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Abstract—This paper is aimed at enhancing the success rate of
Genetic Programming (GP) algorithms for symbolic regressions.
It is shown that the outcome of GP algorithms over several runs
can lead to an optimal solution for such problems, but the success
rate, i.e., the number of successful runs, is sometimes small.
We address this issue by proposing multi-objective and island
model (IM) optimization for GP. We study the influence of various
objective functions and IM configurations on the success rates
and present 36 algorithm variants, which are tasked with solving
two benchmark equations from the fluid mechanics area. This
specific benchmark problem has been previously shown to suffer
from a low success rate and high variations between the results
of multiple runs. Our experiments show a strong influence of
the objective functions on the success rate. The additional IM
implementation improves the results for some objectives. The
algorithm with the highest success rate on the more complex
benchmark problem employs both, multiple objectives and IM.

I. GENETIC PROGRAMMING FOR FLUID MECHANICS

Genetic Programming (GP) for Symbolic Regression (SR)
has recently gained considerable importance in identifying
equations for applications in engineering and physics. Fluid
mechanics problems have proven to be extremely difficult
to solve with GP algorithms, due to the complex underlying
interactions between particles and fluids. [1]–[3] study several
benchmark instances related to the fluid flow around one and
two fixed spheres. This flow is governed by the Navier-Stokes
equations, which mainly depend upon the so-called Reynolds
number Re. Due to the nonlinear nature of the NS equations,
there is no universal solution to this problem. However, when
Re → 0, these equations can be linearized and solved for the
flow around a single spherical particle. Fig. 1 displays this
so-called Stokes flow around a single spherical particle.

In this paper, we intend to overcome an issue which
appeared frequently when approaching the fluid mechanics
benchmark instances introduced in [2] with GP algorithms:
decreasing repetition stability and success rate of the algorithm
with increasing complexity of the target symbolic models. In
other words, when the same algorithm is executed multiple
times, it is reliable in identifying comparably simple equations.
However, more complex equations showed a large variation in
the final result between different runs of the same algorithm.
Since high success rates for known equations is an important
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Fig. 1. Streamlines of the Stokes flow around a rigid sphere. u∞ indicates
the direction of the free stream.

characteristic of a trustworthy algorithm, we intend to tackle
this issue with Island Models (IM). In an IM approach,
multiple subpopulations are evolved independently, and several
individuals migrated between the subpopulations at specific
times [4], [5]. As [2] showed, the choice of objective function
also has a significant influence on the success rate of a GP
algorithm. We combine both approaches and assess various ob-
jective functions and IM configurations to understand how they
influence the success rate. The algorithm variants are tasked to
solve two fluid mechanics benchmarks from [2], which showed
high variation in the results of multiple algorithm executions.

ux = ur · cos(θ)− uθ · sin(θ) (1)

ur = u∞ · cos(θ) ·
(
1 +

a3

2 · r3
− 3 · a

2 · r

)
(2)

Eq. 1 converts the fluid velocity from spherical coordinates
(ur, uθ) to Cartesian coordinates (ux), as a function of the
polar angle θ. Eq. 2 describes the velocity field around a
spherical particle with radius a, subject to the far-field velocity
u∞ in a spherical coordinate system (r, θ), whose origin is
located at the center of the particle. This paper extends the
work of [2] by combining multi-objective GP with IM GP.

II. BACKGROUND AND RELATED WORK

A. Genetic Programming

GP was first introduced by Koza and stems from the family
of evolutionary algorithms (EA) [6]. It is a suitable method
for SR, i.e., identifying equations from data. An equation is
usually represented as a parse tree. The inner nodes consist of
functions from the function set F , where each function has a
pre-defined number of input arguments. Features and constants
build the terminal set T , which are located at the leaf nodes.
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Initially, a random population of trees is created and it-
eratively refined through evolution. Crossover swaps branches
between parent trees to form new children. Mutation is applied
to induce minor changes in an individual, usually on the node-
level, such as randomly replacing a function with another.

The main goal is to find the mathematical model that best
fits the given dataset. The fitness of a candidate solution is
determined by comparing the prediction to the actual data
points, utilizing problem-dependent objective functions. Good
solutions according to the defined objectives are more likely
to be selected as parents to form new children, and to survive
to the next generation. The evolutionary process is repeated
until a stopping criterion is reached.

