
Energy-efficient Hot-rolling Scheduling of
High-quality Steel Products

Ziyan Zhao∗, Zikuo Bian∗, Chenglong Wang†, Kun Zou∗, Shixin Liu∗‡
∗ College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China

† Shandong Iron & Steel Group Rizhao Co., Ltd, Rizhao, 276800, China
‡ The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China

zhaoziyan@mail.neu.edu.cn

Abstract—Steel production involves many energy-intensive
processes. Under the goal of carbon peak and carbon neutrality,
it is essential to study the steel production scheduling problems
aiming at energy saving to realize the green manufacturing of
steel production processes. Aiming at the hot rolling process of
high-quality steel products, a novel energy-saving production
scheduling problem is studied in this paper. Unlike existing
research, this paper additionally considers temperature con-
straints and the optimization of temperature-keeping equipment
assignment in producing high-quality steel products. To solve it
efficiently, this paper presents an improved simulated annealing
algorithm where destruction and construction strategies from
iterated greedy algorithms are embedded into it. Experimental
results show that the presented algorithm has obvious advantages
compared with other competitive peers. Its excellent solution
performance means its great application potential.

Index Terms—Green manufacturing, production scheduling,
temperature-keeping equipment assignment, simulated annealing
algorithm, destruction and construction.

I. INTRODUCTION

Steel production is a basic industry with complex produc-
tion systems [1]. Many processes during production, such
as steelmaking and hot rolling, are energy-intensive. Under
the pressure of energy and environment on a global scale,
achieving energy saving and efficiency improvement in the
production process is an important demand of the steel in-
dustry [2]. In steel production processes [3], steelmaking is
responsible for the smelting of molten steel. The molten steel
after smelting is solidified into slabs (at high temperature) by
a continuous casting machine and crystallizer in a continuous
casting process. The slabs are then processed into steel strips
of given specifications by a rolling mill in a hot rolling
process [4]. A hot rolling process requires the slabs to reach
a certain temperature before entering a rolling mill. Under
ideal conditions, the slabs produced by continuous casting
are processed directly into a hot rolling mill in turn, which
can make full use of heat energy [5]. However, due to the
constraints of a hot rolling process, hot slabs obtained from
continuous casting often cannot be directly into the billet in
order, resulting in a gradual decline in the temperature of some
slabs. Those not reaching the required temperature need to
go through a heating furnace before entering a rolling mill,
consuming a lot of energy. Therefore, hot rolling scheduling
aims to optimize the processing sequence of slabs under the

premise of meeting the process constraints to achieve the goal
of energy saving and efficiency improvement.

For some high-quality steel products, such as stainless ones,
the above process is more complex. They require that the slabs
produced by a continuous casting machine must be kept above
a certain temperature before entering a rolling mill. Otherwise,
their microstructure and properties would change, resulting
in unqualified products. For such high-quality steel products,
in order to maintain the temperature, it is necessary to add
temperature-keeping equipment between continuous casting
and hot rolling processes. Temperature holding hoods and
soaking pits are typically equipment. The former is simply to
cover the hot slabs to slow down the speed of temperature
drop, which is characterized by that the insulation process
does not consume additional energy but the insulation time
is limited. The latter is usually heated by burning gas, which
is characterized by continuous heat preservation but additional
energy consumption. Therefore, for the hot-rolling scheduling
of such high-quality steel products, additional consideration
is needed to optimize the assignment of temperature-keeping
equipment for each slab to further achieve energy saving and
efficiency improvement in the production process. A basic
hot-rolling scheduling problem can be reduced to a traveling
salesman problem, which is a well-known NP-hard problem
that cannot be solved precisely in polynomial time. Existing
research mostly presents meta-heuristic algorithms to solve it
[6]–[9]. The complexity of a hot-rolling scheduling problem
of high-quality steel products considering the optimization
of temperature-keeping equipment assignment is further in-
creased. Thus, it is also NP-hard.

Hot rolling is a typical process of equipment performance
degradation due to the gradual wear of rollers. When the rolls
wear to a certain extent, they need to be changed by new
ones. The hot-rolling production between two roller changes
is called a rolling unit. Hot-rolling scheduling problems can
be divided into the ones in a single/multiple rolling unit(s).

