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Abstract—There are significant challenges in designing 

optimization algorithms for constrained large-scale 

multiobjective optimization problems due to numerous decision 

variables and constraints. For example, the decision space size 

exponentially grows with the number of decision variables, and 

constraints restrict the feasible range, increasing the complexity 

of the search space. To solve these problems, this paper presents 

a constrained large-scale multiobjective optimization algorithm 

based on adaptive paired offspring generation (aPOCEA). 

Specifically, an adaptive parameter adjustment strategy is 

proposed to determine the number of solutions in each 

subpopulation and balance the exploration and exploitation 

ability of the algorithm, enhancing the convergence speed of 

aPOCEA. Meanwhile, we propose a parent selection strategy to 

select high-quality parent solutions, increasing the probability of 

generating high-quality offspring solutions. Experimental 

results on ten benchmarks, each with two to three objectives, 

multiple constraints, and hundreds of decision variables, 

demonstrate that aPOCEA outperforms other representative 

optimization algorithms.  

Keywords—Constrained large-scale multiobjective 

optimization, adaptive parameter adjustment strategy, parent 

selection strategy. 

I. INTRODUCTION  

Many decision variables need to be simultaneously 

optimized in many real-world optimization problems (e.g., 

automotive design problems [1], supply chain network 

problems [2]) to achieve multiple conflicting objectives 

subject to constraints. The above problems are known as 

constrained large-scale multiobjective optimization problems 

(CLMOPs), and their mathematical formulation is given as 

follows: 
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where x= (x1, x2, ..., xD) is a decision vector consisting of D 

(usually D≥100) decision variables, Ω represents the decision 

space, M is the number of objectives, and J is the total number 

of inequality and equality constraints. The final goal of solving 

CLMOPs is to obtain a set of Pareto-optimal solutions that 

satisfy the constraints and have good convergence and 

diversity, usually called the Pareto optimal set (POS). The 

image of the POS in the objective space is called the Pareto 

optimal front (POF). 

Scholars have proposed large-scale multiobjective 

evolutionary algorithms (LMOEAs) in the past decade, which 

can be roughly categorized into four types. The first type is 

LMOEAs based on cooperative co-evolution, which optimizes 

decision variables by dividing them into multiple groups and 

optimizing them separately. A representative algorithm in this 

category is the third-generation collaborative coevolutionary 

differential evolution algorithm designed in [3]. The second 

type is LMOEAs based on decision variable analysis, which 

uses a mechanism for analyzing decision variables and 

obtaining the optimal grouping of decision variables. A 

representative algorithm of this type has been proposed by Ma 

et al. [4]. The third type is LMOEAs based on problem 

transformation, which transforms the original large-scale 

problem into a small-scale problem through a problem 

transformation function. For example, the weight optimization 

framework proposed by Zille et al. [5] optimizes the weight 

vector instead of optimizing the decision variables, 

transforming the original large-scale problem into a small-

scale problem. The last type is a search method based on a 

learning strategy, which uses the learning mechanism among 

particles in the original decision space to improve the 

optimization ability of the algorithm. The most representative 

algorithm in this type is large-scale multiobjective 

optimization based on a competitive swarm optimizer 

(LMOCSO), proposed by Tian et al. [6].  

Indeed, a few scholars have proposed constrained large-

scale multiobjective evolutionary algorithms (CLMOEAs). 

Regis et al. [1] propose a non-population-based algorithm to 

handle large-scale problems with ordinal discrete variables 

and multiple black-box constraints. Zhang et al. [2] develop 

an auxiliary population-based co-evolutionary algorithm to 

solve the constrained large-scale multiobjective supply chain 

network problem. He et al. [7] introduce a paired offspring 

generation-based EA (POCEA) to highlight the importance of 
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generating valuable feasible or functional infeasible solutions 

through offspring generation.  

To improve the search efficiency of the algorithm and 

handle infeasible solutions effectively, this paper presents a 

CLMOEA based on adaptive paired offspring generation 

(aPOCEA). The specific contributions of this paper are 

summarized as follows: 

1) This paper presents an adaptive parameter adjustment 

strategy to balance the exploration and exploitation of the 

algorithm and ensure the stability and flexibility of the 

aPOCEA, increasing the convergence speed of the aPOCEA. 

