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Abstract—Smart cities embrace unmanned autonomous
vehicles (UxVs) for urban mobility and addressing challenges.
UxVs include UAVs, UGVs, USVs, and UUVs, empowered by
AI, particularly deep learning (DL), for autonomous missions.
However, traditional DL has limitations in adapting to dynamic
environments and raises data privacy concerns. Limited data
availability and starting from scratch to adapt to a new
environment during missions pose challenges. Additionally, cyber
threats, particularly in terms of communication and data
security, can jeopardize the missions performed by UxVs.
This paper proposes a federated transfer learning scheme for
UxVs, sharing prior knowledge and training with limited data
while ensuring security through blockchain. Domain adaptation
with maximum mean discrepancy enhances the DL model’s
performance in target domains. The proposed scheme’s feasibility
is demonstrated in an empirical environment, and it outperforms
existing works.

Index Terms—blockchain, domain adaptation, federated
transfer learning, mist computing, unmanned any vehicles

I. INTRODUCTION

Smart cities are rapidly evolving, driven by the integration
of cutting-edge technologies that aim to enhance urban
living and address various challenges associated with growing
populations [1]. Among these technologies, unmanned any
vehicles (UxVs) play a crucial role in modernizing urban
mobility, offering innovative solutions for transportation,
surveillance, delivery services, and more. UxV is a paradigm
in which unmanned vehicles (i.e., unmanned aerial vehicle
(UAV), unmanned ground vehicle (UGV), unmanned surface
vehicle (USV), and unmanned underwater vehicle (UUV))
are employed to perform missions (e.g., surveillance)
cooperatively [2].

Artificial Intelligence (AI) has emerged as a leading force in
technological progress, revolutionizing various industries and
shaping the future of human society [3]. Deep learning (DL),
a groundbreaking branch of AI, is rooted in the concept of
building intricate, hierarchical representations from vast data
sets [4]. This empowers machines to learn and make decisions
autonomously, much like the neural networks of the human
brain. DL enables automation in UxVs, facilitating their
missions. During these missions, UxVs encounter dynamic
environments that were not considered during the creation of
the DL model. In traditional DL, adjustments require retraining
to adapt to new changes. Additionally, developing an efficient

DL model demands extensive data, which can be challenging,
especially when UxVs contain privacy-sensitive information,
leading to data refusal. Moreover, training from scratch during
a mission can reduce the lifespan of UxVs with limited
resources. Besides, both data and communications are exposed
to cyber threats.

Federated Learning (FL) is an innovative technology that
enables models to be trained on numerous decentralized
devices or servers, ensuring that data remains localized [5].
By allowing on-device training without sharing raw data,
FL fosters collaborative model training among organizations,
preserving privacy, and tapping into collective insights from
distributed datasets [6]. In FL, only model parameters are
shared, not raw data [7]. This approach can assist UxVs
in constructing efficient models without privacy concerns.
However, UxVs operating in this new environment may
encounter limited data, even though they can access other
UxVs’ data through FL. Additionally, training from scratch
can jeopardize the mission.

Transfer learning (TL) is a potent AI technique that
harnesses knowledge acquired from one task to enhance
performance in another related task [8]. Its rising popularity
is due to its ability to expedite model training, improve
generalization, and optimize the use of limited data. TL can
be valuable for UxVs, helping them overcome the challenges
posed by limited datasets and starting from scratch. By
leveraging knowledge from other UxVs and fine-tuning with
limited data, UxVs can swiftly adapt to their environment.
However, the system faces security challenges, both in terms of
data and communication, which could potentially compromise
the success of the mission.

Blockchain, a disruptive innovation in cutting-edge
technology, is a distributed ledger where data is shared and
validated by participants known as miners, with identical
copies held by all [9]. Changes to the data require
validation from each participant, ensuring uniform updates
and immutability for data integrity and security [10]. In
the blockchain network, each participant possesses a private
key for validating incoming messages and a corresponding
public key for initiating secure communication, enhancing
security and authenticity. Leveraging blockchain, UxVs can
effectively address cyber threats in data and communication.
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Its decentralized and secure nature offers a promising solution
for mitigating risks and ensuring the integrity of UxV
missions.