Hot-rolling scheduling in a single rolling unit optimizes the
slab production sequence within it, which can be translated
into a traveling salesman problem and its variants. Kosiba et
al. [10] study such a problem for the first time, transform
it into a traveling salesman problem, and adopt the precise
algorithm proposed by Miller and Pekny [11] to solve it.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 482

Tang and Wang [12] study a two-stage hot-rolling scheduling
problem, which considers joint scheduling of reheating furnace
and rolling mill. To solve it, the authors propose a scatter
search algorithm for the first stage and a decision tree-based
heuristic algorithm for the second stage. Li and Tian [13]
study a dual-objective optimization problem for the joint
scheduling of reheating furnaces and rolling mills. The two
objectives of minimizing the unnecessary heating time in a
heating furnace and minimizing the total switch cost in a hot
rolling process are considered. To solve it, an improved multi-
objective differential evolution algorithm is designed.

Hot rolling scheduling in multiple rolling units simultane-
ously optimizes the slab batching, slab production sequence
within each rolling unit, and the production sequence of rolling
units. It can be translated into a multiple traveling salesman
problem [14] or a vehicle routing problem [15]. Tang et al.
transform such a problem into a multiple traveling salesman
problem with the goal of minimizing the total switch cost
and solve it by designing an improved genetic algorithm
[14]. Zhang et al. study a hot-rolling scheduling problem
of compact steel strips [16]. The authors transform it into
a variant of the multiple traveling salesman problem, and
design a method combining fruit fly optimization algorithm
and variable neighborhood search to solve it. To handle the
problem of steel grade jump of continuous rolling slabs, Chen
et al. study a hot-rolling scheduling problem of compact steel
strips with virtual slab considered [17], and designed a two-
stage method to solve it. In the first stage, a precise method
is used to solve the problem of slab batching. In the second
stage, an artificial bee colony algorithm is designed to solve
the scheduling problem.

Existing research does not take into account the hot rolling
process of high-quality steel products with temperature con-
straints and multiple temperature-keeping equipment. Aiming
at this process, this paper studies an energy-saving hot rolling
scheduling problem to minimize the number of rolling units
and the energy consumption for temperature keeping. It makes
the following contributions:

1) It proposes a novel energy-efficient hot-rolling schedul-
ing problem of high-quality steel products. It considers
the scheduling in multiple rolling units. In addition to
optimizing three subproblems, i.e., slab batching, slab
production sequence within each rolling unit, and the
production sequence of rolling units, the optimization
of temperature-keeping equipment assignment is also
optimized under temperature constraints.

2) It designs an improved simulated annealing algorithm for
solving the concerned problem by introducing destruction
and construction strategies inspired by an iterated greedy
algorithm [18].

The rest of the paper is organized as follows. Problem
descriptions are given in Section II. An improved simulated
annealing algorithm is designed in Section III. Experimental
results are shown and analyzed in Section IV. Conclusions and
future research issues are given in Section V.

II. PROBLEM STATEMENT

A. Problem statement

This study investigates a hot-rolling scheduling problem
with the following characteristics. I jobs (i.e., slabs) can
be divided into at most J batches (i.e., rolling units) for
production. The number of used batches and the slabs included
in each of them are to be determined. The key to the hot-
rolling scheduling problem lies in the sequencing of the slabs
to be scheduled. The machine can process only one slab at
a time. Slab processing is non-preemptive, which means that
once a slab is being processed, its priority cannot be modified
by other slabs. The width of each of slab i is denoted as di,
which may be different from other slabs. A rolling unit can
be divided into warm-up and main-body parts. In the former,
the slabs are arranged from narrow to wide. In the latter, the
slabs are arranged from wide to narrow. Typically, a hot-rolling
scheduling problem does not consider the slabs in a warm-up
part since there are few slabs in warm-up material [2]. Thus,
in this work, we only consider the scheduling of slabs in the
main-body part.

