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Abstract—This study proposes a novel approach that com-
bines stacking ensemble learning with Graph Convolutional
Neural Networks (GCNNs) to enhance the classification accu-
racy of Motor Imagery (MI) tasks in supporting individuals with
injuries or impairments, enabling more effective rehabilitation
and assistance. The method integrates both structural and
functional connectivity information to leverage the benefits of
GCNNs and ensemble learning techniques. The BCI Com-
petition IV-2a dataset is used for evaluation. The approach
employs a stacked ensemble model consisting of nine baseline
models and six combining meta-models, including Logistic Re-
gression, Neural Networks, Support Vector Machines, Random
Forest, K-Nearest Neighbor, and Gradient Boosting Machine.
By leveraging information from both structural and functional
connectivity, the GCNNs extract meaningful features from MI
data, leading to improved classification accuracy. The stacking
ensemble learning technique combines multiple GCNN models
trained on different connectivity aspects, resulting in a robust
and accurate classifier. The fusion of structural connectivity
(ADJ-CNNM) capturing anatomical connections and functional
connectivity (PLV-CNNM) measuring brain activity synchro-
nization enables a comprehensive analysis of MI data. The
proposed approach effectively captures both local and global
connectivity patterns, addressing the challenges associated with
MI data analysis. By considering both types of connectivity,
a holistic understanding of the dynamics of the underlying
brain network during MI tasks is achieved. Experimental
results demonstrate the effectiveness of the proposed approach,
achieving an accuracy of 86.23% with K-Nearest Neighbor as
the meta-model. Comparisons with state-of-the-art and baseline
methods on the same dataset validate the approach’s superiority,
emphasizing the importance of GCNNs and stacking ensemble
learning for accurate MI task classification.

Index Terms—Motor Imagery(MI), Stacking Ensemble
Learning, GCNNs, Structural Connectivity, Functional Connec-
tivity

I. INTRODUCTION

Brain-computer interfaces (BCIs) aim to restore or replace
functional abilities in individuals with neuromuscular dis-
orders, such as spinal cord injury and stroke rehabilitation
[1]. Electroencephalographic (EEG) signals, which capture
cortical electrical activity, have gained popularity in BCI
development due to their convenience and scalp recording.
However, the focus on subject-dependent scenarios in most
studies limits the scalability and applicability of BCIs due
to inherent variations in EEG signals [2]. Conventional MI-
EEG analysis relies on handcrafted features and machine
learning algorithms, such as power spectral density (PSD).
Recent advancements in deep learning have shown promise

in effectively learning information across subjects [3]. In MI-
EEG classification, various methods have emerged to enhance
performance. Common Spatial Pattern (CSP) and Filter Bank
CSP (FBCSP) are widely used techniques that maximize
power differences between MI classes [4]. Deep learning
models, such as Convolutional Neural Networks (CNNs)
with crop training techniques and Recurrent Neural Networks
(RNNs), capture temporal information in MI classification
[5]. Graph Neural Networks (GNNs) have also gained sig-
nificance in analyzing brain dynamics and connectivity [6].
Additionally, ensemble learning techniques explored in MI-
EEG classification consistently prove effective in improving
reliability and accuracy by mitigating variability and noise
[7]–[9].
This study addresses limitations in existing studies while
introducing novel contributions:

1) Enhanced Subject Independence with ADJ-CNNM:
Subject-specific scenarios, which limit BCI scalabil-
ity, are addressed by the ADJ-CNNM model. Spatial
information is efficiently captured, and EEG graphs
are constructed based on precise spatial EEG electrode
data, enhancing subject independence. This expansion
of BCI applicability mitigates subject-dependent limi-
tations.

2) Innovative Integration of GCNNs: Complex EEG
patterns often go uncaptured in traditional MI-EEG
analysis. GCNNs are introduced in this study, offering a
comprehensive capture of both local and global connec-
tivity patterns in EEG data. This innovative integration
enhances the effectiveness of MI-EEG classification by
enabling the extraction of richer EEG information.