Among the studies focused on autonomous unmanned
vehicles, Masud et al. [11] introduced an innovative automated
and secure garbage management system. They employed a
DL model integrated with UxV to reduce human effort in
traditional garbage management, utilizing various types of
UxVs for collecting and disposing of garbage from land
and sea surfaces. However, privacy issues during training
and the challenges of dynamic environments and limited
datasets were not addressed in their work. In contrast,
Jamshid et al. [12] proposed a novel and efficient FL
scheme, the hierarchical FL algorithm, designed for edge-
aided UAV networks. Their approach utilized edge servers in
base stations as intermediate aggregators, leveraging shared
data. While they considered privacy challenges, the issues of
dynamic environments and limited datasets were not taken
into account, and no measures were implemented against
cyber threats. Furthermore, Gianluca et al. [13] presented a
reinforcement learning-based solution for UAV connectivity-
aware path planning in diverse simulation environments. They
also proposed a transfer learning technique to improve agent
learning in a new mmWave domain using knowledge from
a source domain. Nevertheless, their work lacked attention
to privacy issues related to entities (UAVs) and did not
incorporate security countermeasures against cyber attacks.
A platform is needed that can aid UxVs in conducting
missions securely and autonomously, while also taking into
account dynamic environments and limited datasets without
compromising privacy.

Considering the aforementioned challenges (privacy,
dynamic environment, limited dataset, and security), this
paper presents a collaborative scheme called FTL-UxV
for UxVs. The proposed approach involves sharing prior
environmental knowledge and training limited available data
in a distributed manner. Furthermore, security modules are
integrated on top of blockchain technology. To the best of our
knowledge, the adaptation of FTL to dynamic environments
while ensuring security through blockchain has not been
studied before. The main contributions of this paper are as
follows. (1) An FTL-based knowledge-sharing scheme is
introduced, which incorporates a domain adaptation technique
to effectively map the provided knowledge to the target task.
Additionally, blockchain is integrated to facilitate seamless
communication and data management. (2) A discussion
is presented on preparing the dataset and DL models for
training by applying FTL. (3) Experiments are conducted on
UxVs using FTL and evaluated based on precision, recall,
F1-score, and accuracy metrics. A blockchain environment is
established on top of Ethereum, and performance is measured
by observing the update time in the blockchain during the
transmission of training data.

The paper’s outline: Section II introduces preliminaries.
Section III presents proposed schemes and system architecture.
Section IV details scheme functionality. Section V covers

experimental setup and performance analysis. Conclusion in
Section VI summarizes findings, contributions, and future
works.

II. PRELIMINARIES

A. Federated Learning

FL, introduced by Google in 2016, offers a decentralized
alternative to traditional machine learning. It enables multiple
entities (termed as participants) to collaboratively train a
global model while keeping their data local. During the
training process, each participant shares model parameters
(i.e., weights and bias) instead of the raw data. A central
entity (termed as an accumulator) coordinates model updates
by accumulating these parameters collected from individual
participants. In FL, each participant 𝑃𝑖 holds a local dataset
𝐷𝑆𝑖 , where 𝐷𝑆𝑖 = ⟨(𝑥𝑖1, 𝑦

𝑖
1), (𝑥

𝑖
2, 𝑦

𝑖
2), ...., (𝑥

𝑖
𝐿
, 𝑦𝑖

𝐿
)⟩, with 𝑥

being the feature space containing 𝑑 features, 𝑦 as the label,
and each 𝑃𝑖 holding 𝐿𝑖 samples. In FL, models are trained
and share model parameters 𝜙𝑖 with the accumulator 𝛼. The
objective is to minimize the loss as follows [14].