When the width of a freshly processed slab is smaller than
the upcoming slab to be processed, or when the number of
slabs with decreasing widths in a rolling unit reaches the
maximum value limit K, a roller change operation is required.
Slabs have different release time from the upstream processes,
denoted as ri, and rolling time pi. In actual production, a hot-
rolling mill cannot handle slabs as their released time due to
complex process constraints, resulting in the high-temperature
slabs released from the upstream processes needing to wait.
During the waiting period, the temperature of them gradually
decreases, while the hot rolling process has temperature re-
strictions. Therefore, a decision needs to be made regarding
the temperature-keeping equipment for the high-temperature
slabs in waiting. The available temperature-keeping equip-
ment options are temperature holding hoods and soaking pits.
Different temperature-keeping equipment assignment patterns
are formed based on the waiting time of the slabs before
reaching the hot rolling mill, including two types: rolling after
temperature keeping in a temperature holding hood and rolling
after temperature keeping in a soaking pit as shown in Fig. 1.
The characteristics of the former are that it is energy-efficient
but has an upper limit on temperature-keeping time, denoted
as U . The characteristics of the latter are that it consumes
energy but has no upper limit on the temperature-keeping time.
Let hi represent the temperature-keeping time of the i-th slab
in a soaking pit, where a larger hi indicates higher energy
consumption. Therefore, hi is positively correlated with energy
consumption. The total temperature-keeping time of the slabs
in a soaking pit is used as a measure of the overall energy
consumption.

The concerned hot-rolling scheduling problem determines
the rolling sequence of each slab, i.e., determining in which
rolling unit and at which position within it a slab should
be rolled, and assigns temperature-keeping equipment for the
slabs. Two objective functions are considered in this study.

483

Fig. 1. Illustration of the concerned problem

The first one (f1) is to minimize the total number of rolling
units. The second one (f2) is to minimize the total energy
consumption used for temperature keeping.

Two objective functions considered in this work are treated
by weighted summation as the sole one. Before doing it,
we need to normalize the objective functions. The overall
weighted objective function is defined as:

f = α

[
f1 − f1min

f1max − f1min

]
+ β

[
f2 − f2min

f2max − f2min

]
(1)

The values of f1min, f1max, f2min, and f2max are determined
by considering one objective function separately while tem-
porarily disregarding the other one. This approach allows us
to find the minimum value for one objective function while
simultaneously finding the maximum value for the other objec-
tive function. Let us take f1 as an example. When the objective
function only includes f1, the obtained objective function
value is defined as f1min. Meanwhile, we can calculate f2max

by substituting the solution that minimizes f1 into f2.

III. ALGORITHM DESIGN

This work proposes an enhanced simulated annealing algo-
rithm (referred to as SA DC) for energy-efficient hot rolling
scheduling problems. The framework of the presented SA DC
is given in Algorithm 1. It incorporates destruction and con-
struction strategies arising from iterated greedy algorithms
[18]–[21] into a simulated annealing algorithm (SA) to further
improve its global search ability. It constitutes of encoding and
decoding, initialization, neighborhood search, and destruction
and construction strategies. They are separately introduced as
follows.

A. Encoding and Decoding

During the encoding and decoding process, the encoding
part transforms the solution space of the actual problem into
a data format suitable for algorithmic solving, while the
decoding part converts the algorithm-generated results into a
readable form. It is an important step in metaheuristic algo-
rithms. In the context of the simulated annealing algorithm, a
permutation-based encoding method is suitable, given that the
core of the hot rolling scheduling problem is to solve a sorting

Algorithm 1: Outline of SA DC
Input: Initial solution π0, Objective function value of

the initial solution S0, Parameter T0, Tend, γ,
I1, I2

Output: Best solution πbest, Objective function value
of the best solution Sbest

1 πbest ← π0;
2 Sbest ← S0;
3 for m = 0 to I1 do
4 for z = 0 to I2 do
5 Generate a neighborhood solution π′;
6 Decode the neighborhood solution and generate

a neighborhood solution objective function
value S′;

7 ∆ = S′ − S;
8 l← A random number between 0 and 1;
9 if S′ ≤ S then

10 π ← π′;
11 S ← S′;

12 else
13 if l ≤ exp −∆

T0
then

14 π ← π′;
15 S ← S′;