2) We propose a parent selection strategy that uses the 

reference vector-guided EA (RVEA) selection strategy [8] 

and the tournament selection strategy to improve the quality 

of the parent solutions, significantly increasing the 

probability of generating high-quality offspring solutions. 

3) We conduct a comprehensive empirical study on a set of 

CLMOPs to evaluate the performance of the aPOCEA. The 

experimental results show that aPOCEA outperforms other 

representative multiobjective evolutionary algorithms 

(MOEAs), verifying the superiority of the aPOCEA. 

The remainder of this paper is structured as follows. Section 

II provides an overview of the fundamental concepts in 

constrained large-scale multiobjective optimization and 

reviews existing research on CHTs. Section III presents a 

detailed description of the proposed aPOCEA. Section IV 

outlines the experimental setup and presents the experimental 

results of aPOCEA compared to three representative 

CMOEAs on benchmark problems. Finally, we conclude in 

Section V. 

II. RELATED WORK 

This section overviews the basic concepts in constrained 

large-scale multiobjective optimization. Subsequently, we 

discuss the existing CHTs solving CLMOPs. 

A. Basic Concept 

Definition 1: Pareto Dominance 

The Pareto dominance is used to evaluate feasible solutions 

in multiobjective optimization problems. If x1 and x2 are two 

solutions, x1 dominates x2 (x1 ≺ x2) if the objective values of x1 

are not greater than the objective values of x2 for all objectives, 

and the objective values of x1 are strictly less than the objective 

values of x2 for at least one objective. A solution x* is Pareto 

optimal if no other solution can dominate it.  

Definition 2: Constraint Violation (CV) 

The CV is widely used to evaluate the extent to which a 

solution x violates constraints, and its mathematical 

description is as follows: 
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If the CV value of x is greater than 0, then x is an infeasible 

solution; if the CV value of x is equal to 0, then x is a feasible 

solution. 

B. Constraint handling techniques 

According to [9], many CHTs have been proposed to solve 

CMOPs, such as penalty function strategies, objective and 

constraint separation methods, methods for transforming 

multiobjective, techniques for transforming CMOPs, hybrid 

methods, and methods of altering the reproduction operators. 

Next, we will discuss these technologies in the following 

subsection. 

1) Penalty function strategies: These strategies add the 

penalty term to the objective function to convert the 

constrained problem into an unconstrained optimization 

problem [10]. However, determining the penalty factor can be 

difficult because it may affect algorithm performance [11]. To 

surpass this difficulty, researchers have proposed adaptive 

penalty functions [12] that adjust the penalty factor based on 

feedback from the search process.  

2) Separation of objectives and Constraints: The basic idea 

of the goal and constraint separation method is to help the 

population converge by comparing the goal and constraint 

separately, which mainly includes the constrained domination 

principle (CDP) [13], ε constraint [14], and stochastic ranking 

(SR) [15]. The CDP selected individuals according to their 

feasibility and Pareto dominance relationship. The ε 

constrained relaxes constraints using the parameter ε. The CV 

value of a solution less than ε is considered feasible. The SR 

method compares two solutions based on their objective 

values using the probability pf, and based on their CV values 

with the probability 1-pf.  

3) Method for transforming multiobjective: To solve 

CMOPs, constraints can be treated as objective functions and 

transformed into multiobjective optimization problems 

(MOPs), which could be solved by MOEAs [16]. Peng et al. 

[17] developed a CHT based on directed weights to handle 

CMOPs by considering CV value as an objective.  

4) The method of converting CMOPs: To solve CMOPs 

more efficiently, some scholars have attempted to transform 

CMOPs into other problems (e.g., two-stage optimization 

problems) and have achieved good results. For example, 

Wang et al. [18] proposed a collaborative differential 

evolution framework with m subpopulations, each of which 

optimizes a constrained objective.  