B. Multi-objective Optimization

The main objective in GP is to identify an equation that
perfectly predicts the target variable from the given input data.
To this end, an error function between the predicted output and
the target variable is employed as an objective, such as the
mean squared error (MSE) or the rooted mean squared error
(RMSE). The latter is often preferred as it has the same unit as
the target variable, making it easier to classify the magnitude
of the error.

EAs, and thus also GP, are predestined to optimize multiple
criteria at the same time [7]. When dealing with multi-
objective optimization, one can represent the problem as:

min f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x ∈ Ω
(3)

The search space Ω maps to the m-dimensional objective
space M. In GP, Ω spans the space of all possible models
that can be created from T and F . The objective functions
fj(x), j ∈ {1, . . . ,m} are in conflict with each other, so that
different solutions satisfy the objectives to varying degrees.
Thus, more than one optimal solution to such problems exists,
a so-called set of Pareto-optimal solutions. The concept of
Pareto-dominance is used to obtain such solutions. A solution
x1 is said to dominate the solution x2, if the following condi-
tions are met [7]: (1) The solution x1 is no worse than x2 in
all objectives, i.e. fj(x1) ≤ fj(x2) for all j = 1 . . .m. (2) The
solution x1 is strictly better than x2 in at least one objective,
i.e. fj(x1) < fj(x2) for at least one j = 1 . . .m. Pareto-
optimal solutions are not dominated by any other solution.

Recent work addressing the same benchmark functions
suggests, that GP algorithms can benefit from additional ob-
jectives to achieve better solutions in the final population [2].
They employed the maximum absolute error (MAE) as the
first objective to be minimized, and assessed combinations
with additional objectives. Specifically, a size, a dimension-
penalty objective and a correlation objective were proposed.
The size of an equation is determined by the number of nodes
of a tree. More concise solutions tend to generalize better and
are less prone to overfitting the data. For SR problems from
the engineering and physics area, it is particularly important
to identify equations that are conformal with physical laws.
To this end, different approaches have been presented, such

as strongly-typed GP [8], grammar-based GP [9], [10], as
well as multi-objective unit-aware GP [11]. The latter uses
a dimension penalty as a minimization objective, where each
unit-violating operation within an individual is penalized.

C. Island Models

The goal of using IMs for EAs is to explore different
areas of the search space through evolution on indepen-
dent islands, and increase diversity within the subpopulations
through migration in order to prevent the algorithm from
premature convergence. Furthermore, the use of subpopula-
tions allows for a parallel implementation of the algorithm,
resulting in significant speed-ups compared to the single
population algorithm [4]. To this end, multiple subpopulations
are evolved in parallel, and migrate several individuals at
specific times during the evolution. The main hyperparameters
of such algorithms are the number of islands m, the number
of individuals to migrate k, and a communication strategy
between the islands. Furthermore, the migration rate or number
of migrations over the total number of generations plays an
important role. Generally, the migration topologies are not GP-
specific but can be inspired from the EA area. Different topolo-
gies have been proposed and explored [5], [12], [13], most
prominently ring, grid, mesh and random topology. While ring,
grid, and mesh topology specify a specific interaction pattern
between the islands, the random approach migrates individuals
from a randomly chosen island to another. A modification
of the random topology has recently been presented in [14],
which uses an archive of best solutions among all combined
subpopulations. Random individuals from a subpopulation are
exchanged by randomly selected solutions from the archive.

Making use of the building block hypothesis in GP, Ono et
al. propose an adaptive migration strategy based on frequent
subtrees, which outperforms the original algorithm [15], [16].
The SR benchmark equation in that paper was approached
in a single-objective manner using an error objective. While
some papers address the dynamics of the evolution induced
by IMs [13], [17], our focus is solely output-oriented, i.e.,
increasing the success rate of a GP algorithm to achieve
a perfect solution. To the best of our knowledge, Fillon et
al. have first addressed the issue of maximizing the success
rate with IMs [18].

III. PROPOSED METHODS

In this paper, we assess the impact of combinations of dif-
ferent objective functions and IM configurations on enhancing
the success probability of an algorithm. In the following, we
introduce algorithmic components that will be examined in
our experiments. From these experiments on known bench-
mark equations, our goal is to deduce optimal algorithmic
configurations. These can be utilized in the future to discover
unknown equations.