𝜙𝑖 = arg min
𝜙𝑖∈ℜ𝑑

𝐹𝑖 (𝜙𝑖), (1a)

𝑤ℎ𝑒𝑟𝑒 𝐹𝑖 (𝜙𝑖)
def
=

1
𝐿𝑖

∑︁
∀ 𝑗∈𝐿𝑖

𝑓 (𝜙𝑖 (𝑥𝑖𝑗 , 𝑦𝑖𝑗 )). (1b)

Where 𝑓 (.) represents the local loss function. When a
participant 𝑃𝑖 receives the model from the accumulator 𝛼,
it immediately begins training and continues to optimize the
local loss function, 𝜙𝑒+1

𝑖
= 𝜙𝑒

𝑖
− 𝜂∇𝐹𝑖 (𝜙𝑒𝑖 ). When all 𝑃𝑖 return

𝜙𝑖 , the accumulator 𝛼 initiates the accumulation process by
employing FedAvg [15] for a total of 𝑁 participants as follows.

𝜙 =
1
𝑁

∑︁
∀𝑖∈𝑁

𝜙𝑖 (2)

B. Transfer Learning

TL addresses the challenge of data scarcity by allowing
models to leverage knowledge gained from previous tasks
or domains, thus reducing the data requirements for new
tasks significantly. It is based on the intuition that knowledge
acquired from solving one problem can be valuable when
dealing with a related but different problem. This concept
draws inspiration from human learning, where individuals
often apply knowledge learned in one context to solve new
problems in different situations. The main idea behind transfer
learning is to extract and transfer the valuable representations
(i.e., features) learned during the training of a source domain
to enhance the learning process in a target domain. In TL,
the main objective is to leverage the source domain 𝒟𝒮

𝑠 ,
𝒟𝒮

𝑠 = {∪𝑀′

𝑙=1 (𝑥
𝑠
𝑙
, 𝑦𝑠

𝑙
), 𝑃𝑠 (.)} in the target domain 𝒟𝒮

𝑡 ,
𝒟𝒮

𝑡 = {∪𝑀
𝑘=1 (𝑥

𝑡
𝑘
, 𝑦𝑡

𝑘
), 𝑃𝑡 (.)} to enhance the performance of

the target task 𝑇 = (𝑌, 𝑓 (.)), where 𝑥𝑠
𝑖
∈ 𝑋𝑠 , 𝑦𝑠

𝑖
∈ 𝑌 𝑠 , 𝑥𝑡

𝑗
∈

𝑋 𝑡 , 𝑦𝑡
𝑗
∈ 𝑌 𝑡 , 𝑋𝑠 ≠ 𝑋 𝑡 𝑎𝑛𝑑 𝑀 << 𝑀 ′. In this context, 𝑋

represents the feature space, 𝑌 denotes the label space, 𝑃(.)
refers to the data distribution, 𝑓 (.) represents the prediction

548



UAV

UAV

UGV

UGV

Control Center

MEC
Server

BS

MN

USV

UUV

Blockchain

Blockchain

Smart Grid

MEC
Server

BS

Blockchain
Cloud Blockchain

Smart Healthcare

Smart Factory

Source Target

Transfer knowledge from
pre-trained model

Target

Transfer knowledge from
pre-trained model

Target

Transfer knowledge from
pre-trained model

Source

Source

Source Target

Transfer knowledge from
pre-trained model

Water Infrastructure

Source Target

Transfer knowledge from
pre-trained model

Source Target

Transfer knowledge from
pre-trained model

MN
Smart Farming

MN

MN
MN

MN

Accum
ulation

G
lobal M

odel

Lo
ca

l M
od

el Lo
ca

l M
od

el

Local M
odel

Lo
ca

l M
od

el

Local M
odel

Fig. 1: FTL-enabled knowledge sharing process for UxVs on top of the blockchain in a smart city.

function, 𝑀 ′ denotes the total number of samples in 𝒟𝒮
𝑠 ,

and 𝑀 represents the total number of samples in 𝒟𝒮
𝑡 . The

primary objective of TL is to improve the prediction function
𝔣(.) in 𝒟𝒮

𝑡 by leveraging the knowledge acquired from 𝒟𝒮
𝑠 .