5) Hybrid Approaches: A hybrid method for solving 

CMOPs integrates several CHTs into different evolutionary 

stages or subpopulations. Wang et al. [19] proposed an 

adaptive trade-off model based on various search scenarios. If 

there are no feasible solutions, a multiobjective method 

handles constraints. A penalty function selects the next 

generation if the population has feasible and infeasible 

solutions. If the population only has feasible solutions, the 

comparison is based on objective values.  

6) Methods of Altering Reproduction Operators: These 

methods focus on the design of reproduction operators. Yu et 

al. [20] designed a mutation mechanism for infeasible and 

feasible solutions. He et al. [7] proposed the POCEA, 

highlighting the importance of offspring generation for finding 

promising feasible or practical infeasible offspring solutions. 

III. PROPOSED APOCEA 

This section first introduces the basic framework of the 

proposed aPOCEA, followed by its components in detail.  

A. The basic framework of aPOCEA 

The pseudo-code for the basic framework of the aPOCEA 

is shown in Algorithm 1. For a given CLMOP, a set of N 

random solutions is generated to form the initial population P. 

Then, the population evolves iteratively until the termination 

criteria are met. In each generation, the aPOCEA firstly uses 

the parent selection strategy to obtain the parent population 
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and subsequently uses the adaptive pairing offspring strategy 

to generate the offspring population Q. During this period, the 

aPOCEA introduces the generation method of uniformly 

distributed reference vectors in [21] and [22] to generate unit 

reference vectors and uses them to guide offspring generation 

in different subregions. Afterward, the aPOCEA uses the 

environmental selection operator to select promising solutions 

from the combination of P and Q to update the population. It 

is worth noting that the size of the reference vector set V' is 

1/K of |V|, where K is the neighborhood size.  

B. Parent Selection Operator 

The reference vector-guided selection strategy proposed in 

[8] can effectively ensure the convergence and diversity of 

solutions in subregions, promoting the discovery of several 

convergent and diverse solutions in global search. Therefore, 

to ensure the quality of parent solutions, the selection strategy 

introduced in [8] is used to select solutions with good 

convergence and diversity to form a preliminary parent 

population. The pseudo-code of the reference vector-guided 

selection strategy is shown in Algorithm 2. In this strategy, the 

detailed formula for calculating the angle penalized distance 

(APD) value is as follows: 
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where M is the number of objectives, and V is the set of 

reference vectors. t is the current iterations, and tmax is the 

predefined maximum number of iterations. α is a user-defined 

parameter, fi’ refers to the ith normalized objective vector of 

the candidate solution xi and θi,j indicates the angle between fi’ 

and vi.  

To effectively utilize the high-quality parent solutions, the 

parent selection strategy replicates selected solutions and 

subsequently uses tournament selection to choose feasible 

solutions with good convergence. Specifically, solutions are 

sorted using the Pareto dominance relationship based on 

objective values. For solutions on the same Pareto level, their 

CV values are compared, with the solution having a smaller 

value of CV being selected as a parent solution for the next 

generation. This ensures that parent solutions have good 

objective function values and satisfy constraints as much as 

possible.  

C. Adaptive pairwise offspring generations Strategy 

During the evolutionary process, if the algorithm overly 

prioritizes global search ability, it may lead to poor population 

diversity. Conversely, suppose the algorithm emphasizes its 

local search ability too much, it may result in a significant gap 

between the population and the true POF. Balancing the global 

and local search ability of the algorithm is, therefore, a 

considerable challenge. The paired offspring generation 

strategy in POCEA balances local and global searches by 

constructing different subpopulations and taking advantage of 

infeasible but well-converged solutions, addressing this 

challenge. The main procedure is as follows: 

1) Solution Association: To better adapt to irregular POF, 

avoid premature convergence, increase population diversity, 

and search for optimal solutions in different directions, the 

solution association strategy introduced in POCEA divides the 

population into multiple subpopulations. Fig. 1 shows an 

example of solution association, where each reference vector 

is associated with two candidate solutions. For example, the 

solution sets {x1, x2}, {x4, x6}, and {x5, x8} are associated with 

v1', v2', and v3', respectively. 

