.48 0.45 0.53 0.78 0.71 0.79 0.48 0.45 0.54

Untargeted 0.48 0.44 0.53 0.84 0.73 0.75 0.84 0.79 0.83 0.82 0.74 0.77

Fig. 4. The power system framework [35].
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Fig. 5. Proposed CNN Model for Identifying AML Attacks.

performance. Researchers selected 52 features with the highest
information gain based on the information gain rank. These
features include Apparent Impedance measurements for each
relay, Voltage Phase Angles, Current Phase Angles, and Volt-
age and Current Magnitudes.

The evaluation of the proposed methodology comprises
three main aspects: regular operation and performance under
the presence of two distinct decision-based attack scenarios.
For this purpose, three classifiers, namely Decision Tree,
Random Forest, and Adaboost, were trained on the respec-
tive datasets. The evaluation involved generating adversarial
attacks, which were subsequently applied to the test data
to assess the classifiers’ performance. The datasets used in

the evaluation are comprised of three distinct classes: attack
events, natural events, and no events. In the targeted setting,
the deceptive scenario involved relabeling data points such
that instances initially classified as attack events were changed
to no events or natural events. Similarly, data points initially
labeled as natural events or no events were altered to be
classified as attack events.

Machine Learning Algorithms Performance: Evaluation
measures of each classifier for each scenario have been cal-
culated (Table II). The F1 score describes the classification
performance for both recall and precision scores. Adaboost
and Random Forest outperformed better under HopSkipJump
and Decision boundary Attacks in targeted and untargeted
scenarios.

Detection of AML attacks using a CNN: The CNN model,
depicted in Figure 5, was employed to detect AML attacks
using carefully crafted adversarial examples. In this approach,
if an adversarial example could successfully mislead any of
the classifiers, it was categorized as an AML attack; otherwise,
it was deemed a No AML attack. To ensure robustness and
achieve optimal accuracy, the model underwent training with
diverse scenarios of generated AML attacks, encompassing
both targeted and untargeted settings for each attack type.

Following the rigorous training, the CNN model demon-
strated impressive performance, achieving an accuracy of 99%
for HopSkipJump attacks and 98% for Decision Boundary
attacks.

VI. CONCLUSIONS AND FUTURE WORKS

This study delves into the impact of adversarial examples on
supervised ML models within IDSs. The study employs a CNN
to detect these attacks. The ML models are trained on a power
system dataset consisting of three different classes, utilizing
Random Forest, AdaBoost, and a variant of the Decision
Tree classifier. During the testing phase, adversarial examples
are generated using two types of decision-based attacks: the
decision boundary attack and the HopSkipJump attack. The
results demonstrate the CNN model’s high accuracy of 99%
for HopSkipJump attacks and 98% for Decision Boundary
attacks, underscoring the potential effectiveness of ML models
in detecting AML attacks within IDSs. The study emphasizes
the significance of further research to develop more robust and
efficient techniques for safeguarding AI-based IDSs against
AML attacks.
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