16 if S ≤ Sbest then
17 Sbest ← S;

18 π ← Destruction&Construction(π);
19 S ← Decoding π to obtain its objective function

value;
20 T0 ← γT0;

21 return πbest,f(Sbest)

problem of the slabs to be scheduled. Hence, we can sort the
slabs to be scheduled according to their production sequence
and use the sorted result as the encoding part of the algorithm.
For example, for a hot rolling scheduling problem involving
four slabs, an encoding π = ⟨[3, 1] , [2, 4]⟩ represents slab 3

484

being produced in the first position of the first batch, slab 1
being produced in the second position of the first batch, slab
2 being produced in the first position of the second batch, and
slab 4 being produced in the second position of the second
batch. First, based on the rolling sequence in the encoding,
determine the number of rolling units and the positions of each
slab in each batch according to their widths. Next, based on
the generated rolling units, calculate the start processing time
for each slab. Let π [q] represent the slab at the q-th position
in the encoding. The calculation method for the start time of
π [q] is as follows:

tπ[q] =



rπ[q], If q = 1

max
{
rπ[q], tπ[q′] + pπ[q] +R

}
, If rollers are

changed between
slabs π [q] and π [q′]

max
{
rπ[q], tπ[q′] + pπ[q′]

}
, Otherwise

(2)

The value of q′ in (2) is taken as q−1, which means q′ = q−1.
Given the start time of a slab π [q], we can obtain hπ[q], which
represents its temperature-keeping time in a soaking pit.

hπ[q] =


tπ[q] − rπ[q], If the waiting time

exceeds U

0, Otherwise
(3)

B. Initialization

Initialization is used to generate an initial solution. As
the presented algorithm is a single-point-based metaheuristic
algorithm, the initialization phase generates only one initial
solution. However, determining what kind of initial solution
to generate requires careful consideration.

Considering that each slab can only be rolled after being
released by upstream processes, we take into account the
release time of each slab. during the generation of the initial
solution. We sort the slabs in the order of increasing release
time. The obtained sequence is used as an initial solution for
the algorithm.

C. Neighborhood Search

Neighborhood search is used to find a local optimum within
the neighborhood of the current solution. In this context,
two types of neighborhoods have been designed: one based
on exchange operations, and the other based on insertion
operations. When considering the neighborhood based on
exchange operations, the neighborhood solutions are obtained
by exchanging two elements in the current solution. When
considering the neighborhood based on insertion operations,
the neighborhood solutions are obtained by taking out one
element from the current solution and inserting it into another
position.

D. Destruction and construction strategies

A basic simulated annealing algorithm demonstrates high
efficiency and effectiveness when solving certain NP-hard

problems. Although it has a Metropolitan acceptance rule to
improve its global search ability, it is easy to get trapped
in local optima. Finding ways to prevent the algorithm from
being trapped in local optima is an important consideration. In
this study, the destruction and construction strategies from an
iterated greedy algorithm are incorporated into a simulated
annealing algorithm, effectively assisting in escaping local
optima.

1) Destruction: A destruction step is the primary way to help
the algorithm escape from local optima by removing a certain
number of elements and breaking the current local optimal
solution. At this stage, the problem to be considered is how
to select the elements to be removed from the current solution
(referred to as the destruction strategy). We know that when
the width of a just processed slab is smaller than the upcoming
slab, or when the number of slabs with decreasing widths in
a rolling unit equals the maximum rolling block limit K for
each batch, a roll change operation is required to form a new
rolling unit for production. We aim to have the number of slabs
in each batch, except the last one, as close as possible to K
. However, during the SA algorithm’s optimization process, it
is prone to get trapped in local optima, which is characterized
by a small number of slabs in the majority of hot rolling
units. To escape from this situation, we design a destruction
strategy. It selects and removes all the slabs in the rolling
unit with the fewest number of slabs from the local optimal
solution generated by the algorithm (if multiple rolling units
have the same minimum number of slabs, randomly choose
one of them).