3) Diverse Analysis with Multiple Connectivity Types:
The limitation of model diversity is addressed by
incorporating both structural and functional connec-
tivity with multiple frequency band variations in the
analysis. This comprehensive analysis enables a holistic
understanding of brain network dynamics during MI
tasks.

4) Optimized Ensemble Learning: Untapped potential
for enhancing reliability and accuracy lies in ensemble
techniques in MI-EEG classification. Stacking ensem-
ble learning is employed in this study, combining
diverse GCNN models to capture complementary in-
formation. This approach significantly improves clas-
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sification accuracy, demonstrating the method’s effec-
tiveness.

5) Validation of Superiority: Validation against state-of-
the-art and baseline techniques using the same dataset
underscores the superiority of the proposed approach
in the field of MI-EEG classification.

II. METHODOLOGY

This work presents a proposed method that employs
stacking ensemble learning with Graph Convolutional Neural
Networks (GCNNs) to leverage structural and functional
connectivity for improved classification of MI tasks, as shown
in Fig. 1. The objective of this approach is to enhance the
accuracy and performance of MI classification by integrating
the benefits of GCNNs and ensemble learning techniques.
The study utilized the BCI Competition IV-2a dataset [10],
a widely recognized benchmark dataset for EEG analysis. It
consisted of 22 EEG signals from nine healthy individuals,
collected in two sessions on different days, where participants
mentally simulated movements of their left hand, right hand,
feet, and tongue during 288 four-second trials per session.

A. Structural Connectivity-Based Graph Representation

The structural connectivity-based graph methodology is
depicted in Fig.1a. Initially, the EEG signals are transformed
into a graph representation through adjacency matrices, fol-
lowed by the utilization of a neural network to process the
encoded signals. This end-to-end framework enables training
through conventional back-propagation methods.
The ADJ-CNNM model is a convolutional neural network
that leverages EEG node graph representations to efficiently
capture spatial information. By utilizing this approach, the
challenge of subject-independence in MI-EEG Classifica-
tion can be effectively tackled. An EEG graph is initially
constructed based on the precise spatial information of the
EEG electrodes, representing the interconnections between
them. Unlike previous spatial filtering methods that depend
on specific subjects or tasks, the proposed graph embedding
technique offers greater flexibility and reliability for new
subjects.

1) EEG Node Connection Representations: The length
of MI tasks in the BCI Competition IV-2a dataset is of
research interest, measured in T-seconds. Each of the n EEG
nodes is accompanied by an associated sensor recording
sequence. ri ∈ [1, n] = [sigi1, sigi2, sigi3, . . . , sigim] ∈ Rm

via m = T ∗ f time instances, where f represents the
sampling frequency rate and sigit corresponds to the reading
taken by the ith EEG sensor at a given time instance t.
Therefore, the EEG signal features of trial t is a 2D tensor
XT = [sig1; sig2, . . . , sign] ∈ Rn∗m where the EEG nodes
are represented by one dimension, and the time series is
represented by the second dimension. When examining EEG
nodes, it is crucial to consider their associations with neigh-
boring nodes. The traditional approach limits each EEG node
to a maximum of two neighbors in the XT node dimension.
However, in reality, EEG nodes typically have numerous
neighbors that capture signals from specific brain regions.

To accurately capture the spatial relationships between EEG
nodes, an undirected spatial graph was constructed, denoted
as G = (V,E), where V represents the set of vertices,
V = sigi|i ∈ [1, n], encompassing all the nodes.
This graph representation is derived from the adjacency
matrix of the EEG nodes, which captures their spatial
associations. By adopting this graph representation, EEG
signals become more effective in representing distinct brain
regions and mitigating the influence of noise by grouping
neighboring nodes to represent the core node. Consequently,
this methodology allows each EEG node to rely on the
support of its neighboring nodes, promoting robustness in
EEG data representation even in the presence of missing
values.

