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Abstract—Evolutionary algorithm(EA) with knowledge trans-
fer is an emerging research topic that has attracted a lot of
attention in the EA community. The multiform evolutionary
algorithm is a promising algorithm framework concept falling
in this direction, but little work has been done so far to
design and discuss this new EA framework. In this paper, we
proposed an adaptive multiform evolutionary framework, which
integrates the idea of transfer optimization and population-based
evolutionary algorithms. The main idea is to utilize multiple
equivalent or similar formulations to solve the given problem
cooperatively. By adaptively adjusting computational resources
of different formulations and transferring knowledge among
formulations, the search efficiency and the population diversity
can be improved. Furthermore, a new multiform algorithm is
implemented based on the proposed framework, which utilizes
two different coordinate systems, namely the Cartesian and polar
coordinate systems, to model the given problem. To test the
effectiveness of the proposed algorithm, we conducted numerical
experiments on CEC2013 benchmark test functions, and the
experimental results have verified the efficacy of the proposed
algorithm.

Index Terms—Multiform Optimization, DE, Continuous Opti-
mization

I. INTRODUCTION

Evolutionary algorithms (EAs) are population-based
stochastic search algorithms, which have attracted a lot
of attention owing to their flexible representation, ease of
implementation, and strong global search ability. Over the
past decades, a number of EA variants have been proposed
and applied to a wide range of applications, including
combinatorial optimization problems [1], continuous
optimization problems [2], multi-objective optimization
problems [3], and dynamic optimization problems [4].

However, existing EAs focus on solving the given problem
through a single formulation modeling. As the saying goes:
”All roads lead to Rome”, in practical applications, a given
problem usually can have multiple modeling methods. How-
ever, it is usually unclear which modeling strategy is the most
effective one for the given problem. Modeling a given problem
from different perspectives can result in diverse answers. By
analyzing and constructing multiple solutions from different
perspectives, we can gain a more comprehensive and deeper
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Fig. 1: An example of multiple proof methods to the
Pythagorean Theorem. (a) Euclidean proof. (b) Shuang Zhang
proof.

understanding of the given problem. To make it clearer, we
have used an illustration to explain it, as shown in Fig. 1. There
are currently about 500 proofs of the Pythagorean Theorem.
In Fig. 1, two of the famous methods are shown, which are
Euclidean proof and Shuang Zhang proof. Euclid proved it by
the similarity of triangles and the area of triangles. In contrast,
Shuang Zhang argues by the sum of the area of a square and
four triangles.

Recently, Ong et al. [5] proposed the concept of multi-
form optimization. Multiform optimization applies alternate
formulations to a single objective optimization problem. The
use of different formulations in a single optimization problem
may capture different properties or situations, and the search
experience gained from these alternate formulations may help
to obtain a better solution to the objective problem [6].
The latest evolutionary transfer optimization (ETO) literature
review also indicates that multiform can have great potential
to improve the search efficacy of EA [7]. However, multiform
EA is still in its infancy and lacks sufficient research attention.
Recently, Da et al. [8] have proposed a multiform EA for the
traveling salesman problem (TSP) and has shown encouraging
results, but this algorithm only focuses on the TSP problem
and could not be applied to continuous optimization problems.

To solve the above issues, this paper proposes a general
and adaptive multiform EA framework for global continuous
optimization. In the proposed framework, the given problem
is formulated into multiple equivalent modeling forms. Each
of these forms can act as a catalyst in the multitasking
environment, thereby leveraging the unique advantages offered
by each formulation through a continuous process of knowl-
edge transfer. Based on the general multiform framework, we
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further propose an adaptive multiform EA algorithm that can
automatically generate and configure Evolutionary Transfer
Optimization algorithms for different spatial coordinates of a
given problem. In general, the contributions of this paper are
as follows:

� We propose a general multiform EA framework, which no
longer performs evolutionary search only on a single search
space, but rather performs evolutionary search alternately
on multiple search spaces by passing useful information in
constant interaction.

� A specific multiform EA is designed based on the proposed
framework, which is implemented by a classic adaptive differ-
ential EA named JADE [30]. In the proposed algorithm, two
different coordinate systems, namely the Cartesian and polar
coordinate systems, are utilized to model the given problem.
The interactions of the two formulations during the evolution
are presented in detail to facilitate the practical application of
the proposed framework.

� A suite of experiments on benchmarks are set up to prove
the effectiveness of the proposed framework. The experimental
results show that the multiform EA exhibits good performance
on continuous optimization problems.