2) Construction of subpopulations: A large angle between 

the candidate solution and the reference vector suggests no 

Pareto-optimal solutions between neighboring reference 

vectors. In this case, some well-converged candidate solutions 

from the current population will be merged into the 

subpopulation for better convergence. In addition, if some 

well-converged but infeasible solutions exist in the 

subpopulation, their CV value can be relaxed to cross the 

infeasible region. Based on these two situations, the 

subpopulation construction strategy introduced in POCEA is 

presented in Algorithm 3.  

3) Paired Competition: The paired competition strategy in 

POCEA considers both convergence degree and CV value. If 

the CV values of both solutions are less than ε, they are 

considered feasible solutions, and the Euclidean distance is 

further compared to select the solution with a smaller 

Euclidean distance as the winning solution. If the CV values 

of both solutions exceed ε, then the solution with a smaller CV 

is selected as the winning solution. This method can improve 

population convergence and select solutions near the feasible 

region in the objective space, gradually moving the population 

toward the feasible region. 

4) Offspring generation: After the competition, solutions 

can use the particle swarm update strategy in [23] to learn from 

winners and losers and generate offspring. Genetic operators 

like simulated binary crossover and polynomial mutation [24] 

Algorithm 1: Basic Framework of aPOCEA 

Input: N (population size), tmax (maximum number of generations), V’= 

{v’1, ..., v
’
L} and V= {v1, ..., vL} (two sets of uniformly distributed 

reference vectors). 
Output: P (final population). 

1: P = Initialization(N); 

2: while termination criterion is not fulfilled do 

3:   P’= Parent Selection Operator (P); 

4:   Q = Adaptive Paired Offspring Generation Strategy (P’, V’); 

5:   P = Environmental Selection Operator (P∪Q, V); 

6: end while 

 

Algorithm 2 RVEA Selection 

Input: P= {p1, ..., pN} (population) and V= {v1, ..., vW} (uniform 

reference vector set). 
Output: Parent P’, APD. 

1: P’=Ф; 
2: z = Calculate the ideal point of P; 

3: for i = 1: N do 

4:   f i
’ = fi - z; 

  
 

5:   for j = 1: W do 

6:     
,cos

i j

i j

i

f v

f
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; 

7:   end for 

8:   𝒌 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{1,…,𝑊} 𝑐𝑜𝑠 𝜃𝑖,𝑗;  

9:   𝑺𝒌 = 𝑺𝒌 ∪ {𝒑𝒌}; 
10: end for 

11: for j = 1: W do 

12:   for i = 1: |Sj| do 

13:     ( ), , ,i j i j id APD  = f ; 

14:   end for 

15:   𝒌 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒊∈{𝟏,…,|𝑺𝒋|} 𝒅𝒊,𝒋; 

16:   𝑷′ = 𝑷′ ∪ {𝒑𝒌}; 
17: end for 
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can be used to generate offspring. This strategy is effective for 

high-dimensional problems as the preference of the winners 

provides a specific direction. 

However, the paired offspring generation strategy in 

POCEA has some limitations. For example, it requires a 

manual setting of parameters, which impacts the performance 

and stability of the algorithm. Additionally, the quality and 

quantity of parent solutions affect the offspring generation 

method. There needs to be high-quality parent solutions to 

ensure the quality and distribution of offspring solutions. To 

address the above problems, we propose targeted strategies. 

We introduce a parent selection strategy in sector B for the 

second limitation. We propose a paired offspring generation 

strategy using parameter adaptation to address the first 

limitation, as outlined in Algorithm 4. First, the adaptive 

paired offspring generation dynamically changes the 

neighborhood size according to the ratio of the current 

iteration number to the maximum iteration number, and the 

distribution and quality of solutions, to adaptively balance the 

global and local search abilities of the algorithm. Second, the 

CV values of all candidate solutions in the current population 

are calculated, along with the percentage of feasible solutions, 

and these candidate solutions are associated with different 

reference vectors to construct a subgroup for each reference 

vector. Finally, candidate solutions in the same subpopulation 

are paired, and offspring are generated. Next, we will briefly 

analyze the parameter K and provide a detailed introduction to 

the proposed parameter adaptation strategy. 