2) Adjacency Matrix Graph (Adj-Graph): The arrange-
ment of 22 EEG nodes in Fig. 1a showcases their neighboring
nodes situated in different directions, such as up, down,
left, right, up-left, up-right, down-left, and down-right. For
example, node sig10 has eight neighboring nodes in this con-
figuration, namely sig16, sig4, sig11, sig9, sig17, sig15, sig5,
and sig3. In order to establish connections between naturally
adjacent EEG nodes, a set of edges was created, denoted as
Ev = sigisigj |(i, j) ∈ H , where H represents the set of all
adjacent EEG nodes. It should be noted that each node is
considered to be connected to itself. The adjacency matrix
of the adj-Graph is a square matrix of size |V |×|V |, where
each entry is a binary value indicating whether two EEG
nodes are adjacent or not.
The spectral graph theory [11] was utilized to normalize the
adjacency matrix.
Following the application of Adj-Graph embedding to EEG
signals, a convolutional neural network (CNN) was employed
to encode and extract temporal features for classifying MI
data. While deep networks demonstrate learning capabilities,
they may not be the optimal choice for EEG analysis [12].
The model configuration consisted of a single CNN layer and
a single max pooling layer. To consider all EEG nodes simul-
taneously, the CNN kernel height was set to 22, correspond-
ing to the number of EEG nodes in the dataset. Increasing the
kernel width to 45 was based on the need to capture long-
term temporal dynamics more effectively. This choice was
empirically determined through experimentation to achieve
better model performance. Moreover, 64 CNN filters were
empirically chosen to reveal spatio-temporal information
across multiple EEG nodes effectively. The selection of this
hyperparameter was based on experiments that demonstrated
its effectiveness in capturing relevant information in the EEG
signals. Rectified Linear Units (ReLU) were employed as
the activation function in the convolutional process. Spatial
resolution reduction was achieved by setting the CNN’s stride
size to (2,2). A max-pooling layer was utilized to extract
significant features and reduce dimensionality. Furthermore,
a dropout regularization layer with a rate of 25% was applied
to prevent overfitting and enhance model generalization. The
specific rate of 25% was chosen based on experiments that
demonstrated a good balance between preventing overfitting
and maintaining model performance. For the final layer, a
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Fig. 1: Stacking Ensemble Learning with GCNNs Incorporating Structural and Functional Connectivity. A Stacked Model
with 9 Baseline Models and 6 Combining Meta-Models.

dense layer with a softmax classifier was used to predict the
probability distribution of the four classes.

B. Functional Connectivity-Based Graph Representation
The functional connectivity-based graph methodology, as

depicted in Fig.1b, involves several essential steps to ana-
lyze EEG signals effectively. Firstly, the EEG signals are
decomposed to extract specific frequency bands, including
δ, θ, α, µ, β, γ and (1-51 Hz), covering a broad range of
brain activity. Next, these EEG signals are transformed into
a graph representation using Phase Locking Value (PLV),
which captures the synchronization between different brain
regions. This graph representation allows for the character-
ization of functional connectivity patterns across the brain.
Subsequently, the encoded EEG signals are fed into a neural
network. This comprehensive framework represents an end-
to-end model, suitable to training through standard back-
propagation methods.

1) EEG-channel Connection Representations : Phase syn-
chronization events are frequently observed in EEG data
and have found widespread application in studies related to
motion imaging and BCIs [13]. Compared to other techniques
for evaluating phase synchronization between signals, they
are often preferred. PLV [14], [15] is a measure used to
quantify the degree of synchronization between two EEG
channels, indicating the extent to which their signals are
correlated over time. One commonly employed method for
representing EEG channel connections based on PLV is
the creation of a connectivity matrix, also referred to as a
functional connectivity network. In this matrix, each row and
column corresponds to a distinct EEG channel, and the value
in each cell represents the PLV between the corresponding

pair of channels. PLV serves as an indicator of the average
phase difference between any two signals, allowing for the
differentiation of the phase component from the amplitude
component of EEG signals. The formula that defines PLV is
provided in [16], and it can be represented as follows:

PLV (t) =
1

N

∣∣∣∣∣
N∑
1

exp(i(△φn(t)))

∣∣∣∣∣ (1)

The phase difference between the signals recorded by elec-
trode x and electrode y at time t is given by △φn(t) =
φx(t) − φy(t) The length of the time series is represented
by N . Each EEG channel is depicted as a node in the
graph, and the edges of the graph represent the PLV values
between the channels. Therefore, the graph is constructed
based on the PLV connectivity among the different nodes.
Analyzing the connectivity patterns between different brain
regions and investigating the functional interactions between
them through this graph provides valuable insights into the
network properties of the brain.

2) Phase Locking Value Graph (PLV-Graph): PLV mea-
sures the consistency of phase differences between signals
and enables the construction of a graph representing EEG
signal connectivity. Each channel is a node, and edges
indicate functional connectivity strength. The PLV-CNNM
graph follows three steps: (A) Calculate PLV values between
the 22 EEG channels. (B) Represent EEG channels as nodes,
incorporating significant PLV connections as edges. (C) As-
sign weights to edges based on PLV strength. This undi-
rected graph identifies non-directional connectivity patterns.
Decomposing EEG signals extracts desired frequency bands:
δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz), µ (8-13 Hz), β (12-30
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Hz), and γ (30+ Hz). PLV values are computed between each
pair of EEG channels using Equation 1.
N represents the number of signals, i is the imaginary unit,
and △φn(t) = φx(t) − φy(t) signifies phase difference
between signals at time t. PLV ranges from 0 to 1, indicating
no synchronization and perfect synchronization. Connections
derived from PLV form a graph illustrating connectivity
among brain regions at varying frequencies. Each EEG
channel is a node, and connections are edges. This approach
reveals brain network organization and information flow
patterns. The PLV graph identifies network hubs, modules,
and changes in properties. It investigates the relationship
between EEG connectivity and cognitive processes like MI
tasks.
The PLV-CNNM architecture includes two CNN layers with
a kernel size of (3, 3) to extract complex time-frequency-
domain features from the EEG data. A max-pooling layer (2,
2) to reduce spatial resolution and computational complexity
while retaining vital information, and a 25% dropout regular-
ization layer to prevent overfitting. The choice of 32 and 64
filters in the convolutional layers reflects the need to capture
progressively complex patterns in the EEG data. The initial
32 filters focus on extracting lower-level features, while the
subsequent 64 filters operate at a higher level to capture more
abstract representations. ReLU activation is used. The final
dense layer employs softmax classification for generating a
probability distribution across four classes.

C. stacking Ensemble Learning with GCNNs

The concept of stacking, also known as meta-learning, is
employed to merge the outcomes of multiple classification
models or base models in order to enhance performance
[17]. By utilizing an additional learning algorithm called
the level-l model or meta-model, stacking aims to identify
reliable classifiers. The meta-model takes input in the form
of predictions made by the baseline models, referred to as
level-0 models. These level-0 models assign scores to each
potential class, and subsequently, the outputs of the level-0
models are fed into the level-1 models, which combine them
to generate the final prediction.
This study employs a novel approach integrating stack-
ing ensemble learning with GCNNs to analyze MI data.
This approach incorporates both structural and functional
connectivity, as illustrated in Fig. 1. The Stacked Model
consists of Nine Baseline Models and Six Combining Meta-
Models, including Logistic Regression, Neural Networks,
Support Vector Machines, Random Forest, K-Nearest Neigh-
bor, and Gradient Boosting Machine. These meta-models
were chosen to ensure a diverse set of learning strategies
for combining outputs from the base models in the stacking
ensemble approach. These meta-models have demonstrated
their effectiveness in handling diverse input sources and
have a track record of success in improving classification
performance when used as meta-models. Importantly, they
are well-suited for the ensemble approach in this study, which
combines information from both structural and functional
connectivity. By combining information from both structural

