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Zsófia Lendek
Department of Automation

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

zsofia.lendek@aut.utcluj.ro

Abstract—This paper presents a sliding mode observer based
fuzzy control. The sliding mode observer is developed for a linear
dominant system, but taking into account the model mismatch.
After that a fuzzy state feedback controller is designed. To
ensure the stability of the closed loop system in the presence
of uncertainties, Lyapunov synthesis is used. The results are
illustrated on a numerical example. Simulations on the nonlinear
system are presented to demonstrate the effectiveness of the
observer based control.

Index Terms—sliding mode observer, state feedback control,
linear dominant model

I. INTRODUCTION

The interest in control and estimation of nonlinear models
has increased considerably in recent years, in particular be-
cause of the use of robotic systems. Various control methods
can be found in the literature as backstepping [1], PID control
[2], fuzzy control [3], sliding mode controller [4], predictive
control [5], etc.

For models that are highly nonlinear, analysis and control
can be a difficult challenge. Uncertainties present in the model
can affect the control of the system. Sliding mode observers
are robust estimators that can obtain a good performance.
Such observers can estimate the states despite the modeling
uncertainties and external disturbances. In [6] a sliding mode
controller with a sliding mode observer is presented that is
robust with the respect to uncertainty. An extension to an
affine model of this combination is studied in [7]. The work
[8] compares a Luenberger observer with a sliding mode
observer, and both are used in combination with a sliding
mode controller. Extending the research, generally sliding
mode observers are used with sliding mode controllers [9]–
[12]. In this paper we propose to simplify the equations by
using a linear dominant model for the sliding mode observer
in combination with a fuzzy state feedback controller. For the
observer we use as a reference the work presented in [13].

The goal is to develop a stabilizing fuzzy state feedback
controller that uses the states estimated by a robust sliding
mode observer. This considers the modeling errors and un-
certainties that can appear, and minimizes their effect on the
estimation error. We develop a fuzzy state feedback controller
that uses the estimated states given by the robust observer to
control the system.

For estimation purposes the nonlinear system is approx-
imated with a linear dominant model that includes known
modeling errors and also uncertainties. Then, the system is
transformed such that the measured states are separated from
the unmeasured ones. After that, the sliding mode observer is
designed using Lyapunov synthesis following the development
in [13]. Next, we consider a fuzzy state feedback controller
that uses the states estimated by the robust observer. To prove
the stability of the closed-loop system, a Lyapunov function
is used.

The paper is structured as follows. In Section II the prelim-
inaries are presented, together with the original sliding mode
observer and the problem statement. Section III describes the
main result: the improvement of the observer and the develop-
ment of the feedback controller that uses the estimated states
from the improved sliding observer. Section IV illustrates the
result on a numerical nonlinear system. In Section V the
conclusions and future work are presented.

Notations. We use standard notations, same as in [14].
Consider a real symmetric matrix F = FT ∈ Rn×n; F > 0
or F < 0 denotes that F is positive or negative definite,
respectively. We denote with I the identity matrix, and with
0 the zero matrix of appropriate dimensions. (∗) denotes the
symmetric term.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a nonlinear system having the following form:

ẋ = f(x, u) +Rξ;

y = Cx
(1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input, f
represents the nonlinear system and the uncertainties present
in the model are denoted by ξ, which are considered to be
magnitude bounded as ∥ξ∥ ≤ k1∥y∥, k1 ≥ 0. y ∈ Rny is
the measured output vector and C is the output matrix. The
nonlinear model (1) is approximated by the following fuzzy
model:

ẋ =

s∑
i=1

hi(z)(Aix+Biu) + ψ +Rξ

y =Cx

(2)
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where (Ai, Bi, C) are local models. R is the uncertainty
distribution matrix, z is the vector of premise variables as-
sumed to be known, the number of rules is denoted by s and
hi, i = 1, .., s, are nonlinear membership functions with the
property hi(z) ∈ [0, 1], i = 1, ..., s,

∑s
i=1 hi(z) = 1. The error

between the nonlinear model and fuzzy model is denoted with
ψ and expressed as:

ψ = f(x, u)−
s∑

i=1

hi(z)(Aix+Biu) (3)

To simplify the notations, in what follows, all the convex
sums present in the equations are denoted by the matrix name
present in the sum and subscripts that denote the dependence
on the current state. For instance, Fz =

∑s
i=1 hi(z(t))Fi.