a) Parameter analysis: The parameter K in the algorithm 

represents solutions associated with each reference vector. It 

determines the selection range of solutions in each 

subpopulation, influencing the trade-off between local and 

global search capabilities. The larger the value of K, the 

stronger the global search ability and the weaker the local 

search ability, and vice versa. Specifically, If the value of K is 

larger, then more solutions are selected in each subpopulation, 

which will have more chances to generate different new 

solutions, increasing the ability of the algorithm to find the 

optimal solution in the whole search space. Conversely, if K is 

small, solutions within each subpopulation are more 

concentrated and have sufficient pressure to converge toward 

optimal solutions, increasing the ability of the algorithm to 

search for optimal solutions in local regions. 

b) Adaptive strategy for parameter: Based on the parameter 

analysis, we adopt two adaptive strategies, one based on the 

ratio of the current number of iterations to the maximum 

number of iterations and the other based on the distribution 

and quality of the solutions in the current population. In detail, 

an enormous K value is needed in the initial stage to enhance 

global search capability, explore more solution space, and 

avoid falling into local optimal solutions. In contrast, a smaller 

K value is needed in the later stage to enhance local search 

capability, improve solution accuracy, and find better 

solutions. At the same time, the adaptive strategy adjusts the 

K value dynamically based on population diversity and 

solution quality, enabling different search capabilities in 

different situations. Specifically, a smaller K value is needed 

to enhance local search capability and promote convergence 

of the population to the true POF when the solutions in the 

population are more dispersed and high-quality; conversely, a 

larger K value is needed to enhance global search capability 

and explore more solutions. Based on the above principles, the 

adaptive strategy introduces the APD in RVEA to characterize 

the quality of solutions in the current population. The smaller 

the APD, the better the quality of solutions and the better their 

convergence and diversity. Therefore, the convergence and 

diversity of solutions in the current population are poor when 

the APD value of solutions is large. At this time, the K value 

should remain small to enhance the global search capability of 

the algorithm and explore more solutions; vice versa.  

D. Environment selection operator 

The reference vector-guided selection strategy proposed in 

[12] manages convergence and diversity within subspaces of 

the objective space and handles optimization problems with 

complex POF characteristics. The environmental selection 

operator also uses this strategy to select solutions with good 

convergence and diversity from the mixed parent population 

P and offspring population Q as the next-generation 

population.  

IV. EXPERIMENTATION 

In this section, we perform experiments on the PlatEMO [25] 

platform utilizing MATLAB language to compare our 

algorithms with three representative MOEAs, including 

CMOEA/D [26], LMOCSO [6], and POCEA [7], as 

introduced in Table I. The study examines the performance of 

algorithms on ten benchmark problems ranging from CF1 to 

 
Fig. 1 Example of solution association, x1, x2, ..., x8 are eight candidate 

solutions, {v1', v2', v3'} is a set of uniformly distributed reference vectors, 

where θ83 denotes the angle between the candidate solution x8 and the 
reference vector v3'. 
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Algorithm 3 Subpopulation Construction 

Input: 
  

V’= {v’1, ..., v
’
L}

 
(unit reference vector set), P (current 

population), K (neighborhood size), d= (d1, ..., dL) (Euclidean distance), 

1( ,..., )L  =  (angle sets associated to each reference vector). 

Output: S (subpopulation sets, ℇ (CV tolerance). 
1: S’=Select K solutions with the minimal d; 

2: For i=1: L do 

3:   if   
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K
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=

   then 

4:      Si=Si∪S’ 

5:      CV’ = Constraint_Violation (Si); 

6:     )'max(CVi = ; 

7:   else
 

8:      CV’ = Constraint_Violation (Si); 

9:     
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−+=

K

k

ki CV
k

rfrfCV

1

'1
)1()'min( ; 

10:   end if  

11: end for 

12: ),...,,( 21 L=ε ; 

13: S= {S1, ..., SL}; 
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CF10 [27]. 

A. Experimental Settings 

We used the recommended parameter settings to ensure fair 

comparisons and implemented all the compared algorithms in 

PlatEMO [25]. The termination condition for our experiments 

was the maximum number of function evaluations (FEs). 