2) Construction: A construction phase involves reintegrating
the removed slabs from a destruction phase to form a new so-
lution, and it plays a role in escaping from local optima when
combined with a destruction phase. During a construction
phase, two issues need to be considered: a) the order in which
the removed slabs are selected and inserted, and b) where to
insert the selected slabs. In the presented SA DC, construction
is performed in the order of removal, which means following
the sequence of slabs from the rolling unit with the fewest
number of removed slabs in the destruction phase. A greedy
insertion strategy is employed, which selects the best position
among all feasible positions for inserting the selected slabs.
The best position refers to the one that results in the optimal
objective function value after insertion.

The pseudo code for the designed destruction-construction
process is presented in Algorithm 2. In the destruction process,
the rolling unit with the fewest number of slabs is selected
from the current solution π. The removed elements are stored
in πR according to the removal order, while the remaining
elements that were not removed are stored in πD in their
original order. During a construction phase, the elements in
πR are reintegrated one by one into πD at the best possible
positions, resulting in a new solution π′. In determining the
best position for inserting an element, the following criteria
are used: the best position minimizes the objective function
value of πD after insertion. If multiple positions lead to
the same minimum objective function value in πD after

485

insertion, the first position among them is selected. Starting
from the reconstructed solution, another neighborhood search
is performed to obtain a new local optimal solution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental design

To evaluate the performance of the proposed algorithm,
extensive experiments are conducted based on production data
from a steel plant. The data consist of 5 instances. The scales
of them are I ∈ {10, 20, 30, 40, 50}. Five testing algorithms
are compared in terms of their performance, including SA
algorithm with neighborhood search using exchange (referred
to as SA E), SA algorithm with neighborhood search using
insertion (referred to as SA I), taboo search algorithm with
neighborhood search using exchange (referred to as TS E),
taboo search algorithm with neighborhood search using in-
sertion (referred to as TS I), and the presented SA DC.
The number of iterations for each of these algorithms is
set to 200,000. To mitigate the effects of randomness in the
algorithms, each testing algorithm is executed five times for
each instance. The algorithms are implemented in Python and
the experiments are conducted on a laptop computer with 8GB
RAM, Intel Core i5-10210U processor (1.60GHz).

B. Results and comparison

Table I provides a comparison of the average value, vari-
ance, and running time of four algorithms without destruction
and construction strategies, i.e., SA E, SA I, TS E, and TS I.
A smaller average value indicates better algorithm perfor-
mance, implying a higher overall level of solution quality.

Algorithm 2: Destruction and construction strategies
Input: Initial solution π0, objective function value of

the initial solution S0

Output: Improved solution πI

1 πR, πD ← Randomly remove elements from π0 that
belong to the batch with the minimum number of
slabs. Store the removed elements in πR in the order
of removal, while the remaining sequence is stored in
πD;

2 g ← 0;
3 for m = 1 to size(πR) do
4 S∗ ← +∞;
5 for z = 1 to size(πD) + g do
6 πC = πD;
7 πC ←insert the mth element from πR into the

zth position of πC ;
8 if f(πC) ≤ S∗ then
9 p∗ = z;

10 S∗ = f(πC);

11 πI ←insert the mth element from πR into the p∗h
position of πD;

12 return πI ;

Fig. 2. Box plot of the tested algorithms

A smaller variance indicates better stability in algorithmic
solutions. In Table I, we can observe that:
1) A simulated annealing algorithm always shows better per-
formance than a taboo search one with the same neighborhood
search operation;
2) An algorithm with an insertion operation always shows
better performance than the same algorithm with an exchange
operation; and
3) SA I outperforms other three algorithms.
Although 3), upon examining its solution results, we find that
it tends to get trapped in local optima. Therefore, we integrate
destruction and construction strategies into it.

Table II compares the solution performance SA I and
SA DC to evaluate the effectiveness of destruction and con-
struction strategies. The inclusion of the Gap value serves as an
evaluation metric to compare the effectiveness of the improved
algorithm. The Gap value is defined as follows:

Gap =
ObjSA I −ObjSA DC

ObjSA I
× 100% (4)

From Table II, it can be observed that:
1) SA DC yields smaller weighted average values of the
objective function than SA I for each instance scale;
2) The variance is relatively small for SA DC, except for
the instance with a scale of 30. For the other cases, SA DC
exhibits more minor variances compared to SA I, indicating
better solution stability of SA DC; and
3) One limitation of SA DC is that it consumes more running
time than SA I for performing destruction and construction
operations. However, all instances are solved within a time
frame of 51.618 seconds or less, which is sufficiently fast
for industrial applications of interest. Therefore, the proposed
algorithm exhibits significant potential for practical problem-
solving despite the increased computational time.