and functional connectivity, the approach utilizes GCNNs to
extract meaningful features from MI data, ultimately leading
to an improvement in classification accuracy. The stack-
ing ensemble learning technique combines multiple GCNN
models trained on different aspects of connectivity, resulting
in a more robust and accurate classifier for MI tasks. The
primary focus lies in the fusion of structural connectivity
(ADJ-CNNM), capturing anatomical connections, and func-
tional connectivity (PLV-CNNM) along with its variations,
measuring brain activity synchronization. This fusion enables
a comprehensive analysis of MI data. By leveraging GCNNs
and stacking ensemble learning, this approach effectively
captures both local and global connectivity patterns, thereby
addressing the challenges associated with analyzing MI data.
The integration of structural and functional connectivity in-
formation within the GCNN-based ensemble model provides
a holistic understanding of the dynamics of the underlying
brain network during MI tasks.

III. RESULTS & DISCUSSION

Table. I presents various combinations of stacking ensem-
ble learning, including baseline models and meta-models,
which were evaluated to analyze the effectiveness of stacking
ensemble learning in analyzing MI tasks. These combina-
tions, incorporating GCNNs, play an integral role in the
stacking ensemble learning approach applied to the analy-
sis process. The utilization of stacking ensemble learning
enhances classification performance by leveraging the com-
bined predictive power of multiple models.
The stacking ensemble approach in this study incorporates
both structural and functional connectivity measures for
analyzing motor imagery tasks. ADJ-CNNM focuses on
structural connectivity, representing the physical connections
between different brain regions. On the other hand, PLV-
CNNM (1-51 Hz) captures functional connectivity, which
reflects the synchronization of neural activity between brain
regions.

By combining these two measures, the model benefits from
the complementary information provided by both structural
and functional connectivity. Structural connectivity reveals
the underlying anatomical framework of the brain, while
functional connectivity highlights the dynamic interactions
between brain regions during motor imagery tasks. This
integration allows the model to obtain a more comprehensive
understanding of the brain’s network organization and its
relevance to motor imagery processes.

Moreover, PLV-CNNM (1-51 Hz) covers a broad fre-
quency range, encompassing various neural oscillations. This
wide range enables the model to capture diverse functional
connectivity patterns associated with different frequency
bands, potentially capturing distinct aspects of motor imagery
processes. The synergy between structural and functional
connectivity information allows the stacking ensemble ap-
proach to improve the classification performance compared to
using only one type of connectivity measure. By leveraging
both modalities, the model gains a more holistic view of
the brain’s functional organization during motor imagery
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TABLE I: Results of Stacking Ensemble Learning combina-
tions based on 9-fold cross-validation for 10 runs.

Base Line Models Meta Models
Model Mean ± Stdev

ADJ-CNNM None 72.57% ± 0.045
PLV-CNNM (1-51) None 75.10% ± 0.018

ADJ-CNNM + PLV-CNNM (1-51)

NN 85.23% ± 0.0208
SVM 85.30% ± 0.0188
LR 85.18% ± 0.0209
RF 84.73% ± 0.0179
KNN 84.93% ± 0.0185
GBT 85.04% ± 0.0177

ADJ-CNNM + PLV-CNNM (8-30) NN 85.18% ± 0.0219
ADJ-CNNM + PLV-CNNM (1-51)
+ PLV-CNNM (8-30) NN 85.29% ± 0.0222
ADJ-CNNM + PLV-CNNM (8-12)
+ PLV-CNNM (8-13)
+ PLV-CNNM (12-30) NN 85.20% ± 0.0297
ADJ-CNNM + PLV-CNNM (1-51)
+ PLV-CNNM (8-12)
+ PLV-CNNM (12-30) NN 85.42% ± 0.0210
ADJ-CNNM + PLV-CNNM (1-51)
+ PLV-CNNM (8-12)
+ PLV-CNNM (8-13) NN 85.09% ± 0.0219