A. Objective Functions

Inspired by the approach of Zille et al. [2], we adopt a
multi-objective perspective in our methodology. Our primary
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objective, denoted as f1, minimizes the error between the
prediction and the target variable. To quantify this error, we
employ the RMSE, a widely used fitness measure for GP,
which emphasizes larger errors with greater penalties. We
want to point out that the error objective used in [2] is,
contrary to ours, the MAE. Their preliminary experiments
demonstrated that MAE yielded superior performance on the
given benchmark equations compared to RMSE. However, the
MAE may be used with caution when unknown equations
are discovered from data. Experimental data often contains
noise and outliers, and MAE tends to put higher emphasis
on minimizing the error on the outliers, rather than finding an
equation that performs generally well across the entire dataset.
Since we aim at deducing a robust algorithm configuration
to discover unknown equations in the future, we employ the
RMSE in our experiments.

We adopt the correlation objective as well as the dimension
penalty from [2], thus we will only shortly introduce them
here. We incorporate the rank-based Spearman correlation
as our second objective f2 in the evolutionary process. The
purpose is to enable individuals with a strong correlation with
the target variable to survive to the next generation, even
when they perform poorly on the error objective f1. This
approach enables promising individuals to undergo refinement,
and guiding the search towards more accurate solutions. The
formulation f2 = 1 − |ρ| is used as a minimization objec-
tive, where ρ represents the Spearman correlation coefficient,
ranging from -1 to 1.

The third objective is a dimension penalty which penal-
izes individuals that execute non-physical operations. When
a unit-violating operation occurs, the penalty value nviol is
increased by 1.0 for all operations within an individual.
Moreover, this objective has the purpose to align the output
unit of a solution with the target unit, which is in our
case meters/second = m1 · s−1. The Manhattan dis-
tance between the exponents of the SI-units of the predicted
and target units is added to the penalty value, resulting in
f3 = nviol + ||ûSI − uSI ||1. Both, f2 and f3, are supporting
objectives, i.e., we assess whether the inclusion of these
objectives improves the performance with regard to f1.

B. Island Model Configurations

As pointed out in Sec. II-C, IM algorithms have numerous
hyperparameters which potentially affect their performance.
An extensive study in a grid-search-fashion over multiple
values for all hyperparameters exceeds the scope of this paper.
Therefore, we will adopt some hyperparameters from related
research. Motivated by [14], we investigate the performance
of archive-based migration compared to non-archive based
migration. To this end, we propose two migration topologies:

• Archive-based migration (A): The best k individuals
of all subpopulations build an archive of overall best
solutions. For each subpopulation of size m, we replace k
individuals at random with k individuals from the archive.
Fig. 2 displays the archive-based migration topology.

Fig. 2. Archive-based migration topology

Fig. 3. Random migration topology

• Random migration (R): In the random migration topol-
ogy, the subpopulation from which individuals migrate
to another is chosen at random. The k worst individuals
of the respective island are replaced with the k best
individual of the randomly selected island. Due to the
random nature of the migration, multiple subpopulations
can receive individuals from the same island (Fig. 3).

Each migration can increase the diversity of solutions within
a subpopulation. Usually, a fixed migration rate is used in
an IM algorithm, so that migrations are uniformly distributed
over the algorithm runtime. In preliminary trials, we observed
that some algorithms perform better when migrations are only
performed in the first two thirds of the algorithm runtime. The
last third without migration might facilitate the algorithm to
converge without further disturbance introduced by migration.
Therefore, in addition to the migration topology, we also
investigate on the distribution of migrations over the evolution.

Alg. 1 outlines the proposed IM algorithm. The migration
schedule msched contains the generation indices in which
migrations are performed. The migration function in line 12
calls either the archive-based or random migration topology.
The algorithm returns a hall of fame (HOF), which contains
the set of all non-dominated solutions.

IV. EXPERIMENT SETUP

A. Benchmark Datasets

We conduct experiments to assess the effect of various
combinations of objective functions and IM configurations on
the success rate of a GP algorithm. To this end, we employ the
fluid mechanics benchmark functions defined in Eq. 1 and 2.
We choose these equations because they have previously
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Algorithm 1 Proposed Island Model Algorithm
Input: training data X , number of subpopulations m, sub-

population size p, number of generations n, migration
schedule msched

Output: hall of fame H
1: pops ← set of m random initial subpopulations, each of

size p
2: evaluate(pops)
3: H ← updateHOF(pops)
4: for gen = 1 . . . n do
5: for i = 1 . . .m do
6: parents ← select(pops[i])
7: offspring ← reproduce(parents)
8: evaluate(offspring , X)
9: pops[i] ← updatePopulation(∪(pops[i], offspring))

10: end for
11: if gen ∈ msched then
12: pops ← migrate(pops)
13: end if
14: H ← updateHOF(pops)
15: end for
16: return H

TABLE I
BENCHMARK EQUATIONS

Eq. Training Features Target Variable # Samples
1 ur , uθ , θ ux 366
2 u∞, a, r, θ ur 366

shown high variations in the results between multiple runs [2].
Tab. I summarizes the benchmark datasets. The dataset is split
in a ratio of 0.8 for training and 0.2 for testing.

