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Abstract— Our research focuses on integrating Laban Move-
ment Analysis (LMA) with neural network technologies for
analyzing conducting gestures. While promising, this approach
faces challenges in real-time speed and adaptability. To over-
come these limitations, we propose using tree ensembles,
conducting LMA classification on conducting gestures with
time-invariant transforms. This study aims to outperform the
previous neural network approach in terms of time and set a
benchmark for comparison, contributing valuable insights to
enhance real-time applications in conducting gestures.

I. INTRODUCTION

Gestures are an important means of communication. His-
torically, gesture recognition has been focused on producing
an output based on specific, conscious actions. Action vari-
ation is typically only used for model robustness. However,
this variation holds untapped potential, and could improve
the responsiveness of gesture recognition techniques. These
small variations are especially important in artistic gesture
such as movement for dancers and conductors.

To investigate the delicate nuances in motion, it is essential
to isolate them from the overall gesture. Opting for an
application with simple gestures, where the technique itself
conveys most of the information, proves to be advantageous.
Musical conducting serves as an evident and ideal choice.
Even when conducting basic rhythms, musicians can infuse
their music with a distinctive tone, making it a suitable
domain for this study.

A. Laban Movement Analysis

Laban Movement Analysis (LMA) is a framework we em-
ployed for describing dance and whole-body motion. LMA
classifies all motion into four independent binary categories:
weight, space, time, and flow, though these may be extended
depending on the application. Within each category, there are
two descriptors representing exact opposites. Table I shows
the possible types of motions can be described by LMA.

B. Tree Ensembles

Neural networks are narrow and deep, progressively learn-
ing important features, whereas tree ensembles are shallow
and wide, extracting knowledge from base features using
decision trees. Decision trees are common in diagnostic
applications and serve as weak learners for machine learning

TABLE I: Different type of motions that can be described
using LMA. We included these actions in our dataset [1].

Space Weight Time Flow/Energy
Dab direct light quick free
Flick indirect light quick free
Glide direct light sustained free
Float indirect light sustained free
Punch direct strong quick bound
Slash indirect strong quick bound
Press direct strong sustained bound
Wring indirect strong sustained bound

tasks. Their simplicity prevents overfitting, leading to con-
sistent performance in ensemble learning compared to other
models [2].

Tree ensembles offer several advantages, including speed
and human-interpretability. Their evaluation and training are
fast due to the simplicity of boolean expressions. Moreover,
their human-interpretable nature makes them suitable for
applications where understanding the decision process is
crucial, like in remote control scenarios.

However, tree ensembles have limitations as they cannot
generate new features, making them less effective for com-
plex problems requiring multiple logical steps. They excel
in regression and simple categorization tasks but may not be
suitable for more intricate challenges.

1) Random Forest: Random Forest is a basic tree ensem-
ble method, utilizing bootstrap sampling for data selection
and training decision trees accordingly. To make predictions,
it aggregates the outputs from individual trees, using aver-
aging for regression and voting for classification, a process
known as bagging.

Random Forest was a leading candidate for LMA classi-
fication with accelerometer data in 2014 [3]. Recent studies
demonstrate its comparable performance, but not surpass-
ing, Convolutional Neural Networks and Long-Short Term
Memory algorithms in LMA classification [4]. In a recent
analysis of machine learning methods, Random Forest ranked
as the second-highest scoring approach [5]. It has also
shown excellent results when combined with Wavelet Packet
Decomposition entropy for feature extraction [6].

2) Rotation Forest: Rotation Forest, a modification of
Random Forest, aims to enhance the efficiency of using
trees. One limitation of Random Forest is its inability to
split data on different angles from the feature axes, which
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may lead to jagged approximations even for linear problems,
necessitating multiple trees. Rotation Forest addresses this
by providing better axes for splitting. It bootstraps 75% of
the data, performs Principal Component Analysis (PCA) on
each subset, and rotates the data along the resulting axis [7].
This rotation aligns with the direction of maximum variation,
improving the tree splitting process.