ADJ-CNNM +
PLV-CNNM (8-12)
+ PLV-CNNM (12-30)

NN 85.01% ± 0.0167
SVM 84.89% ± 0.0161
LR 85.04% ± 0.0174
RF 84.99% ± 0.0165
KNN 86.23% ± 0.0155
GBT 85.16% ± 0.0153

tasks, resulting in more accurate predictions and a deeper
understanding of the underlying neural mechanisms.

Furthermore, the baseline models, ADJ-CNNM and
PLV-CNNM (1-51 Hz), achieve accuracies of 72.57% and
75.10%, respectively. When ADJ-CNNM and PLV-CNNM
(1-51 Hz) are combined with different meta-models, the
ensemble models show remarkable accuracy increments.
The NN meta-model achieves an accuracy of 85.23%,
indicating an increment of 12.66% compared to the ADJ-
CNNM baseline accuracy. Similarly, the SVM meta-model
achieves an accuracy of 85.30%, representing an increment
of 12.73%. The LR meta-model achieves an accuracy of
85.18%, reflecting an increment of 12.61%. The RF meta-
model achieves an accuracy of 84.73%, with an increment
of 12.16%. The KNN meta-model achieves an accuracy
of 84.93%, showing an increment of 12.36%. Finally, the
GBT meta-model achieves an accuracy of 85.04%, with a
noticeable improvement of 12.47%.
When considering the PLV-CNNM (1-51 Hz) baseline
accuracy, the NN meta-model achieves an accuracy of
85.23%, indicating an increment of 10.13%. Similarly,
the SVM meta-model achieves an accuracy of 85.30%,
representing an increment of 10.20%. The LR meta-model
achieves an accuracy of 85.18%, reflecting an increment
of 10.08%. The RF meta-model achieves an accuracy of
84.73%, with an increment of 9.63%. The KNN meta-model
achieves an accuracy of 84.93%, showing an increment of
9.83%. Finally, the GBT meta-model achieves an accuracy

of 85.04%, with an increment of 9.94%. These results
underscore the effectiveness of stacking ensemble learning
in significantly enhancing the classification performance for
MI tasks. The combinations of ADJ-CNNM and PLV-CNNM
(1-51 Hz) with different meta-models achieve substantial
accuracy increments, ranging from 9.63% to 12.73%. This
emphasizes the potential of ensemble learning techniques in
effectively leveraging the strengths of multiple models to
achieve improved and robust classifications.

An alternative combination, ADJ-CNNM and PLV-CNNM
(8-30 Hz), targets the relevant α and β bands for MI data,
achieving an accuracy of 85.18%. To capture functional
connectivity across different frequency ranges, ADJ-CNNM,
PLV-CNNM (1-51 Hz), and PLV-CNNM (8-30 Hz) extend
the previous combination by including an additional PLV-
CNNM feature extracted from the 8-30 Hz range, resulting
in an accuracy of 85.29%.
Specializing in α, β and µ the combination of ADJ-CNNM,
PLV-CNNM (8-12 Hz), PLV-CNNM (8-13 Hz), and PLV-
CNNM (12-30 Hz) achieves an accuracy of 85.20%. A
broader range of neural dynamics associated with MI tasks
is captured by combining ADJ-CNNM, PLV-CNNM (1-51
Hz), PLV-CNNM (8-12 Hz), and PLV-CNNM (12-30 Hz),
resulting in an accuracy of 85.42%.
Additionally, the combination of ADJ-CNNM, PLV-CNNM
(1-51 Hz), PLV-CNNM (8-12 Hz), PLV-CNNM (8-13 Hz),
and PLV-CNNM (12-30 Hz) encompasses a diverse set of
features and achieves an accuracy of 85.09%.