B. Algorithm Variants

We compare the performance of one single-objective and
three multi-objective functions as defined in Sec. III-A with
each other: f1, f1f2, f1f3, f1f2f3. Furthermore, we assess
the impact of different IM configurations. As mentioned
earlier, we cannot capture the entire parameter space of IM
algorithms in this paper. We compare the performance of a
single population algorithm, denoted by S, to IM algorithms
with m ∈ [5, 10] subpopulations. Similar configurations have
been used in related works [16], [17]. The migrations are
executed according to the random (R) and archive-based (A)
migration topologies as defined in Sec. III-B. The number of
migrations is set to 10, which are distributed over the algorithm
runtime according to two schemes. In the first variant, they are
distributed uniformly, denoted by D0. In the second variant,
they only happen in the first two thirds of the algorithm
runtime, denoted by D1. To facilitate comparison between the
single population and IM algorithms, the population size of
2000 individuals is evenly distributed among the respective
number of islands. A subpopulation thus constitutes 2000

m
individuals. The proportion of migrating individuals is set to
0.035, which was also used in [14].

TABLE II
GP ALGORITHM PARAMETERS

Parameter Settings
Number of Generations 800
Reproduction Scheme µ+ λ
Selection Mechanism NSGA-II selection
Initialization Method Half Full, Half Grow
Crossover Probability pc 0.5
Mutation Probability pm 0.5
Crossover One-point, Leaf-biased (pleaf = 0.9)

(chosen at random)
Mutation Uniform, Insert, Shrink, Node Re-

placement (chosen at random)
Max. Tree Length 30

In summary, we test four objective functions with one single
population and eight IM configurations, which makes a total of
36 algorithm variants. All experiments employ the function set
F = {+,−, ·, ◦2, ◦3, 1

◦ , sin(◦), cos(◦),
√
◦} and the terminal

set T = C ∪{training features}, where C = {4, 3, 2, 1, 1
2 ,

1
4}.

The experiments are run for 800 generations. To compare the
effects of the assessed algorithmic variants, we use the same
random seed in each of the 31 algorithm executions across
all algorithm configurations. Tab. II summarizes additional
settings of the GP algorithms used in our experiments, which
are implemented in the Python library deap [19].

V. RESULTS AND ANALYSIS

In the following, we provide a comprehensive analysis of the
experimental results. Tab. III gives an overview of the number
of successfully solved runs out of 31 runs. To this end, we
first determine the best solution per run to be the individual
in the HOF with the lowest RMSE on the test dataset. A run
is counted as solved, when the best individual of a run has an
error objective f1 < 1e−05 on the test dataset. For Eq. 1, the
single-objective single population algorithm solved five runs
successfully. The single-objective IM algorithm solved slightly
more runs successfully, when the individuals were distributed
over ten islands. A similar behavior can be observed for
the objectives f1f2. To the contrary, objective f1f3 achieves
higher success rate when only five islands are employed. The
objective with the highest success rate is f1f2f3, where no
clear difference between five or ten islands can be observed.
The overall most successful configuration solved 25 runs.

Eq. 2 is more complex and involves a higher number of
computations. This is also reflected in the success rate of
the single-objective single population algorithm, which did
not solve a single run successfully. Objective f1f2 achieves
slightly higher success rates, and f1f2f3 solved seven runs
with the single population algorithm and 13 with an IM
algorithm. f1f2f3 tends to perform slightly better, when the
population is distributed over ten islands. Objective f1f3 did
not improve the success rate compared to the single-objective
algorithm. Generally, at least one IM configuration solved
more runs successfully compared to the single population
approach of the same objectives. However, no clear best
performing IM configuration can be identified.
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TABLE III
COUNTS OF SUCCESSFUL RUNS FOR THE TWO BENCHMARK INSTANCES AND COMBINATIONS OF OBJECTIVES AND IM CONFIGURATIONS. A RUN IS
SUCCESSFUL, WHEN THE ERROR f1 OF THE BEST PERFORMING INDIVIDUAL OF THE FINAL POPULATION IS BELOW 1e− 05 ON THE TEST DATASET.