Using such notations, (2) can be written as:

ẋ(t) =Azx(t) +Bzu(t) + ψ +Rξ

y(t) =Cx(t)
(4)

As presented by [15], beside the fuzzy model, we also consider
a linearly dominant model. Thus, we consider:

ẋ = Ajx+Bju+ δj + ψ +Rξ (5)

a model valid in a neighbourhood of 0. The error between the
fuzzy model and the linear model is given by:

δj = (Az −Aj)x+ (Bz −Bj)u (6)

and is completely known.
Given the system (4), our goal is to design a sliding mode

observer

˙̂x =Azx̂+Bzu+ ψ +G1(y − ŷ)−G2N

y =Cx̂
(7)

with the gains G1 for the linear linear and G2 for the nonlinear
part and N being a vector to deal with the uncertainties. We
also consider a fuzzy state feedback controller that is based
on the estimated states:

u = −Kzx̂ (8)

that should asymptotically stabilize the closed-loop system.
Results are developed using the following lemma and prop-

erties:
Lemma 1. (Congruence) Having the matrix P = PT and a

full column rank matrix Q, it holds that:

P > 0 =⇒ QPQT > 0

Property 1. The following property holds for any Q = QT >
0, A and B matrices of appropriate sizes:

ATB +BTA ≤ ATQA+BTQ−1B

Property 2. The following property holds for any A and B =
BT > 0 matrices of appropriate sizes:

−ATB−1A ≤ −AT −A+B

In the following we describe briefly the sliding mode observer
proposed by [13] that our developments are based on. Assum-
ing there exists a linear transformation that will introduce the
outputs as new system states:

v(t) = Tx(t) (9)

with the condition that

CT−1 =
[
0 I

]
; TRξ =

[
0
ξ21

]
(10)

then, (5) can be rewritten as:

v̇ = TAjT
−1v + TBju+ Tδj + Tψ + TRξ (11)

where:

TAjT
−1 =

[
A11

j A12
j

A21
j A22

j

]
; TBj =

[
B11

j

B21
j

]
Tδj =

[
δ11j
δ21j

]
; Tψ =

[
ψ11

ψ21

] (12)

Similarly,

TAzT
−1 =

[
A11

z A12
z

A21
z A22

z

]
; TBz =

[
B11

z

B21
z

]
(13)

The model mismatch is:

δ11j =(A11
z −A11

j )v11 + (A12
z −A12

j )v21

+ (B11
z −B11

j )u

δ21j =(A21
z −A21

j )v11 + (A22
z −A22

j )v21

+ (B21
z −B21

j )u

(14)

Using the notations (12) and (14), (11) can be expressed as:

v̇11 =A11
j v

11 +A12
j v

21 +B11
j u+ δ11j + ψ11

v̇21 =A21
j v

11 +A22
j v

21 +B21
j u+ δ21j + ψ21 + ξ21

(15)

where v21 is measured and known. Define the estimation
errors as:

e11v =v11 − v̂11

e21v =v21 − v̂21

e11δ =δ11j − δ̂11j

e21δ =δ21j − δ̂21j

(16)

with v̂11 and v̂21 being the estimates of v11 and v21 defined
in (18). Denote

δ̂11j =(A11
z −A11

j )v̂11 + (A12
z −A12

j )v̂21

+ (B11
z −B11

j )u

δ̂21j =(A21
z −A21

j )v̂11 + (A22
z −A22

j )v̂21

+ (B21
z −B21

j )u

(17)

The following observer is proposed in [13]:

˙̂v11 =A11
j v̂

11 +A12
j v̂

21 +B11
j u+ δ̂11j +A12

j e
21
v

˙̂v21 =A21
j v̂

11 +A22
j v̂

21 +B21
j u+ δ̂21j + (A22

j −As
j)e

21
v −N

(18)
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with As
j ∈ Rny a design matrix and N and chosen as [13]:

N = −α
∥∥P 21

∥∥P 21−1 e21v
∥e21v ∥

; if e21v ̸= 0 (19)

and 0 otherwise; α is a positive scalar and P 21 ∈ Rny is the
solution of the Lyapunov equation

As
j
TP 21 + (∗) = −Q21 (20)

for a given Q21 ∈ Rny and Q21 = (Q21)T > 0. Note that
since v21 is measured, e21v can be used in the observer. Using
(16), the error dynamics are:

ė11v =A11
j e

11
v + e11δ + ψ11

ė21v =A21
j e

11
v +As

je
21
v +N + e21δ + ψ21 + ξ21

(21)

As stated by [13], it is assumed that the model mismatches
are upper bounded with a known value:∥∥e11δ ∥∥ ≤ k2

∥∥e11v ∥∥+ k3
∥∥e21v ∥∥∥∥e21δ ∥∥ ≤ k4

∥∥e11v ∥∥+ k5
∥∥e21v ∥∥∥∥ψ11

∥∥ ≤ k6;
∥∥ψ21

∥∥ ≤ k7

(22)

for some ki, i = 2, 7. This assumption is realistic because the
states of a physical process can not extend a certain physical
bound, thus the upper limits can be computed. The following
Lyapunov function has been used in [13] to prove the stability
of the error dynamics:

V = e11v
T
P 11e11v + e21v

T
P 21e21v (23)

where P 11 ∈ Rnx , P 11 = (P 11)
T
> 0. Computing the

derivative of (23) results in:

V̇ =(e11v )T ((A11
j )TP 11 + (∗))e11v

+ (e21v )T ((As
j)

TP 21 + (∗))e21v
+ (e11v )T (A21

j )TP 21e21v + (e21v )TP 21A21e11v

+ (e21v )TP 21N + (∗) +
(
(e11v )TP 11(e11δ + ψ11)

)
+ (∗)

+
(
(e21v )TP 21(e21δ + ψ21 + ξ21)

)
+ (∗)

(24)
Let P 11 ∈ R(nx−ny), P 11 > 0 be a solution of the inequality:

A11
j

T
P 11 + (∗) ≤ −Q̃ (25)

where Q̃ > 0 and define Q11 ∈ R(nx−ny), Q11 > 0 as:

Q11 = Q̃−A21
j

T
P 21Q21−1

P 21A21
j

(26)

Furthermore, note that(
e21v − (Q21)

−1
P 21A21

j e
11
v

)T
Q21

(
e21v − (Q21)

−1
P 21A21

j e
11
v

)
= (e21v )

T
Q21e21v − (e11v )

T
(A21

j )
T
P 21e21v − (e21v )

T
P 21A21e11v

+ (e11v )
T
(A21

j )
T
P 21(Q21)

−1
P 21A21

j e
11
v

(27)

Substituting (20) and (25) in (24) and using the notation ẽ21v =

(e21v −Q21−1
P 21A21

j e
11
v ) results:

V̇ ≤− e11v
T
Q̃e11v + e11v

T
A21

j
T
P 21Q21−1

P 21A21
j e

11
v

− (ẽ21v )TQ21ẽ21v + (e21v )TP 21N + (∗)

+
(
e11v

T
P 11(e11δ + ψ11)

)
+ (∗)

+
(
e21v

T
P 21(e21δ + ψ21 + ξ21)

)
+ (∗)

(28)

Substituting (19) and (26) and using the bound of the errors
(22) gives:

V̇ ≤− e11v
T
Q11e11v − (ẽ21v )TQ21ẽ21v

+ 2(−α+ k6 + k7)
∥∥P 21

∥∥∥∥e21v ∥∥
+ 2k5

∥∥P 11
∥∥∥∥e11v ∥∥

+ 2
(
k1
∥∥P 11

∥∥∥∥e11v ∥∥2 + k2
∥∥P 11

∥∥∥∥e11v ∥∥∥∥e21v ∥∥)
+ 2

(
k3
∥∥P 21

∥∥∥∥e11v ∥∥∥∥e21v ∥∥+ k4
∥∥P 21

∥∥∥∥e21v ∥∥2)
(29)

which is negative if the following conditions are satisfied [13]:

eig(Q11) > 2k1
∥∥P 11

∥∥+
2k5

∥∥P 11
∥∥

E11
v

α > k2E
11
v

∥∥P 11
∥∥

∥P 21∥
+ k3E

11
v + k4E

21
v + k6 + k7

(30)
for

∥∥e11v ∥∥ ≤ E11
v and

∥∥e21v ∥∥ ≤ E21
v , where E11

v and E21
v are

known. All the computations up to this point were done in
the transformed model. Returning to the main model (4) the
corresponding robust observer can be expressed as:

˙̂x =Azx̂+Bzu+ ψ +G1(y − ŷ)−G2N

y =Cx̂
(31)

where G1 is the gain for the linear part and G2 is the gain
for the nonlinear part and N is given in (19). The gains are
computed as:

G1 = T−1

[
A12

j

A22
j −As

j

]
; G2 = T−1

[
0
I

]
; (32)

Given the system (4) and the sliding observer similar (31),
our goal is to design an exponentially stable observer together
with fuzzy state feedback controller

u = −Kzx̂

such that the closed loop system

ẋ = Azx+Bz(−Kzx̂) + ψ +Rξ

= Azx−BzKz(x− e) + ψ +Rξ

= (Az −BzKz)x+BzKze+ ψ +Rξ

(33)

is exponentially stable.

III. MAIN RESULT

As mentioned previously, our goal is to design a fuzzy state
feedback controller:

u = −Kzx̂ (34)
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that stabilizes the system (4). The closed-loop system using
the controller (34), is (repeated here for convenience):

ẋ = (Az −BzKz)x+BzKze+ ψ +Rξ (35)

The estimation error dynamics using the observer (31) are :

ė =ẋ− ˙̂x

=(Az −BzKz)x+BzKze+ ψ +Rξ

−Azx̂+BzKzx̂− ψ −G1(y − ŷ) +G2N

=(Az −G1C)e+Rξ +G2N

(36)

To develop the overall design conditions, we consider the
dynamics of x and e that yield the augmented dynamics as:[
ẋ
ė

]
=

[
(Az −BzKz) BzKz

0 (Az −G1C)

] [
x
e

]
+

[
ψ +Rξ

G2N +Rξ

]
(37)

We make the following notations:

x̃ =

[
x
e

]
Ã =

[
(Az −BzKz) BzKz

0 (Az −G1C)

]
D̃ =

[
ψ +Rξ

G2N +Rξ

] (38)

thus (37) can be rewritten as:

˙̃x = Ãx̃+ D̃ (39)

To develop the conditions for the stability of the closed-loop
system a simple quadratic Lyapunov function is considered:

V = xT P̃ 11x+ eTP21e (40)

We split (40) as V1 = xT P̃ 11x and V2 = eTP21e. From
the developments in Section II we have e = T−1ev and we
denote P̃ 21 = T−TP21T

−1. Then V2 can be expressed as
V2 = (ev)

T P̃ 21ev . If the conditions in (30) are satisfied then
it can be easily concluded that V̇2 is negative. Next we compute
the derivative of V1 as follows:

V̇1 =ẋ(t)T P̃ 11x(t) + x(t)T P̃ 11ẋ(t)

=xT
(
P̃ 11(Az −BzKz) + (∗)

)
x+ xT P̃ 11BzKze+ (∗)

+ xT P̃ 11(ψ +Rξ) + (∗)
(41)

To develop conditions for the asymptotic stability of the
system (37), we first develop the design conditions for the
observer such that instead of asymptotic, exponential stability
of the estimation error is ensured. Thus, N is selected such
that it compensate for the terms that multiplies e21v . Starting
from (28) and using the bounding of the errors in (22) gives:

V̇2 ≤− (e11v )
T
Q11e11v + 2k2(e

11
v )TP 11e11v − (ẽ21v )TQ21ẽ21v

≤− (e11v )
T
(Q11 − 2k2P

11)e11v − (ẽ21v )TQ21ẽ21v
(42)

The goal is to obtain V̇2 ≤ −eTv λIev , for some λ > 0.
Substituting back ẽ21v into (42) one obtains:

V̇2 ≤ −(e11v )
T
(Q11 − 2k2P

11)e11v

− (e21v −Q21−1
P 21A21

j e
11
v )TQ21(e21v −Q21−1

P 21A21
j e

11
v )

≤ −eTv λIev
(43)

Rearranging (43) results in:

− (e11v )
T
(Q11 − 2k2P

11 − λI)e11v

− (e21v )
T
(Q21 − λI)(e21v ) + (e21v )

T
P 21A21

j e
11
v + (∗)

− (e11v )
T
A21

j
T
P 21(Q21)

−1
P 21A21

j e
11
v ≤ 0

(44)

We rewrite (44) in a matrix form as:

ev
T

[
Γ45
11 A21

j
T
P 21

(∗) Q21 − λI

]
ev ≥ 0 (45)

with

Γ45
11 = Q11 − 2k2P

11 − λI +A21
j

T
P 21(Q21)

−1
P 21A21

j

Since Q11 = Q̃ − A21
j

T
P 21Q21−1

P 21A21
j , Γ45

11 = Q̃ −
2k2P

11 − λI , (45) is satisfied if:[
Q̃− 2k2P

11 − λI A21
j

T
P 21

(∗) Q21 − λI

]
≥ 0 (46)

Similarly to the developments in Section II, if the following
conditions are satisfied:

α > k2E
11
v

∥∥P 11
∥∥

∥P 21∥
+ k3E

11
v + k4E

21
v + k6 + k7[

Q̃− 2k2P
11 − λI A21

j
T
P 21

(∗) Q21 − λI

]
≥ 0

A11
j

T
P 11 + (∗) ≤ −Q̃

As
j
TP 21 + (∗) ≤ −Q21

(47)

then V̇2 ≤ −eTv λIev . Computing the derivative of (40), replac-
ing V̇1 with (41) and taking into account that V̇2 ≤ −eTv λIev ,
one obtains:

V̇ ≤xT
(
P̃ 11(Az −BzKz) + (∗)

)
x+ xT P̃ 11BzKze+ (∗)

+ xT P̃ 11(ψ +Rξ) + (∗)− eTTTλITe
(48)

Using Property 1 for some ϵ > 0, we have:

xT P̃ 11(ψ +Rξ) + (∗) ≤ xT P̃ 11 1

ϵ
P̃ 11x

+ (ψ +Rξ)T ϵ(ψ +Rξ)
(49)

Assuming that ∥ψ +Rξ∥ ≤ k8∥x∥ gives:

xT P̃ 11(ψ +Rξ) + (∗) ≤ xT P̃ 11 1

ϵ
P̃ 11x+ k28x

Txϵ (50)

Using the notation (38) together with the condition (50), V̇ in
(48) is negative, if:

x̃T
[
Γ51
11 P̃ 11BzKz

(∗) −TTλT

]
x̃ < 0 (51)
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with

Γ51
11 = P̃ 11(Az −BzKz) + (∗) + P̃ 11 1

ϵ
P̃ 11 + k28ϵ

We multiply λ with λλ−1 and apply congruence with
diag((H, H) where H = (P̃ 11)−1, that results in:[

Γ52
11 BzKzH

(∗) −HTTλλ−1λTH

]
< 0 (52)

with

Γ52
11 = (Az −BzKz)H + (∗) + 1

ϵ
I +Hk28ϵH

Applying the Schur complement on Hk28ϵH and using Prop-
erty 2 one obtains:Γ53

11 BzKzH Hk8
(∗) −λHTT + λTH + λI 0
(∗) (∗) − 1

ϵ I

 < 0 (53)

with

Γ53
11 = (Az −BzKz)H + (∗) + 1

ϵ
IBzKzH

We denote Sz = KzH resulting in:Γ54
11 BzSz Hk8

(∗) −λHTT + λTH + λI 0
(∗) (∗) − 1

ϵ I

 < 0 (54)

where
Γ54
11 = (AzH −BzSz) + (∗) + 1

ϵ
I

(54) holds if

2

s− 1
Fii + Fil + Fli ≤ 0 ∀i, l = 1, ..., s (55)

where:

Fil =

Γ56
il BiSl Hk8

(∗) −λHTT + λTH + λI 0
(∗) (∗) − 1

ϵ I

 (56)

and
Γ56
il = (AiH −BiSl) + (∗) + 1

ϵ
I

The results are summarised in the following theorem.
Theorem: Consider system (1) with the corresponding fuzzy

model (2) and linear dominant approximations (5), where the
model mismatches are bounded as:

∥ξ∥ ≤ k1∥y∥∥∥e11δ ∥∥ ≤ k2
∥∥e11v ∥∥+ k3

∥∥e21v ∥∥∥∥e21δ ∥∥ ≤ k4
∥∥e11v ∥∥+ k5

∥∥e21v ∥∥∥∥ψ11
∥∥ ≤ k6;

∥∥ψ21
∥∥ ≤ k7

∥ψ +Rξ∥ ≤ k8∥x∥∥∥e11v ∥∥ ≤ E11
v∥∥e21v ∥∥ ≤ E21
v

If there exists P 11 = P 11T > 0, P 21 = P 21T > 0, Q21 =
(Q21)T > 0, Q̃ = Q̃T > 0, S,H = HT > 0, λ > 0, ϵ > 0
such that:[

Q̃− 2k2P
11 − λI A21

j
T
P 21

(∗) Q21 − λI

]
≥ 0

A11
j

T
P 11 + (∗) ≤ −Q̃

As
j
TP 21 + (∗) ≤ −Q21

α > k2E
11
v

∥∥P 11
∥∥

∥P 21∥
+ k3E

11
v + k4E

21
v + k6 + k7

2

s− 1
Fii + Fil + Fli ≤ 0 ∀i, l = 1, ..., s

(57)

where

Fil =

Γ58
il BiSl Hk8

(∗) −λHTT + λTH + λI 0
(∗) (∗) − 1

ϵ


Γ58
il = (AiH −BiSl) + (∗) + 1

ϵ
I

(58)

then the closed loop system (35) is asymptotically stabilized
by the controller (34) using the states estimated by the
observer (31).

Remark: Note that if (45) holds, then the condition Q̃ −
A21

j
T
P 21Q21−1

P 21A21
j > 0 is satisfied.

IV. EXAMPLE

In this section we illustrate the performances of the pro-
posed method on the nonlinear system:

ẋ1 = −x1 +
3 + sin(x2)

2
x2

ẋ2 =
3− sin(x2)

2
x1 + 6x2 − 2 sin(x2)x2

+ 2u− sin(x2)u+ ξ

y = x2

(59)

where ∥ξ∥ ≤ 0.5∥y∥. For the simulations we use ξ = 0.5x2.
Note that this system is open-loop unstable. The corresponding
fuzzy model is :

ẋ(t) =Azx(t) +Bzu(t) + ψ +Rξ (60)

where

A11 =

[
−1 2
1 4

]
, A21 =

[
−1 1
2 8

]
,

B11 =

[
0
1

]
, B21 =

[
0
3

]
,

C =
[
0 1

]
h1(z) =

sin(z) + 1

2
, h2(z) = 1− h1(z), z = x2.

(61)

Since the model has been obtained using the sector nonlinear-
ity approach, ψ = 0. The linear dominant model is considered
to be:

Aj =
A11 +A21

2
, Bj =

B11 +B21

2
(62)
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The bounds on the errors are: k1 = 0.5, k2 = 1, k3 = k5 = 1,
k4 = 1, k6 = k7 = 1.5, k8 = 1, α = 16, E11

v = 1.5, E21
v = 3,

and they are verified a posteriori. Choosing A22
s = −5, λ = 10

and solving (58) we obtain the observer gains

G1 =

[
1.5
11.5

]
; G2 =

[
0
1

]
(63)

and controller gains

K1 =
[
3.21 9.20

]
; K2 =

[
1.87 6.23

]
(64)

Using these gains, the nonlinear system is stabilized, as can
be seen in Figure 1. For this particular trajectory, the initial
condition was x(0) = [1 0.5]T , while the estimated states were
initialized at x̂(0) = [0 0]T .