In a comparison of ensemble learning methods, Rota-
tion Forest achieved the highest score when utilizing REP
trees [2]. Despite its success, Rotation Forest has seen limited
use in gesture recognition since its proposal in 2006 [7].
However, recent applications in conjunction with surface
electromyography demonstrated better results than using
Random Forest alone [8].

3) AdaBoost: AdaBoost is a boosting method, not bag-
ging. Unlike bagging, boosting coordinates weak learners to
reduce errors faster, rather than waiting for errors to statisti-
cally disappear. AdaBoost selects learners based on their data
classification performance, assigning them different weights
based on their accuracy. To minimize overfitting, using trees
with just two leaves (stumps) is recommended, allowing
AdaBoost to systematically eliminate errors by selecting the
best splitting axis and location each time. However, being a
sequential algorithm, AdaBoost cannot be GPU-enhanced.

AdaBoost has shown success when combined with feature
extraction techniques. Notably, it has been used with the
two-dimensional Haar wavelet for image classification and in
conjunction with SVM, Fourier transform of finger gradients,
and modified Hu movements for invariant classification of
Kinect sensor data. These applications demonstrate that
AdaBoost performs well with feature extraction.

4) Extreme Gradient Boosting (XGBoost): XGBoost (Ex-
treme Gradient Boosting) is an adaptation of the original
Gradient Boosting algorithm, which utilizes gradient descent
to train an ensemble. It starts with an arbitrary prediction
and then trains a weak learner on the pseudo-residuals
(differences between the prediction and ground truth) at each
step. The new prediction is scaled by the learning rate and
added to the previous prediction, gradually approaching the
ground truth as more gradients are accumulated.

XGBoost significantly optimizes the algorithm by identi-
fying similar value groups for data splitting, pruning trees
to prevent overfitting, and utilizing approximate algorithms
to speed up training time. Additionally, XGBoost cleverly
executes some steps in parallel, enabling partial GPU accel-
eration.

The algorithm is quite popular, despite having only been
proposed as early as 2016 [9]. This is probably due to
XGBoost’s parallelization support, ease of use, and high ac-
curacy. The algorithm has achieved better results classifying
wifi signals from antennas [10]. XGBoost was also the third
best method in the aforementioned analysis [5]. From these
results, it appears that XGBoost’s performance is sensitive
to the context of the problem.

Figure 1 show the qualitative rendition of results from the
four tree ensemble algorithms and the three time-invariant
transforms we used.

C. Time-Invariant Transforms

To handle semi-periodic data and began at different times,
we used three time-invariant transforms for data extraction.
This ensured uniform recognition of patterns appearing at
various times and encouraged the model to focus on the form
rather than the beat of the samples.

1) Fast Fourier Transform (FFT): The standard time-
invariant transform, FFT, decomposes signals using complex
exponentials. However, tree ensembles cannot handle com-
plex outputs due to their non-orderable nature. To address
this, two methods are available: normalizing the output
(which maintains input size but is irreversible) or combining
the real and imaginary parts (resulting in twelve frequency
spectrums, but increasing input features). For our discussion,
we will focus on the normalized approach to FFT.

2) Discrete Cosine Transform (DCT): DCT is simpler
to work with than FFT, since it maintains the number of
datapoints and only outputs real values. It is also used in
compression algorithms, meaning the 16 frequency approx-
imation should be more accurate for this transform.

3) Continuous Wavelet Transform (CWT): The Continu-
ous Wavelet Transform uses localized wavelets, not trigono-
metric functions. This allows it to capture time information
as well as frequency information. Therefore, this transform
is only partially time-invariant. Instead of producing a time
series, the Wavelet Transform outputs a matrix of weights.
The matrix height is the wavelet size, and the width is the
time axis. We will limit our discussion to the Mexican Hat
wavelet for simplicity, though it is possible to use other
wavelets as well.

We should expect CWT to perform well based on its
ability to capture more than one type of information. In a
recent study, wavelets were found to be the most effective
method for gesture recognition using phone sensors [11].