Eq. # Isl. Top. Distr. f1 f1f2 f1f3 f1f2f3

1

1 S - 5 11 11 15

5

A D0 4 17 12 22
A D1 4 14 12 19
R D0 4 16 12 25
R D1 4 14 13 20

10

A D0 7 21 5 21
A D1 6 21 5 21
R D0 6 21 7 23
R D1 6 20 7 23

2

1 S - 0 1 0 7

5

A D0 0 1 0 11
A D1 0 1 0 8
R D0 0 3 0 10
R D1 0 1 1 7

10

A D0 0 2 0 13
A D1 0 1 0 13
R D0 0 2 0 10
R D1 0 2 0 10

To validate our observations, we conduct statistical tests
on the error distributions of the algorithm variants. For each
row, i.e., algorithm variant, the best performing objective in
terms of RMSE is the baseline method and marked in bold.
For each column, i.e., objective, and benchmark instance,
the single population algorithm as a baseline is compared
to all IM variants. The asterisk symbol indicates that an IM
configuration performs significantly better than the respective
single population algorithm on this benchmark instance. We
use the one-sided Mann-Whitney-U statistical test for each
algorithm to test whether its performance is significantly
worse than the baseline method. The level of significance is
α = 0.05. The results are displayed in Tab. IV.

On Eq. 1, the best performing objectives for the single
population algorithm are f1f3 and f1f2f3. The IM variants
perform best when f1f2 or f1f2f3 are used, which outperform
the other two objectives but are not significantly different
from each other. Interestingly, most IM variants outperform
the single population algorithm when f1f2 is used. However,
only one IM algorithm shows better performance when the
dimension penalty is added as an objective, i.e., when f1f2f3
is employed. Taking a look at the results of Eq. 2, the objective
f1f2f3 outperforms the other objectives for all IM settings,
except for the single population algorithm. Furthermore, al-
most all IM configurations outperform the single population
algorithm when f1f2f3 is used as an objective. For the other
three objective variants, most IM algorithms did not show a
significantly better result than the single population algorithm.

In addition to the results in Tab. IV, we perform a Kruskal-
Wallis test on the IM variants for each objective and bench-
mark instance. No significant differences between the IM
variants could be identified for all objectives and benchmark
instances. The effects of the migration topology and the distri-
bution of migrations over the algorithm runtime are negligible.

Altogether, we can observe for the less complex Eq. 1,
that the IM algorithm only showed significantly better results
when the objective f1f2 was utilized. The more difficult to
solve Eq. 2 benefits from both, the use of a multi-objective
algorithm f1f2f3 and the distribution of the population on
multiple islands. In cases where the results improved by the
implementation of an IM algorithm, this happened independent
of the exact choice of the IM hyperparameters.

It is of great interest to which extent the proposed methods
can help to discover new equations from data in the future. We
assume that new equations are likely to involve a high number
of operations and therefore closer to the difficulty of Eq. 2.
First, preferring RMSE over MAE as the first objective can
help to discover good equations even on noisy data. Based
on the results of this paper, we strongly recommend using
correlation as supporting objective f2. The satisfaction of
physical laws is required for most engineering applications,
which is why we suggest including f3. We want to point out
that our benchmark equations did not contain unknown coef-
ficients, which will likely be the case when discovering new
equations. Since coefficient units are not known beforehand,
an adapted dimension penalty is required, which takes this
into account. Altogether, we recommend using the objectives
f1f2f3 as well as an IM configuration for such GP algorithms,
especially since the IM comes at no additional computational
cost compared to the single population algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper aimed at enhancing the success rate of ge-
netic programming algorithms for symbolic regression. We
presented a comparison of different objective functions and
configurations of island model algorithms. The objectives
comprise an error function, a correlation coefficient and a
dimension penalty. We tested the performance of these objec-
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TABLE IV
RMSE VALUES (MEAN ± STANDARD DEVIATION) OVER 31 RUNS FOR THE TWO BENCHMARK INSTANCES AND ALL COMBINATIONS OF IM

CONFIGURATIONS AND OBJECTIVES. NUMBERS IN BOLD INDICATE THE BEST RESULT FOR EACH ROW, I.E., WHICH OBJECTIVE PERFORMED BEST FOR
THE SPECIFIC IM CONFIGURATION. THE ASTERISK SYMBOL INDICATES WHETHER AN IM CONFIGURATION OUTPERFORMS THE RESPECTIVE SINGLE

POPULATION VARIANT OF THE SAME OBJECTIVES AND BENCHMARK INSTANCE WITH STATISTICAL SIGNIFICANCE.