III. SYSTEM OVERVIEW

This research introduces FTL-UxV, a secure knowledge-
sharing scheme for UxVs in smart cities, which leverages FTL
and blockchain technology. The FTL-UxV system involves
multiple entities and consists of several key components. UxVs
equipped with IoT sensors are deployed in smart cities to
carry out diverse tasks. They can enhance their collective
performance by sharing knowledge and insights with one
another during task execution. In FTL-UxV, a hierarchy of
servers is established to accommodate entities with varying
levels of computing power. A mist node1 (MN) is embedded
within UxVs to support low computing entities, assisting
them in performing onboard computations and managing
connectivity with the nearest server. At the edge of the
network, a MEC server2 is utilized to provide real-time support
to UxVs. Additionally, a cloud server is incorporated to serve
as one of the data storage platforms. All MEC servers and the
cloud act as miners in the network. FTL-UxV incorporates
blockchain technology to ensure secure data management and
enable a secure computing environment.

IV. PROPOSED APPROACH FOR SECURE KNOWLEDGE
SHARING

In FTL-UxV, all entities are required to register, and
their data is securely stored in the blockchain. Each entity

1Mist Computing is a computing paradigm that processes data locally for
reduced latency and real-time analysis [16].

2Multi-access Edge Computing (MEC) revolutionizes mobile networks,
deploying computing resources near access points or gateway to meet low-
latency, high-bandwidth demands of real-time applications [17].

possesses a private key 𝑃𝑟 and a corresponding public key 𝑃𝑏,
which serves as its identity. During the registration process,
entities share their 𝑃𝑏 along with basic information, such as
device details, with the nearest server. Upon receiving this
information, the server stores it in the blockchain. When a
UxV 𝑈 is deployed for a task, it aims to gather knowledge
from other UxVs already operating in the field to quickly adapt
to the environment. The UxV that collects and accumulates
this knowledge is referred to as the accumulation UxV
(𝑈𝑐) in the system. Before deploying 𝑈𝑐, a model 𝑚 is
generated based on publicly available datasets or data collected
previously. To enhance the performance of 𝑚, 𝑈𝑐 initiates
a FL-based training process. Firstly, 𝑈𝑐 sends invitations to
nearby entities (i.e., other UxVs) containing information about
the target domain and the sender’s public key. Entities with
relevant data respond using public keys as participants 𝑈𝑝 .

After receiving acceptance from all participants, 𝑈𝑐

compiles a list of participants. This list denoted as 𝑃, 𝑃 =⋃(𝑈𝑖
𝑝) | 𝑖 ∈ 𝑁 , where 𝑁 represents the total number of

participants. Next, 𝑈𝑐 chooses an active participant from
𝑃, 𝑆𝑃 = 𝑚𝑎𝑥(𝑟 × 𝑁, 1), where 𝑟 represents dropout ratio.
Subsequently, the final list of participants is then formed by
including the contributors corresponding to the indices present
in 𝑆𝑃, 𝑆𝑃 = ∪𝑖∈𝑆𝑃 (𝑈𝑖

𝑝). These selected participants from 𝑆𝑃

are the ones allowed to participate in the training process.

Upon finalizing participants, 𝑈𝑐 creates a secret key
𝛿 to enable a fast and secure training process, 𝛿 =

𝐾 (⟨𝑆𝑃, 𝜏, 𝐻 (𝜏)⟩) | 𝐾 : {0, 1}∗ ↦→ {0, 1}𝑧 , 𝐻 : {0, 1}∗ ↦→
{0, 1}𝑧′ . Once key is created, 𝑈𝑐 shares it to all along
with the global model 𝑚𝐺 encrypted by 𝑈𝑝’s public key,
𝑒𝑖𝑚𝑠𝑔 = 𝐸𝑃𝑏𝑖 (⟨𝛿, 𝑚𝐺⟩),∀𝑖 ∈ 𝑆𝑃. A nonlinear mapping is

calculated based on the 𝐷𝑆𝑠 , 𝑛𝑚 =
1

|𝐷𝑆𝑠 |
∑

∀𝑥∈𝐷𝑆𝑠 𝜇(𝑥)
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Fig. 2: Model preparation for FTL: (a) source model, (b) personalized target model.