II. BACKGROUND AND RELATED WORK

A. Evolutionary transfer optimization

Evolutionary transfer optimization has emerged as a hot
research topic in evolutionary computing, with the goal of im-
proving optimization efficiency and performance by combin-
ing EA with knowledge acquisition and migration in adjacent
domains. Recently, many ETO methods have been proposed
to solve various optimization problems, including multitask
optimization, dynamic optimization, and complex optimization
[9]–[11].

Existing ETO methods can be categorized into two types:
homogeneous ETO and heterogeneous ETO [7]. The goal of
homogeneous ETO is to transfer knowledge in the evolutionary
search between issues in the same search space. For example,
Feng et al. [12] proposed a single-layer denoising autoencoder
that can transfer knowledge from past multi-objective opti-
mization. Also, there are studies using kernel-based, manifold
transfer learning, and knee point-based imbalance learning to
obtain optimal solutions using knowledge learned from past
search experiences [13], [14]. Ma et al. [15] provided a two-
level transfer learning strategy for multiple tasks, including
upper-level inter-task knowledge transfer learning and lower-
level intra-task transfer learning. Chaabani et al. [16] proposed
to combine the algorithm of co-evolutionary decomposition
with migration learning to improve search efficiency. The goal
of heterogeneous ETO is to learn knowledge from problems
in different search spaces. For example, Iqbal et al. [17],
[18]transfer learning-based genetic programming which can
learn useful features from simple problems to help solve com-
plex problems. Bali et al. [19] proposed a linearized domain
adaptive strategy to improve performance by converting the
search space for simple tasks to a search space similar to that
of complex tasks.

B. Multitask evolutionary Optimization

While both single-objective and multi-objective optimiza-
tions try to solve a single problem each time, the concept
of multitask optimization (MTO) is proposed to solve several
problems simultaneously. Based on the assumption of implicit
parallelism, each task(problem) in MTO can help accelerate
the optimization of each other by sharing useful information.
The mathematical form of MTO is defined as follows,

x∗i = arg min
x∈Ωi

fi(x), i = 1, 2, . . . , n (1)

where fi(x) denotes the fitness value of task i and Ωi are the
decision space of task i.

With the advancement of MTO, some studies have used
ETO to solve multitask optimization problems. Gupta et al.
[10] proposed a multifactor evolutionary algorithm (MFEA)
in which cross-task knowledge transfer is achieved through
the crossover process. Later, many improved MFEA variants
were proposed [20], [22], [23]. In addition to using crossover
for knowledge transfer, matrix multiplication can be used
to transfer optimum answers from one task to another [24],
[25]. Da et al. [8] proposed to use transferable knowledge
to provide useful inductive biases for search progress, thus
overcoming local optima and effectively guiding populations
towards. Further, there are many high-quality algorithms based
on multiple populations have also been proposed [26], [27]. In
the latest literature, Wei et al. [21] provide a detailed analysis
and elaboration of evolutionary multitask optimization studies.

C. Multiform evolutionary Optimization

Multiform optimization differs from traditional single-task
optimization in that it can simplify the structure of the orig-
inal task or extract useful knowledge from the original task
to enhance optimization performance. Useful information is
found from the evolutionary search of different formulations,
and the search is transferred between different formulations
by multitasking.

In the literature, Zhang et al. [28] proposed a multiform
optimization algorithm based on noise-reducing self-encoder
and Gaussian process regression, which is experimentally
demonstrated in the commonly used MOP benchmark. In
addition, Jiao et al. [29] proposed a multiform optimization
framework that uses different problem formulations to improve
the constraint processing capability of constrained multiobjec-
tive optimization problems (CMOP). The results show that the
derived CMOP formulation can be used as an auxiliary task to
enhance the search processes through knowledge transfer. Al-
though the current research has achieved encouraging results,
the research of multiform EA is still in the nascent stage.

III. PROPOSED MULTIFORM EA

In this section, we proposed an adaptable multiform frame-
work at first, providing a seamless integration for EAs. Sub-
sequently, a multiform differential evolutionary algorithm is
described in detail based on the proposed multiform frame-
work.
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Fig. 2: The multiform Framework

To begin with, the basic idea of the proposed multiform
framework is reconciling different formulations to work to-
gether for a single problem while keeping computational re-
sources under control to improve search efficiency. To achieve
this goal, we proposed to model the given problem into
multiple equivalent or similar formulations by transformations
and then utilize different solvers to address these formulations
cooperatively. In detail, the proposed framework consists
of three cyclic stages, as illustrated in Fig. 2, which are 1)
independent evolving, 2) merge and selection, and 3) dominant
evolving.