Eq. # Isl. Top. Distr. f1 f1f2 f1f3 f1f2f3

1

1 S - 6.191e-03 ± 5.682e-03 2.777e-03 ± 2.510e-03 2.559e-03 ± 3.113e-03 1.152e-03± 1.593e-03

5

A D0 5.921e-03 ± 4.178e-03 1.378e-03 ± 1.890e-03 ∗ 3.781e-03 ± 3.894e-03 2.822e-04 ± 5.693e-04
A D1 5.042e-03 ± 3.483e-03 1.838e-03 ± 2.214e-03 3.457e-03 ± 3.401e-03 6.255e-04 ± 1.761e-03
R D0 5.723e-03 ± 4.495e-03 1.488e-03 ± 1.921e-03 ∗ 3.732e-03 ± 4.215e-03 3.059e-04 ± 8.645e-04 ∗
R D1 5.443e-03 ± 3.924e-03 1.373e-03 ± 1.763e-03 ∗ 3.274e-03 ± 3.435e-03 4.157e-04 ± 7.387e-04

10

A D0 3.900e-03 ± 4.058e-03 7.297e-04 ± 1.282e-03 ∗ 4.990e-03 ± 3.273e-03 3.487e-04 ± 8.653e-04
A D1 4.188e-03 ± 3.931e-03 7.466e-04 ± 1.596e-03 ∗ 5.378e-03 ± 3.500e-03 3.317e-04 ± 8.716e-04
R D0 5.233e-03 ± 4.577e-03 6.842e-04 ± 1.233e-03 ∗ 3.902e-03 ± 3.332e-03 4.110e-04 ± 1.114e-03
R D1 5.159e-03 ± 4.447e-03 7.869e-04 ± 1.396e-03 ∗ 4.568e-03 ± 3.615e-03 4.647e-04 ± 1.126e-03

2

1 S - 3.830e-03 ± 2.390e-03 8.796e-04 ± 8.122e-04 4.201e-03 ± 2.637e-03 7.766e-04 ± 8.280e-04

5

A D0 3.366e-03 ± 1.469e-03 6.993e-04 ± 6.384e-04 3.535e-03 ± 1.816e-03 2.970e-04 ± 3.448e-04 ∗
A D1 3.006e-03 ± 1.725e-03 7.466e-04 ± 6.226e-04 3.270e-03 ± 2.160e-03 2.494e-04 ± 2.655e-04 ∗
R D0 3.544e-03 ± 1.847e-03 9.281e-04 ± 7.806e-04 2.735e-03 ± 1.658e-03 ∗ 3.510e-04 ± 5.497e-04 ∗
R D1 3.415e-03 ± 1.671e-03 1.170e-03 ± 9.011e-04 2.785e-03 ± 1.527e-03 ∗ 4.153e-04 ± 4.655e-04

10

A D0 3.468e-03 ± 2.015e-03 6.298e-04 ± 5.999e-04 3.417e-03 ± 1.608e-03 2.658e-04 ± 6.519e-04 ∗
A D1 3.288e-03 ± 1.980e-03 7.637e-04 ± 7.666e-04 3.343e-03 ± 1.706e-03 2.691e-04 ± 3.139e-04 ∗
R D0 3.146e-03 ± 1.514e-03 6.788e-04 ± 5.419e-04 3.224e-03 ± 1.592e-03 3.540e-04 ± 3.907e-04 ∗
R D1 3.113e-03 ± 1.671e-03 7.892e-04 ± 7.575e-04 3.165e-03 ± 1.536e-03 2.796e-04 ± 3.234e-04 ∗

tives on a varying number of islands, two migration topologies
and two distributions of the migrations over the algorithm
runtime. The 36 algorithm variants were tasked with solving
two benchmark equations from the fluid mechanics area, which
previously showed high variations between the results of
multiple runs. The results of our experiments show a strong
influence of the objective function on the success rate of the
algorithm. For some objectives, the results improved further
when in island model approach was used compared to a single
population algorithm. These objectives were also the best
performing objectives overall. No significant differences were
found between the IM configurations, suggesting that results
for some targets improve as long as migration is performed.

Our results build a promising starting point for future
research directions. On the one hand, our proposed algorithms
can be applied to a more diverse set of benchmark equations
to further verify our recommendation for discovery of new
equations. In addition, approaches to account for unknown
units of the coefficients during dimensional analysis form an
important extension of this paper.
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