1) Parameter Settings: The population size was set to 100 

for parents and offspring, and the number of decision variables 

varied between 100 and 200. The maximum number of FEs 

was 3000 times the number of decision variables (D) for each 

test instance. For the CMOEA/D algorithm, the neighborhood 

size (T) was set to N/10, where N is the population size. The 

probability of choosing parents locally (δ) was set to 0.9, and 

the maximum number of solutions replaced by each offspring 

(nr) was set to 3. In POCEA, the parameter K was set to 5.  

2) Performance Indicators: The experiments utilize the 

inverted generational distance (IGD) [28] indicator to evaluate 

the performance of each CMOEA. The mathematical formula 

for this metric is as follows: 

  *
( , )

( *, )
*

x P
dis

IGD P
P




 =
 x

 (4) 

where P* represents a set of evenly distributed reference 

points on the Constrained Pareto Front, Ω denotes the set of 

obtained feasible and non-dominated solutions, and dis (x, Ω) 

represents the minimum Euclidean distance between x and 

points in Ω. It should be noted that a smaller IGD value 

indicates better performance of the tested algorithm. 

In the following experiments, each algorithm is 

independently run 30 times on each test problem. The results 

obtained by two CMOEAs are compared using the Wilcoxon 

rank-sum test [29] at a significance level of 0.05. Symbols "+", 

"-", and "=" indicate that the compared algorithm is 

significantly better than, substantially worse than, or 

statistically tied by the last MOEA.  

B. Algorithm Comparison 

This section compares aPOCEA with three algorithms (i.e., 

CMOEA/D, LMOCSO, and POCEA). Table I presents 

comparison results of the above four algorithms regarding 

IGD values.  

These comparison results of the IGD values show that the 

proposed aPOCEA performs excellently in solving ten 

benchmark problems with different decision dimensions. 

More specifically, CMOEA/D outperforms aPOCEA on CF1, 

CF5, CF7, CF9 (D=200), and CF2 (D=100, 200). Conversely, 

aPOCEA performs better than CMOEA/D on the remaining 

test instances. The varying performance of the two algorithms 

can be attributed to their different search strategies and 

parameter settings. CMOEA/D decomposes the 

multiobjective problem into single-objective sub-problems 

and solves them simultaneously, effectively handling complex 

Pareto fronts and non-convex shapes. On the other hand, 

aPOCEA employs a parameter adaptive strategy to balance 

global and local search capabilities, maintaining diversity and 

convergence. LMOCSO outperforms aPOCEA on CF8 with 

D=100 and 200 and CF9 with D=100. Conversely, aPOCEA 

performs better than LMOCSO in other instances. The reason 

behind these differences in performance could be attributed to 

the specific characteristics of each test instance. LMOCSO 

may be better suited for this problem due to its powerful search 

capability. On the other hand, the parameter adaptive strategy 

of the aPOCEA may be more effective in other instances 

where maintaining diversity and convergence is critical for 

achieving good performance. aPOCEA and POCEA have 

similar performance on CF2, CF6 (D=100), CF3, CF9 (D=100, 

200), and CF10 (D=200) test instances. However, aPOCEA 

outperforms POCEA in the other test instances. This may be 

because aPOCEA incorporates a parental selection strategy to 

enhance the probability of generating promising offspring 

solutions. Additionally, aPOCEA uses a more adaptive 

parameter setting mechanism, which allows it to better adapt 

to the specific characteristics of each test instance.  

V. CONCLUSION 

This paper presents an improved MOEA based on POCEA 

for solving CLMOPs. aPOCEA introduces two critical 

improvements compared to the original algorithm. Firstly, it 

replaces the fixed K value with a parameter adaptive strategy, 

reducing the difficulty and sensitivity of parameter selection 

and enhancing the robustness and universality of the algorithm. 