Hereby, two formulations, namely the Cartesian coordinate
system (denoted as FC) and polar coordinate system (denoted
as FP ), are incorporated into the framework as shown in Fig.
3. The motivation for considering the two coordinate systems
as formulations is summarized below. First of all, they can be
transformed into each other with a group of formulas, which
construct the basis of this evolutionary algorithm. Besides,
their function landscapes are quite different, which may make
a difference in the convergence pace so that the framework
can reconcile. Finally, the two systems are frequently used in
the real world. Therefore, they can readily be associated to
serve as two formulations.

Commonly, each individual of the two formulations is
represented by variable XC or variable XP respectively:
XC = [x1, x2, . . . , xD]T , XP = [ρ, θ1, . . . , θD−1]T , where D
is the dimension of the problem. Notably, the polar coordinate
should be confined within the extra angle constraints:

− π

2
≤ θi ≤

π

2
, for i = 1, . . . , D − 2

− π ≤ θD−1 ≤ π
(2)

It should be noted that the two coordinate systems also
differ in the expression of boundary constraints. For Cartesian
coordinates, the solution space is usually limited with the

Algorithm 1 The Procedure of Multiform JADE

1: Initialization: Generate the Cartesian population PC with
the uniform distribution (3); Generate the polar population
PP with the uniform distribution (2) and 0 ≤ ρ ≤ 1;
Calculate C and S with the given L and U. /* by (6) */

2: while termination conditions not met do
3: initialize parameters of JADE and perform JADE

solvers of PC and PP for t1 generations.
4: calculate evolutionary efficiency w of PC and PP and

determine dominant formulation Fd. /* by (8) */
5: merge PC and PP to form the mixed population Pm.
6: sort Pm on the fitness
7: select top NP individuals from Pm and transform them

into Fd to form the dominant population Pd.
/* by (4), (5) and (7) */

8: initialize parameters of JADE and perform JADE solver
of Pd for t2 generations.

9: duplicate Pd into two copies and transform one copy
into another formulation to form the new PC and PP .

10: end while

lower and upper boundary constraint vectors, L = [l1, . . . , ln]T

and U = [u1, . . . , un]T , respectively.

L ≤ X ≤ U
li ≤ xi ≤ ui, for i = 1, . . . , n

(3)

The transformation between Cartesian and polar coordinate
systems can be summarized into simplified formats [31]:

Cartesian← Polar :

x1 = ρ

n−1∏
j=1

sinθj

xi = ρcosθn−i+1

n−i∏
j=1

sinθj , for i = 2, . . . , n− 1

xn = ρcosθ1

(4)
Polar ← Cartesian :

ρ =

√√√√ n∑
j=1

x2
j

θi = arctan

√∑n−i
j=1 x

2
j

xn+i−1
, for i = 1, . . . , n− 1

(5)

Under the constraint of the two vectors, the solution space
is constrained as a (hyper)cube. However, the polar coordinate
system is more suitable for representing the (hyper)spherical
space. To alleviate the complexity of boundary constraints
expressed by polar coordinates, especially those that represent
the space where the centroids deviate from the origin, two
vectors C = [c1, . . . , cn]T and S = [s1, . . . , sn]T are utilized.
C is used to store the centroid coordinate of solution space
in the Cartesian coordinate system. S can scale up or down
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Fig. 3: The Multiform JADE Algorithm

the unit (hyper)sphere to fit Cartesian solution space which
is usually a (hyper)cube as close as possible. They can be
calculated by

ci =
ui + li

2

si =
ui − li

2

(6)

Supposing XP is transformed to Cartesian coordinate X∗C
by (4) and (5). Hereafter, the overall transformation equation
is

XC = C + S ◦ X∗C (7)

where ◦ is the sign of the element-wise product. Hence, We
can use a unit (hyper)sphere with C and S to approximately
represent the given Cartesian search space. By this expression,
there is no additional boundary constraint for polar coordinates
during coordinates conversion except (2) and 0 ≤ ρ ≤ 1.

In the following part, the implementation of the multiform
JADE is presented in a step-by-step manner.

Step 1-Initialization: First of all, the vectors C and S are
calculated according to the given boundary constraints L and U
by (6). Then, the Cartesian population is randomly generated
with the uniform distribution L ≤ XC ≤ U. Similarly, the
polar population is generated with the uniform distribution by
(2) and 0 ≤ ρ ≤ 1. Both populations have the same size NP.
Besides, JADE solvers will initialize their parameters as the
default settings of the original JADE.