to assist participants performing domain adaptation. Upon
receiving the 𝑒𝑖𝑚𝑠𝑔, each 𝑈𝑖

𝑝 decrypts it using their 𝑃𝑟𝑖 ,
𝑑𝑖𝑚𝑠𝑔 = 𝐷𝑃𝑟𝑖 (⟨𝛿, 𝑛𝑚, 𝑚𝐺⟩).

In FTL-UxV, a classification task is considered in the
training. After obtaining the global model 𝑚𝐺 , 𝑦𝑠 ≈
𝑚𝐺 (𝜙 | 𝐷𝑆𝑠), each 𝑈𝑖

𝑝 freezes the first 𝑣 layers of 𝑚𝐺 . The
objective is to maintain the parameters 𝜙𝑖 while optimizing the
loss function 𝐹 based on the target data 𝐷𝑆𝑡 . The goal is to
fine-tune the model to adapt it to the specific task at hand. The
process of optimizing the parameters for the target domain can
be described as follows, 𝜙𝑖 = argmin

𝜙𝑖

𝐹 (𝑑 (𝑥𝑖
𝑗
, 𝜙𝑖

𝑗
), 𝑦𝑖

𝑗
),∀ 𝑗 ∈

|𝐷𝑆𝑡
𝑖
|. Here, 𝑑 (.) is the objective function of the target domain.

Training a classifier solely using the source data can often
lead to overfitting to the source domain, resulting in reduced
performance when applied to the target domain during testing.
To address this issue and improve generalization, a domain
adaptation technique is adopted to learn a representation
that minimizes the dissimilarity between the source and
target domains. The primary objective is to create a more
robust model that can effectively generalize to unseen data
from the target domain. FTL-UxV employs Maximum Mean
Discrepancy (MMD) 𝜗 to minimize dissimilarity which can
be calculated as follows [18].

𝜗(𝑛𝑚, 𝐷𝑆𝑡𝑖 ) = ∥𝑛𝑚 − 1
|𝐷𝑆𝑡𝑖 |

∑︁
∀𝑥′∈𝐷𝑆𝑡

𝑖

𝜇(𝑥′)∥ (3)

The objective is to develop a representation that facilitates
the training of robust classifiers capable of transferring
knowledge across diverse domains, extending beyond the
sole reduction of domain distance. To achieve this, Eq. 3 s
incorporated into the loss function, 𝐹𝑖 = 𝐹 (𝑑 (𝑥𝑖

𝑗
, 𝜙𝑖

𝑗
), 𝑦𝑖

𝑗
) +

𝜆𝜗2 (𝑛𝑚, 𝐷𝑆𝑡𝑖 ),∀ 𝑗 ∈ |𝐷𝑆𝑡
𝑖
|. Here, 𝜆 is utilized to control

the degree of domain distances. After completing training,
each 𝑈𝑖

𝑝 returns 𝜙𝑖 encrypted using 𝛿. When 𝑈𝑐 receives all
updates, it performs accumulation following Eq. 2. At the
end of each training episode, 𝑈𝑐 creates a block containing

the training updates, 𝑏 = ⟨{𝑃𝑏𝑐, 𝜙𝑐},∪𝑖∈ |𝑆𝑃 | {𝑃𝑏𝑖 , 𝜙𝑖}, ....⟩.
FTL-UxV adopts the proof of authority (PoA) as a consensus
algorithm. In PoA, each miner must wait for their turn to
propose a block. Once a miner gets its turn, it broadcasts its
block across the network. Upon acceptance from the majority
of miners, the block is added to the blockchain. After this, 𝑈𝑐

broadcasts 𝑏 in the blockchain network once it gets its turn,
and it gets appended upon acceptance from other miners. The
training process continues until convergence is achieved.

V. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION

A. Dataset preparation

In the experiments, the source model was trained using the
ImageNet dataset [19], which is widely recognized and used
for vision-based classification tasks. This dataset comprises
more than 15 million high-quality images organized into
22,000 categories. The dataset consists of approximately
1.2 million training samples, 150,000 testing samples, and
1000 distinct classes. The target domain utilized a vegetable
image dataset (https://www.kaggle.com/datasets/misrakahmed/
vegetable-image-dataset), which consisted of 21,000 vegetable
images belonging to 15 different classes. However, for
training, only around 10 to 30 images per class were
considered, and for testing, approximately 15 to 16 images
per class were used. Additionally, only those classes and
their corresponding data were selected (i.e., 10 classes) that
were not present in the source dataset. The data was non-
independent and identically distributed among the participants.

B. Model preparation

ResNet18 is a variant of the ResNet architecture, comprising
a total of 18 layers (17 convolutional layers and one fully
connected layer), as shown in Fig. 2(a). The model starts
with an input layer of size 224 × 224. The first convolutional
layer uses a 7 × 7 kernel with a stride of 2, followed by
a 3 × 3 max-pooling layer with a stride of 2. The first
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TABLE I: Global model performance for FTL-based knowledge sharing.

Prior Research → Masud et al. [11] Jamshid et al. [12] Proposed FTL-UxV
Features ↓ Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Bean 0.4286 0.1875 0.2609 0.5000 0.0625 0.1111 1.0000 0.9375 0.9677
Bitter_Gourd 0.3256 0.9333 0.4828 0.2821 0.7333 0.4074 0.8824 1.0000 0.9375
Bottle_Gourd 0.2545 0.1333 0.1750 0.6667 0.4000 0.5000 1.0000 0.9333 0.9655

Brinjal 0.2727 0.1033 0.1498 0.5714 0.2667 0.3636 0.9375 1.0000 0.9677
Capsicum 0.8000 0.5333 0.6400 0.6923 0.6000 0.6429 1.0000 0.9333 0.9655

Carrot 0.7500 0.8000 0.7742 1.0000 0.8667 0.9286 1.0000 1.0000 1.0000
Papaya 0.6875 0.7333 0.7097 0.7143 0.6667 0.6897 1.0000 1.0000 1.0000

Pumpkin 0.5000 0.7333 0.5946 0.4615 0.8000 0.5854 1.0000 0.9333 0.9655
Radish 0.5000 0.6000 0.5454 0.3125 0.3333 0.3226 1.0000 1.0000 1.0000
Tomato 0.3333 0.1333 0.1905 0.4167 0.3333 0.3704 0.9375 1.0000 0.9677

Accuracy 0.4834 0.5033 0.9735
Macro avg 0.4852 0.4858 0.4522 0.5617 0.5062 0.4922 0.9757 0.9738 0.9737

Weighted avg 0.4854 0.4856 0.4522 0.5613 0.5033 0.4896 0.9759 0.9735 0.9737

residual block includes two convolutional layers with 3 × 3
kernels and 64 kernels each. The output of this block is
combined with the output from the initial convolutional layers
through a 3 × 3 convolution with 128 kernels, forming the
second residual block. This pattern continues with the third
residual block, which incorporates the output of the second
block through skip connections and uses convolutional layers
with 3 × 3 kernels and 256 kernels each. Finally, the fourth
residual block is formed by combining the output from the
third block through skip connections and using convolutional
layers with 3 × 3 kernels and 512 kernels each. The output
of the final residual block undergoes average pooling before
being fed into fully connected (FC) layers. The FC layer
applies the softmax function to produce the final output. Pre-
trained ResNet18 is capable of classifying 1000 objects, such
as agama, trilobite, and others. In the target domain, a pre-
trained ResNet18 model was utilized. As mentioned earlier,
the dataset used in the target domain was the vegetable image
dataset. The original FC layer of ResNet18, which consisted
of 1000 classes, was replaced with a new FC layer containing
10 classes, as shown in Figure 2(b). This modified pre-trained
ResNet18 was then prepared for training in the target domain,
leveraging knowledge transferred from the source domain.
During training, participants froze the top layer of the model,
which acted as a feature extractor with knowledge from the
source domain.