II. METHODS

In this paper, we are extending our previous work on
the CGLER framework by exploring new Neural Network
algorithms [1]. The new addition is showed in Figure 2
flowchart.

A. Data and Preprocessing

The dataset we used was provided by the previous CGLER
framework, and included both gyroscope and accelerometer
data captured from smartphones [1]. Our inputs consisted of
six time series per sample, with three for acceleration and
three for rotation. Each sample was labeled with the quarter
notes per measure (two, three, or four) and LMA categories
(Flow, Shape, Time, and Weight). We expected the motion
to be captured by only the narrow band of frequencies at
which the whole arm can move. Therefore, we used only
the 16 lowest of 128 frequencies for FFT and DCT, while
for CWT, we used integer wavelet widths from 1–8.

First, the data was read from several files selectively,
based on the LMA descriptor currently being classified. The
input features were six time series with 128 datapoints.
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Class 1 Class 2 Predict Class 1 Predict Class 2 Branch Split Pruned Branch

Fig. 1: A qualitative rendition of the tree ensemble algorithms used in this paper. Each row represents a different algorithm:
Random Forest (a–d), Rotation Forest (e–h), AdaBoost (i–l), and XGBoost (m–p). In each iteration, the algorithms attempt
to predict a class by splitting the tree along an axis, allowing only three splits in the figure. The first three columns
display individual decision trees, with possible missing or overlapping points in Random Forest and Rotation Forest due
to bootstrapping. In AdaBoost, some points may have higher weights, while XGBoost replaces points with their pseudo-
residuals at each iteration. The last column represents the complete ensemble classifier formed by combining the decision
trees.
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Fig. 2: The flowchart for a single train/test cycle. This was
performed several times using K-Means.

We then performed feature extraction using a time-invariant
transform.

B. Training and Testing

These input features were passed on to one of the tree
ensemble algorithms. We used K-Fold cross-validation for
training and testing. The K-Fold algorithm shuffles the data
and splits it into k subsets. It trains k − 1 of those subsets
and tests on one, repeating k times. During K-Fold cross-
validation, we calculated mean accuracy, Cohen’s Kappa, and
standard deviation of accuracy.

III. RESULTS AND DISCUSSION

Table II summarized the results obtained from various
combinations of transform and tree ensemble. Each of these
provide an accuracy, Cohen’s Kappa, and standard deviation
of accuracy for each of the four LMA descriptors (flow,
space, time, and weight). In the following sections, we
compare the efficacy of each tree ensemble and transform.
We then compare these results to the previous neural network
approach.

A. Tree Ensemble Comparison

The topmost horizontal axis of Table II lists the tree
ensemble methods we used.

Among the tested algorithms, AdaBoost demonstrated out-
standing accuracies in the Flow, Time, and Weight categories.
The combination of AdaBoost with transforms seemed to
enhance its performance significantly. Random Forest per-
formed comparably well, achieving the highest accuracy in
the Space category. Surprisingly, XGBoost did not perform
as well as expected and was often outperformed by Random
Forest. The Rotation Forest algorithm, despite having longer

training times, consistently showed the poorest performance
across all categories.

Interestingly, in some cases, the axes identified by PCA
proved to be less effective than the original ones, indicating
that the problem might be too nonlinear for PCA to be an
effective solution. Although kernel PCA exists, it primarily
serves as a dimensionality reduction technique and does not
facilitate axis rotation.

Overall, these findings highlight the importance of choos-
ing the appropriate algorithm and transformation methods for
conducting gesture analysis, considering the nonlinear nature
of the problem.

Combined with CWT, Rotation Forest ran out of memory
while it was training. The exponential growth of decision
trees combined with the need to store rotation information
makes Rotation Forest particularly memory intensive. For
most transforms this was not much of a problem due to the
small number of input features. However, CWT produced the
most input features of all the transforms, since it captured
features across both time and frequency space. This feature
set was too large for Rotation Forest algorithm to process,
at least on a home computer. Memory issues like this are
an important consideration for future research, especially in
applications intended to run on less proficient hardware such
as a smartphone.