Step 2-Indepedent Evolving: With JADE as the EA solver,
the Cartesian and polar populations independently evolve for
t1 generations without any interactions. At this step, the two
populations update the parameters of JADE and record the best
fitness of each population in order to evaluate the dominant
formulation(Fd).

Step 3-Merge and Selection: To be simple, all individuals
of both populations will be sorted on the objective function
value. Then, the top NP optimal individuals will be selected
to form the new dominant population Pd. Meanwhile, those
individuals that are not Fd will be transformed by (4) or (5)
into Fd.

Step 4-Dominant Evolving: Because the dominant formula-
tion was determined, the dominant population Pd will evolve
for t2 generations. Before the next independent evolving step,
it replicates itself into Cartesian and polar populations. For
instance, if the current Fd is FC , Pd will be duplicated and
one copy of it will be transformed into another formulation,
namely FP .

Except for the initialization, the above steps are repeated
until the termination conditions are met. The whole procedure
of the multiform JADE is described in Algorithm 1.

IV. EXPERIMENT STUDIES

In this section, a series of numerical optimization exper-
iments and corresponding result analyses are presented to
demonstrate the effectiveness and efficiency of the proposed
Multiform JADE. All experiments are conducted using Python
Language on a PC with Intel(R) Core i7-11800H 2.30 GHz
and 16GB RAM.

A. Benchmark Functions and Parameter Settings

For the experiment, we adopt the commonly used CEC2013
benchmark functions [32] for testing. Among the benchmark
functions, F1-F5 are unimodal functions, while F6-F20 are
multimodal functions.

For each test problem, the dimension is set as 10 and
each algorithm runs for 30 independent times. Besides, the
population size NP is set as 100. The termination conditions
are set to TES, the function value of termination, equals 1E-
8 and MaxGen, the maximum generation, equals 1000. Once
either of the two conditions is satisfied, this independent run
terminates.

B. Results and Discussion

Table I shows the optimization results of the multiform
JADE compared to the standard JADE and the polar JADE
which utilize the Cartesian and the polar coordinate systems
as formulations, respectively. To further explore how the
performance of the multiform JADE is influenced by the
two coefficients t1 and t2, we fixed t1 as 5, the smaller the
better to be fair, and varied t2 from 20, 30 to 50. Besides, a
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TABLE I: the Median Results on the CEC-2013 Test Benchmark Functions with 10 dimensions.

Function Standard JADE Polar JADE
Multiform JADE

t1 = 5
t2 = 20 t2 = 30 t2 = 50

F1 1.61E−7 1.28E−6 1.04E−8(+,+) 2.30E−8(+,+) 2.63E−8(+,+)
F2 1.03E−8 1.78E+6 1.37E−4(−,+) 4.03e−6(−,+) 8.49E−1(−,+)
F3 1.63E−8 8.53E+1 5.31E−4(−,+) 3.98E+1(−,≈) 2.57E+1(−,+)
F4 8.63E+3 1.18E+4 1.03E+4(≈,+) 1.08e+4(≈,+) 8.68E+3(≈,+)
F5 3.28E−8 1.07E−4 1.03E−8(+,+) 2.45E−8(≈,+) 9.28E−8(−,+)
F6 9.81E+0 1.03E−4 1.09E−7(+,+) 1.16E−8(+,+) 1.03E−7(+,+)
F7 1.27E−8 1.26E−2 1.01E−8(≈,+) 4.07E−8(≈,+) 1.34E−7(≈,+)
F8 2.02E+1 2.02E+1 2.01E+1(+,+) 2.01E+1(+,+) 2.01E+1(+,+)
F9 3.09E+0 1.74E+0 9.99E−1(+,+) 7.89E−1(+,+) 1.50E+0(+,+)
F10 8.84E−3 1.35E−2 1.02E−8(+,+) 1.31E−4(≈,≈) 2.66E−4(≈,≈)
F11 2.43E−8 9.12E+0 1.23E−8(≈,+) 1.83E−7(≈,+) 6.67E−6(−,+)
F12 5.57E+0 7.38E+0 6.47E+0(−,≈) 6.47E+0(−,≈) 6.03E+0(−,≈)
F13 8.17E+0 1.27E+1 1.01E+1(−,≈) 8.97E+0(≈,≈) 7.79E+0(≈,≈)
F14 1.27E−4 2.49E+2 6.26E−2(−,+) 6.26E−2(−,+) 6.26E−2(−,+)
F15 4.92E+2 2.09E+2 3.11E+2(+,−) 3.74E+2(+,−) 2.77E+2(+,≈)
F16 4.16E−1 3.82E−1 2.94E−1(+,≈) 3.01E−1(+,+) 2.32E−1(+,+)
F17 1.01E+1 2.34E+1 1.08E+1(−,+) 1.04E+1(−,+) 1.03E+1(−,+)
F18 1.96E+1 2.77E+1 1.98E+1(≈,+) 2.05E+1(≈,+) 1.93E+1(≈,+)
F19 6.30E−1 6.48E−1 6.36E−1(≈,+) 5.62E−1(≈,≈) 5.00E−1(+,+)
F20 2.54E+0 2.90E+0 2.36E+0(+,+) 2.38E+0(≈,+) 2.52E+0(≈,+)