To visualize the effectiveness of the algorithms, we select
an instance with case 40 and compared their results in a
boxplot as shown in Fig. 2. From Fig. 2, it is evident that
SA DC demonstrates significantly better performance than
other algorithms.

486

TABLE I. Comparison between SA and TS based on two different neighborhood search methods

Case SA E SA I TS E TS I
Obj Deviation Time/s Obj Deviation Time/s Obj Deviation Time/s Obj Deviation Time/s

10 0.986 0 7.43 0.986 0 7.43 1.0 0 7.50 1.00 0 7.35
20 0.573 0.000828 12.9 0.306 0.00189 12.9 1.09 0.0661 12.9 0.500 0 12.5
30 0.344 0.000326 18.9 0.320 0.00138 18.9 0.854 0.0997 18.3 0.435 0.0191 18.1
40 0.793 0.00278 24.1 0.409 0.00294 24.3 1.17 0.0126 23.7 0.466 0 23.8
50 0.954 0.00147 30.8 0.309 0.00336 32.0 1.04 0.0139 31.0 0.357 0 30.0

TABLE II. Comparison between SA I and SA DC

Case SA I SA DC
Obj Gap to SA DC Deviation Time/s Obj Deviation Time/s

10 0.986 0% 0 7.43 0.986 0 8.69
20 0.306 24.5% 0.00189 12.9 0.231 0.000294 19.6
30 0.320 10.6% 0.00138 18.9 0.286 0.00189 36.0
40 0.409 8.80% 0.00294 24.3 0.373 0.00269 42.3
50 0.309 7.44% 0.00336 32.0 0.286 0.00334 51.6

V. CONCLUSIONS AND FUTURE WORK

This study investigates a new energy-efficient bi-objective
hot rolling scheduling problem, considering release time and
the total energy consumption of slabs in soaking pits. The
objective of the problem is to find a schedule for rolling units
of slabs with different energy requirements, while satisfying
the production constraints of hot rolling. The two optimization
objectives are to minimize the number of rolling units and
the total heating time in soaking pits. An improved simulated
annealing algorithm based on the destruction and construction
strategies is introduced to solve the concerned problem. The
experimental results, comparing the performance of five al-
gorithms, demonstrate the high performance of the presented
algorithm with substantial data evidence.

In future research, we plan to explore alternative neighbor-
hood search methods, further investigate the mechanism of
destruction-construction, and fine-tune algorithm parameters
to improve the effectiveness of the algorithm.

ACKNOWLEDGMENT

This work was supported in part by National Key R&D
Program of China under Grant No. 2021YFB3301200, Na-
tional Natural Science Foundation of China under Grant No.
62073069 and 62203093, Guangdong Basic and Applied Basic
Research Foundation under Grant No. 2021A1515110827,
LiaoNing Revitalization Talents Program under Grant No.
XLYC2002041, and Fundamental Research Funds for the
Central Universities under Grant No. N2204016.

REFERENCES

[1] Z. Zhao, X. Yong, S. Liu, and M. Zhou, “Data-driven surplus material
prediction in steel coil production,” in 2020 29th Wireless and Optical
Communications Conference (WOCC), pp. 1–6, IEEE, 2020.

[2] A. Özgür, Y. Uygun, and M.-T. Hütt, “A review of planning and
scheduling methods for hot rolling mills in steel production,” Computers
& Industrial Engineering, vol. 151, p. 106606, 2021.

[3] Z. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi, “Decomposition method
for new single-machine scheduling problems from steel production
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 17, no. 3, pp. 1376–1387, 2020.

[4] Y. Ji, S. Liu, M. Zhou, Z. Zhao, X. Guo, and L. Qi, “A machine learning
and genetic algorithm-based method for predicting width deviation
of hot-rolled strip in steel production systems,” Information Sciences,
vol. 589, pp. 360–375, 2022.