The most discriminative features for MI classification are
captured by the combination ADJ-CNNM + PLV-CNNM (8-
12 Hz) + PLV-CNNM (12-30 Hz), focusing on the crucial
α and β frequency ranges. This combination significantly
reduces noise, leading to improved accuracy at 86.23% with
KNN as the meta-model, surpassing other models and con-
firming its ability to capture motor-related neural dynamics
in MI data.
To provide context, a comparison with other studies using the
same IV-2a dataset was conducted and presented in Table II,
affirming the significance of these α and β frequency ranges
in MI data analysis and supporting the superiority of this
approach.
The study’s approach, combining ADJ-CNNM and PLV-
CNNM (8-12 Hz) + PLV-CNNM (12-30 Hz) with stacking
ensemble learning, successfully captures key discriminatory
features, enhances classification accuracy, and provides in-
sights into motor-related neural dynamics. Furthermore, the
results and discussions underscore the importance of specific
frequency ranges and the effectiveness of stacking ensemble
learning. The study confirms that ensemble learning tech-
niques, including stacking ensemble learning, play a crucial
role in addressing the inherent variability in EEG signals.
By combining the predictions of multiple models, the study
demonstrates that ensemble methods effectively mitigate the
impact of noise and individual model biases, resulting in
significantly improved robustness and accuracy in MI-EEG
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TABLE II: An Evaluation of Proposed Methods against State-
of-the-Art and Baseline Models on the IV-2a Dataset.

Comparison Model Mean Stdev

EEGNet [5] 51.31% 0.051
CTCNN [12] 47.67% 0.150
FBCSP [4] 35.69% 0.083
CNN 47.20% 0.047
RNN 35.48% 0.022
CRAM [18] 59.10% 0.108
NG-RAM [19] 60.11% 0.099
DG-RAM [19] 59.64% 0.097
SG-RAM [19] 59.00% 0.101
T-WaveNet-Haar [20] 43.12% NA
T-WaveNet (without feature fusion) [20] 61.03% NA
T-WaveNet [20] 63.01% NA

Stack Ensemble Methods
LDA (Linear DA) [7] 62.00% 0.18
SLDA (Stacked Linear DA) [7] 66.00% 0.19
SLD (SVM-LDA-Decision Tree) [8] 77.08% NA
Ensemble-CNN [9] 64.16% NA

(ADJ-CNNM + PLV-CNNM (8-12 Hz) +
PLV-CNNM (12-30 Hz))

86.23% 0.0155

classification.

IV. CONCLUSION

This study has introduced several contributions to the
field of MI. By combining stacking ensemble learning with
GCNNs, the study has significantly enhanced the accuracy
of MI task classification, promising substantial support for
individuals with injuries or impairments in their rehabilitation
and assistance needs. The introduction of the ADJ-CNNM
model has addressed subject-specific scenarios, enhancing
subject independence and expanding the applicability of
BCIs. Additionally, the innovative integration of GCNNs has
allowed for the comprehensive capture of both local and
global connectivity patterns in EEG data, extracting richer
information for MI classification. Incorporating multiple con-
nectivity types, including structural and functional connec-
tivity with various frequency band variations, has further
diversified the model’s analysis capabilities. Furthermore, the
study has optimized ensemble learning techniques, specifi-
cally employing stacking ensemble learning, to combine di-
verse GCNN models, thus improving classification accuracy
significantly. This approach underscores the effectiveness
of ensemble techniques in MI classification. The validation
against state-of-the-art and baseline techniques using the
same dataset has highlighted the superiority of the proposed
approach in the field of MI classification. These contributions
collectively emphasize the potential of GCNNs and stacking
ensemble learning to address the challenges associated with
MI classification. Future research endeavors should build
upon these findings, exploring more advanced meta-models,
investigating additional features, and assessing the model’s
performance with larger and more diverse datasets.
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