B. Transform Comparison

Table II displays the various transforms used for feature
extraction along the leftmost vertical axis. Models utilizing
transforms generally outperformed those without, demon-
strating improved accuracy in almost every case. Compared
the average result of no transform to combined all the
transformed, we noted the overall accuracy increased from
77.79% to 80.13% for Random forest, 67.32% to 75.34%
for Rotation forest, 75.41% to 80.71% for AdaBoost, and
76.61% to 79.57% for XGBoost.

Compared the various transforms, FFT has consistently
performed better than the other transforms. These results
indicate that incorporating more information does not nec-
essarily guarantee better performance for tree ensembles.
For instance, with the Discrete Wavelet Transform (DWT),
additional features not only limited achievable accuracy
but also significantly increased training time. It seems that
there exists an optimal number of features that maximizes
ensemble performance, beyond which minimal variations
in accuracy occur. This suggests the presence of an upper
bound on accuracy, and further improvements may only be
achievable by introducing other types of features.

C. Overall Best Result

Overall, the best combination was AdaBoost with FFT
with82.34% accuracy in average. It achieved the best accu-
racies in the Time and Weight categories. Additionally, the
Flow category came within 0.35% of the best accuracy, and
the Space category came within 2.25%.
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D. Comparison with Neural Network Approach

Unfortunately, none of our accuracies or kappas surpassed
those in the previous neural network approach [1]. There are
several reasons for this:

1) Training Resources: The previous CGLER framework
was trained using resources from Compute Canada [1].
Meanwhile, our method was trained on a home computer.
Although the previous model had better accuracy, it likely
had a longer training and prediction time. Unfortunately, the
previous paper did not include a time benchmark, so a direct
comparison was not possible.

2) Interdependence of Variables: As stated previously,
tree ensembles do not perform well on datasets that require
complex logic to classify. One of the issues with our dataset
is the interdependence of the rotation and accelerometer
data. A quick rotation can change the direction of accel-
eration in the phone’s coordinates. This has the effect of
switching axes at unpredictable intervals, creating different
accelerations even if the motion is nearly identical. While a
neural network may eventually learn a coordinate rotation or
similar operation, a tree ensemble must use the data as-is. A
simple transformation to absolute coordinates could improve
accuracy significantly.

However, such a transformation comes with its own
caveats. A gyroscope measures rotational velocity, not ro-
tation angles. The velocity could be integrated numerically,
but any small disturbances would add together. This issue
is called drift, and it can be mitigated with more stable
integration methods [12].

3) Feature Extraction: There may exist more useful fea-
ture extraction techniques than time-invariant transforms.
While they can simplify alignment and combat noise through
frequency selection, time-invariant transforms also remove
valuable time information. Wavelet transforms combat this
problem, but large feature sets complicate the classification
process. The ideal transform for this scenario is one which
contains a minimal number of both time and frequency
features.

IV. CONCLUSION

Using tree ensembles with time-invariant transforms, we
classified conducting gestures using the four primary cate-
gories of Laban Movement Analysis. Despite not matching
the accuracy of the previous neural-network approach, its
impressive performance with limited resources, accessibility,
and fast training time make it an excellent choice for future
research.

There are several opportunities for further investigation:
1) Longer Training: Three of the four highest accuracies

were achieved by AdaBoost. Considering AdaBoost’s ro-
bustness to overfitting, more extensive training of AdaBoost
combined with FFT or DCT may improve results without
additional changes.

2) Different Feature Extraction Techniques: Due to time
constraints, we were only able to test three basic transforms.
There may be other feature extraction techniques, including
other transforms, which have better performance than our

demonstration. Furthermore, it would be advantageous to use
global rather than local acceleration coordinates, which can
only be achieved using stable integration methods.

3) Combination with Neural Networks: Our model com-
bines the speed of tree ensembles with the accuracy of neural
network methods. It is expected to be faster than existing
neural network-based approaches and more accurate than
using a tree ensemble alone.
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