[5] L. Tang, J. Liu, A. Rong, and Z. Yang, “A review of planning and
scheduling systems and methods for integrated steel production,” Euro-
pean Journal of Operational Research, vol. 133, no. 1, pp. 1–20, 2001.

[6] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, “Heuristic scheduling
of batch production processes based on petri nets and iterated greedy al-
gorithms,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 1, pp. 251–261, 2022.

[7] Z. Zhao, S. Liu, M. Zhou, and A. Abusorrah, “Dual-objective mixed
integer linear program and memetic algorithm for an industrial group
scheduling problem,” IEEE/CAA Journal of Automatica Sinica, vol. 8,
no. 6, pp. 1199–1209, 2020.

[8] Z. Y. Zhao, S. X. Liu, and M. C. Zhou, “A new bi-objective batch
scheduling problem: NSGA-II-and-local-search-based memetic algo-
rithms,” in 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 2119–2124, IEEE, 2020.

[9] Z. Zhao, S. Liu, M. Zhou, and X. Guo, “Intelligent scheduling for a
rolling process in steel production systems,” in 2020 IEEE International
Conference on Networking, Sensing and Control (ICNSC), 2020.

[10] E. D. Kosiba, J. R. Wright, and A. E. Cobbs, “Discrete event sequencing
as a traveling salesman problem,” Computers in Industry, vol. 19, no. 3,
pp. 317–327, 1992.

[11] D. L. Miller and J. F. Pekny, “Exact solution of large asymmetric
traveling salesman problems,” Science, vol. 251, no. 4995, pp. 754–761,
1991.

[12] L. Tang and X. Wang, “A two-phase heuristic for the production
scheduling of heavy plates in steel industry,” IEEE Transactions on
Control Systems Technology, vol. 18, no. 1, pp. 104–117, 2009.

[13] K. Li and H. Tian, “Integrated scheduling of reheating furnace and
hot rolling based on improved multiobjective differential evolution,”
Complexity, vol. 2018, 2018.

[14] L. Tang, J. Liu, A. Rong, and Z. Yang, “A multiple traveling salesman
problem model for hot rolling scheduling in shanghai baoshan iron &
steel complex,” European Journal of Operational Research, vol. 124,
no. 2, pp. 267–282, 2000.

[15] M. Tan, H.-l. Yang, B. Duan, Y.-x. Su, and F. He, “Optimizing
production scheduling of steel plate hot rolling for economic load
dispatch under time-of-use electricity pricing,” Mathematical Problems
in Engineering, vol. 2017, 2017.

[16] B. Zhang, Q.-k. Pan, L. Gao, X.-l. Zhang, et al., “A hybrid variable
neighborhood search algorithm for the hot rolling batch scheduling prob-
lem in compact strip production,” Computers & Industrial Engineering,
vol. 116, pp. 22–36, 2018.

[17] Q. Chen, Q. Pan, B. Zhang, J. Ding, and J. Li, “Effective hot
rolling batch scheduling algorithms in compact strip production,” IEEE
Transactions on Automation Science and Engineering, vol. 16, no. 4,
pp. 1933–1951, 2019.

[18] Z. Zhao, M. Zhou, and S. Liu, “Iterated greedy algorithms for flow-shop
scheduling problems: A tutorial,” IEEE Transactions on Automation
Science and Engineering, vol. 19, no. 3, pp. 1941–1959, 2022.

[19] Z. Zhao, S. Liu, M. Zhou, X. Guo, and J. Xue, “Iterated greedy algorithm
for solving a new single machine scheduling problem,” in 2019 IEEE
16th Int. Conf. on Networking, Sensing and Control (ICNSC), pp. 430–
435, 2019.

[20] Z. Zhao, M. Zhou, S. Liu, X. Guo, and H. Liu, “A lexicographic bi-
objective scheduling problem from steel production systems,” IFAC-
PapersOnLine, vol. 53, no. 5, pp. 158–163, 2020.

[21] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem,” European Journal of
Operational Research, vol. 177, no. 3, pp. 2033–2049, 2007.

487