+ (v.s. Standard JADE, Polar JADE) (9,15) (6,15) (7,16)
− (v.s. Standard JADE, Polar JADE) (6,1) (5,1) (7,0)
≈ (v.s. Standard JADE, Polar JADE) (5,4) (9,4) (6,4)

Fig. 4: Convergence Curves of the Three Algorithms on Unimodal Functions F1-F5

Wilcoxon’s Rank Sum Test [33] at α = 0.05 was conducted
to show the statistical significance between the multiform
JADE and the other two formulations of JADE under the
above three settings of t2. In Table I, We use +,−, and ≈ to
denote ”significantly better”, ”significantly worse”, and ”not
significantly different”, respectively. Through the comparison
of the experimental results, the multiform JADE has exhibited
a promising performance compared with the two basic single-
formulation JADEs.

One potential explanation for the results is that the constant
switching between the two formulations during the evolu-
tionary process keeps the solver evolving in the optimal

formulation overall. For some functions, the currently used
formulations may not be conducive to jumping out of the
domain of local optima. Nonetheless, the multiform JADE al-
ters it to another formulation after comparing the evolutionary
efficiencies, which enables the fitness to converge faster.

Not surprisingly, the standard JADE and the polar JADE
obtain optimal performance on several functions as well.
This is probably because the determination of the dominant
formulation is temporally wrong during periods of evolution in
these problems. If the historical information is not sufficient to
correctly evaluate the suitable formulation, the dominant com-
putational resource will be falsely allocated to a less suitable
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formulation, which will slow down the search efficiency. As
the latency of historical information is inevitable, the ratio of
t1 to t2 plays an essential role because the smaller ratio means
less frequency of updating the dominant formulation. More
latency brings about less accuracy. As shown in Table I, the
multiform JADE with the smallest ratio of t1 to t2 outperforms
the other two multiform JADE.

The convergence curves of the three algorithms on all
test functions are illustrated in Fig. 4 and Fig. 5 where the
parameter t2 of multiform JADE is 30. Among the figures,
multiform JADE is almost the best or the second best in
every generation. Nevertheless, early convergence can also be
found on the curves of F14 and F15. It may result from
the loss of accuracy in converting coordinates, which does
damage to the effect of differential vectors that can push
an individual close to the current optimal solution. On F10,
multiform JADE exhibits an extraordinary search performance
over the two single formulation JADEs, which demonstrates
that the framework successfully evaluates the best formulation
for each stage to accelerate the evolution by alternating the
two formulations. Much to our delight, the curve of F6
illustrates that polar formulation is much better than Cartesian
formulation, which verifies the idea that different formulations
may be suitable for different functions for specific periods.

In short, although this multiform framework combined with
JADE does not achieve the best results on all test functions,
it shows an overall best performance compared with JADE
and its polar formulation. Furthermore, the curves in Fig. 4
and Fig. 5 suggest that the polar coordinate system, as a
formulation, actually performs better on specific functions in
contrast with the Cartesian one.

V. CONCLUSION

In this paper, a multiform evolutionary framework based
on the concept of ETO is proposed, which can reconcile
different formulations of a single problem. The core idea is
to make full use of different formulations to accelerate the
evolutionary process. Moreover, a specific algorithm named
multiform JADE is designed based on the proposed framework
and JADE. The proposed method is tested on the CEC2013
benchmark test functions and the acquired results proved their
superiority and the effectiveness of the proposed method.

In the future, we plan to consider utilizing more formula-
tions and better formulation evaluation mechanisms to further
improve the search performance. Besides, extending the pro-
posed framework to multi-objective optimization applications
is another promising research topic.
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