Secondly, aPOCEA incorporates a parental selection strategy 

to enhance the likelihood of generating promising offspring 

solutions by selecting high-quality parents, guiding the 

population towards convergence with the POF, and improving 

algorithm convergence speed. However, it is worth noting that 

aPOCEA may not perform as effectively as different 

algorithms when the dimension of decision variables exceeds 

200. Therefore, in the future, we will focus on developing 

strategies to handle high-dimensional decision variables in 

CLMOPs. 
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TABLE I. STATISTICS OF IGD RESULTS ACHIEVED BY CMOEA/D, LMOCSO, AND POCEA ON 30 TEST INSTANCES. THE BEST RESULT IN 

EACH ROW IS HIGHLIGHTED, AND NAN INDICATES THAT NO FEASIBLE SOLUTION IS FOUND. 
 

Problem D CMOEA/D LMOCSO POCEA aPOCEA 

CF1 
100 1.59e-1(7.93e-2) - 1.61e-1(9.30e-3) - 1.97e-1(7.73e-3) - 1.19-1(2.18e-2) 

200 5.05e-2(1.49e-2) + 1.74e-1(7.36e-2) - 2.13e-1(7.73e-3) - 1.23e-1(2.24e-2) 

CF2 
100 3.33e-1(1.65e-1) + 6.19e-1(1.23e-1) = 5.61e-1(8.24e-2) = 6.39e-1(2.73e-1) 
200 1.70e-1(1.10e-1) + 8.17e-1(4.29e-1) = 8.02e-1(1.29e-1) - 7.71e-1(6.36e-1) 

CF3 
100 1.67e+0(1.02e+0) - 1.22e+0(5.72e-2) - 5.52e-1(1.02e-1) - 3.91e-1(1.17e-1) 

200 3.86e-1(2.34e-1) = 3.47e+0(2.05e+0) - 4.43e-1(1.85e-1) = 4.19e-1(1.87e-1) 

CF4 
100 3.99e-1(1.37e-1) = 5.82e+0(3.12e+0) - 3.28e+0(5.90e+0) - 3.58e-1(6.58e-2) 
200 3.76e-1(1.07e-1) = 4.05e+1(3.0e+1) - 1.97e+1(2.19e+0) - 3.63e-1(5.88e-2) 

CF5 
100 3.94e+1(4.17e+1) - 4.17e+1(1.20e+1) - 2.1e+1(3.21e+0) - 3.58e+0(1.42e+0) 

200 5.43e-1(9.88e-2) + 8.03e+1(8.21e+0) - 4.98e+1(3.57e+1) - 7.30e+0(1.94e+0) 

CF6 
100 5.08e+0(3.43e+0) - 1.68e+0(1.28e+0) - 5.21e-1(1.18e-1) = 4.70e-1(1.09e-1) 

200 5.97e-1(8.86e-2) - 1.73e+1(1.58e+1) - 2.72e+0(1.89e+0) - 4.81e-1(1.23e-1) 

CF7 
100 4.89e+1(3.56e+1) - 5.55e+1(1.42e+1) - 4.45e+1(1.33e+1) - 5.17e+0(1.58e+0) 

200 4.43e-1(9.87e-2) + 1.43e+2(1.26e+1) - 1.28e+2(9.12e+1) - 1.19e+1(2.33e+0) 

CF8 
100 NAN(NAN) - 2.53e-1(9.20e-2) + 1.12e+0(3.15e-1) - 5.65e-1(8.25e-2) 

200 NAN(NAN) - 3.13e-1(5.92e-2) + 8.90e-1(2.93e-1) - 5.41e-1(3.98e-2) 

CF9 
100 7.52e-1(2.44e-1) - 1.70e-1(2.68e-2) + 6.24e-1(1.57e-1) = 6.62e-1(1.87e-1) 

200 3.99e-1(3.44e-1) + 9.33e-1(6.28e-1) = 6.10e-1(1.51e-1) = 6.47e-1(1.40e-1) 

CF10 
100 NAN(NAN) - 5.04e-1(5.95e-1) = NAN(NAN) - 5.14e-1(0.0e+0) 

200 NAN(NAN) - 5.33e-1(3.92e-2) = 6.47e-1(8.98e-2) = 5.94e-1(0.0e+0) 

+/-/= 6/11/3 3/12/5 0/14/6  
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