0 2 4 6 8 10

Time

-0.2

0

0.2

0.4

0.6

0.8

1

S
ta

te
s

x
1

x
2

Fig. 1. States of the controlled nonlinear system

V. CONCLUSIONS

This paper focuses on the robust sliding mode observer-
based fuzzy control for a nonlinear system. A linear dominant
local model is considered, based on which a robust observer
is designed. The uncertainties that appear are also included
in the design. Next, a fuzzy state-feedback controller is de-
signed. The observer-based controller has been illustrated on
a numerical example.

REFERENCES

[1] J. Huang, X. Ma, B. Wang, Y. Zhang, G. Xin, and Y. Zhang, “Trajectory
tracking control of a quadrotor UAV by cascaded inner-outer-loop
backstepping sliding mode control,” in 2022 34th Chinese Control and
Decision Conference (CCDC), Hefei, China, 2022, pp. 4725–4730.

[2] L. Liu, “Design of UAV flight control law based on PID control,” in 2021
International Conference on Signal Processing and Machine Learning
(CONF-SPML), Stanford, USA, 2021, pp. 98–101.

[3] M. Jiang, “Application of fuzzy PID control in UAV control system,” in
2021 Third International Conference on Inventive Research in Comput-
ing Applications (ICIRCA), Coimbatore, India, 2021, pp. 197–200.

[4] A. Rehman, N. Mazhar, A. Raza, and F. M. Malik, “Sliding mode control
of quadrotor UAV using parabolic sliding surface,” in 2021 International
Conference on Innovative Computing (ICIC), Lahore, Pakistan, 2021, pp.
1–6.

[5] Z. Kewang and D. Tenghuan, “Research on obstacle avoidance control
method of multi-UAV based on model predictive control,” in 2021
International Conference on Electronics, Circuits and Information En-
gineering (ECIE), Zhengzhou, China, 2021, pp. 357–362.

[6] P. Lambert and M. Reyhanoglu, “Observer-based sliding mode control
of a 6-DOF quadrotor UAV,” in IECON 2018 - 44th Annual Conference
of the IEEE Industrial Electronics Society, Washington, DC, USA, 2018,
pp. 2379–2384.

[7] R. Sanchis and H. Nijmeijer, “Sliding controller-sliding observer
design for non-linear systems,” European Journal of Control,
vol. 4, no. 3, pp. 208–234, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0947358098701153

[8] K. Abhinav and S. Mija, “Observer based sliding mode control for 3
DOF helicopter system,” in 2021 International Conference on Intelligent
Technologies (CONIT), Hubli, India, 2021, pp. 1–4.

[9] O. Saadaoui, L. Chaouech, and A. Chaari, “A fuzzy sliding mode
observer for the nonlinear uncertain system based on T-S model,” in
14th International Conference on Sciences and Techniques of Automatic
Control & Computer Engineering - STA’2013, Sousse, Tunisia, 2013,
pp. 179–184.

[10] J. Yang, S. Li, and X. Yu, “Sliding-mode control for systems with
mismatched uncertainties via a disturbance observer,” IEEE Transactions
on Industrial Electronics, vol. 60, no. 1, pp. 160–169, 2013.

[11] H. Wang, C. Yu, and Y. Jing, “Observer-based sliding mode control
for internet network congestion control,” in 2010 Chinese Control and
Decision Conference, Xuzhou, China, 2010, pp. 3258–3262.

[12] Q. Qu, H. Wang, and Y. Tian, “Nonlinear observer based sliding mode
control for a turbocharged diesel engine air-path equipped with EGR and
VGT,” in 2015 Chinese Automation Congress (CAC), Wuhan, China,
2015, pp. 121–126.

[13] R. Palm and P. Bergsten, “Sliding mode observer for a takagi sugeno
fuzzy system,” in Ninth IEEE International Conference on Fuzzy Sys-
tems. FUZZ- IEEE 2000 (Cat. No.00CH37063), vol. 2, 2000, pp. 665–
670 vol.2.

[14] Z. Nagy and Zs. Lendek, “Observer-based controller design for Takagi-
Sugeno fuzzy systems with local nonlinearities,” in 2019 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, USA,
2019, pp. 1–6.

[15] S. Zak, “Stabilizing fuzzy system models using linear controllers,” IEEE
Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 236–240, 1999.

1262