C. Data Preprocessing and Model Training

In the training set, the images were randomly cropped
and resized to 224 × 224, and a horizontal flip was applied
with a probability of 0.5. Subsequently, the images underwent
normalization using a specific normalization technique. The
testing set was preprocessed similarly to the training set.
During training, a batch size of 3 was utilized, and the initial
learning rate was set to 0.001. The learning rate was reduced
by a factor of 0.11 using the StepLR technique. As for the
optimizer, the stochastic gradient descent with momentum
(SGDM) [20] algorithm was selected. The entire training
process was implemented using PyTorch.

D. Environment setup

An experiment environment was established to demonstrate
the proof of concept (PoC). The computing environment
consisted of an Intel Xeon CPU with 2 vCPUs and 13GB of
RAM, along with an NVIDIA Tesla K80 GPU with 12GB
of VRAM. Ubuntu 22.04.2 LTS served as the operating
system. The simulation involved 10 participants, representing
a combination of different UxVs, with one UxV acting as
an accumulator. Shared key encryption was implemented
using the Advanced Encryption Standard (AES-128), and
Public Key encryption was performed using elliptic-curve
cryptography. To ensure secure data storage, a consortium
blockchain consisting of 20 mining nodes was established. The
blockchain network was built on top of Ethereum, and the PoA
consensus algorithm was employed. Python was used as the
middleware for the experiment.

E. Performance Analysis

To evaluate performance, a comparison with existing works,
namely, Masud et al. [11] and Jamshid et al. [12], is presented
in Table I. The table presents precision, recall, and F1-
score for each class label, along with accuracy, macro-
averaged, and weighted-averaged F1-scores. Masud et al. [11]
achieved moderate results with varying precision and low
recall, indicating poor detection in some classes. Masud et
al. [11] obtained an accuracy of 48%, but they did not
address privacy and limited dataset issues, resulting in poor
performance with data scarcity. On the other hand, Jamshid
et al. [12] demonstrated better recall but sacrificed precision,
leading to higher false positives. Their accuracy was slightly
better at 50.33%. Although they considered FL, the dataset
obtained was insufficient for high performance. In contrast,
the proposed FTL-UxV method showed superior performance
across all metrics. It achieved perfect precision, recall, and
F1-score for certain classes, indicating accurate detection.
The overall accuracy of 97.35% highlighted the method’s
reliability in precisely classifying instances from the target
dataset. The proposed FTL-UxV approach considered FTL,
effectively addressing privacy and limited dataset challenges.
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Additionally, it employed domain adaptation techniques to
adapt the target domain efficiently, which contributed to its
high performance.

Fig. 3: Result of the blockchain update time over training data size.

Figure 3 illustrates the update time in the blockchain when
appending training data along with the model to the network.
The update time shows an increase with larger training sizes
due to the necessity of transmitting more significant updates
across the network, resulting in longer processing times.
Additionally, with a greater number of miners participating,
the time required to process a block and obtain acceptance
from the miners also increases. This trend indicates that the
update process becomes more time-consuming as the scale of
the training data and the network’s participation grows.

VI. CONCLUDING REMARKS & FUTURE WORKS

A secure knowledge-sharing scheme was proposed for
UxVs, utilizing FTL to train new models by borrowing
knowledge from previously trained models. MMD-based
domain adaptation techniques were employed during training
to adapt the knowledge as much as possible. Subsequently,
both training information and entities’ information were
securely stored on the blockchain, which also facilitated
secure communication during training. A proof-of-concept
environment was built, and several experiments were
conducted, consistently demonstrating the superiority of the
proposed scheme over existing research. For future work, the
paper plans to extend the experiments to a real hardware
environment, such as UAVs. Additionally, lightweight DL
models, multi-dimensional incentive mechanisms, and the
exploration of other cyber attacks, such as model poisoning,
are on the agenda for future research.
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