
Applicability Study of Model-Free Reinforcement
Learning towards an Automated Design Space

Exploration Framework
1st Patrick Hoffmann

Corporate Research & Advance Eng.
Robert Bosch GmbH
Renningen, Germany

patrick.hoffmann3@bosch.com

2nd Kirill Gorelik
Corporate Research & Advance Eng.

Robert Bosch GmbH
Renningen, Germany

kirill.gorelik@de.bosch.com

3rd Valentin Ivanov
Department of Mechanical Engineering

Technische Universität Ilmenau
Ilmenau, Germany

valentin.ivanov@tu-ilmenau.de

Abstract—Design space exploration is a crucial aspect of
engineering and optimization, focused on identifying optimal
design configurations for complex systems with a high degree
of freedom in the actor set. It involves systematic exploration
while considering various constraints and requirements. One
of the key challenges in design space exploration is the need
for a control strategy tailored to the particular design. In this
context, reinforcement learning has emerged as a promising
solution approach for automatically inferring control strategies,
thereby enabling efficient comparison of different designs. How-
ever, learning the optimal policy is computationally intensive,
as the agent determines the optimal policy through trial and
error. The focus of this study is on learning a single strategy
for a given design and scenario, enabling the evaluation of
numerous architectures within a limited time frame. The study
also highlights the importance of plant modeling considering
different modeling approaches to effectively capture the system
complexity on the example of vehicle dynamics. In addition, a
careful selection of an appropriate hyperparameter set for the
reinforcement learning algorithm is emphasized to improve the
overall performance and optimization process.

Index Terms—Reinforcement Learning, Intelligent Control,
Transportation and Vehicle Systems, Electric Vehicle

I. INTRODUCTION

Cross-system integration is an emerging field in automotive
development [1]. The incorporation of powertrain electrifi-
cation, electromechanically controlled by-wire braking and
steering systems, and a central E/E architecture introduces new
possibilities for enhancing vehicle dynamics. For this reason,
a design study is advisable to make the best possible use
of functional and cost benefits. However, the design space
is very large due to the available degrees of freedom. In
this context, the design space encompasses a wide range of
possibilities, including permutations of steering, braking, and
propulsion systems acting at each of the four vehicle wheels.
It also involves considering different centralization options,
such as vehicle central, axle central, or wheel individual ar-
rangements of actuators. Moreover, the design space accounts
for the presence of redundant actuators, which introduces
additional configurations and complexities that need to be
investigated [2]. In order to find the best possible configuration

fulfilling also the ISO 26262 standard [3], there is a need
to analyze safety-critical failures of a (sub-) system in the
design and to quantify safety metrics. Thus, for the Design
Space Exploration (DSE), in addition to the design variants,
the investigation of the seven fault classes [4] such as loss
of function, more/less actuation than intended, intermittent
actuation, wrong actuation direction, not requested actuation,
and blocked function is required. In an exhaustive study, the
incorporation of failure modes and component-level consider-
ations, such as sizing characteristics, significantly increases
the design space. Moreover, evaluating all designs across
multiple driving scenarios is crucial to assess the fulfillment
of objectives. The combination of these factors necessitates a
substantial number of evaluations to enable a comprehensive
DSE. To ensure optimal control and facilitate comparison be-
tween different over-actuated architectures, control strategies
need to be developed for each potential configuration. To solve
this problem, an automated derivation of control strategies
for each topology is required to determine the most suitable
configuration that satisfies the given requirements and achieves
the desired performance across different operational scenarios
and objectives.

The subsequent sections of this paper are structured as
follows: Sec. II provides an overview of the state of the art
and fundamental concepts underlying this study. The section
is closed with the research gap and presents the contribution
of this paper. Sec. III outlines the formulation of the problem
definition. Sec. IV covers the implementation and evaluation
of the plant model, while Sec. V focuses on closed-loop
evaluations for the limited design space. Finally, Sec. VI
concludes the paper.

II. STATE OF THE ART

To efficiently address the DSE problem, both control and
system identification play crucial roles and must be considered
holistically. The state of the art for control of dynamic systems
is discussed in Sec. II-A. Sec. II-B explores Reinforcement
Learning (RL) as a potential approach for solving the DSE.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 525

Subsequently, Sec. II-C focuses on system identification, and
in Sec. II-D, the research gap and contributions are presented.

A. Dynamic Control

Two categories are defined to classify the control approaches
available in the literature: (1) generic control and (2) topology-
specific control. Generic control focuses on optimal control
from a functional point of view and the analysis of functional
dependencies or synergies between subsystems. Goal is the
identification of new system designs as well as the break
down of system requirements to component requirements.
Furthermore, within this context, it is essential to verify the
functional safety of the actuator set to ensure compliance
with safety requirements. Topology-specific control, on the
other hand, focuses on the robustness of the controller, real-
time capability, and functional safety of the algorithm. This
class aims to achieve the best performance within a specified
topology and application domain defined by requirements and
fault characteristics.

An example of domain-specific generic control is [5]. The
authors employ Dynamic Programming (DP) to perform a
DSE and optimize the powertrain layout of an electric vehicle.
However, in cases where problems involve complex state and
action spaces, the computation of the cost function becomes
computationally demanding or impractical, particularly for
continuous state and action spaces [6]. Additionally, [5] is
centered on a limited design space and does not encompass
failure cases as required by ISO 26262 standard [3] for safety-
critical functions. Topology-specific control can be effectively
addressed by employing algorithms with a receding horizon
approach. Some studies, such as [7], focus on stabilizing the
vehicle at the limits of handling using control algorithms.
Other research work optimizes energy consumption while
taking trajectory tracking into account [8]. However, these
studies focus on specific topologies and do not incorporate
considerations for system failures. Studies such as [9], [10]
address lateral vehicle dynamics, including compensation for
steering failures through torque vectoring. Additionally, [11]
focuses on optimizing automotive drive systems while consid-
ering machine derating. For this purpose, reference trajectories
must be specified as well as due to redundancy of the over-
actuated system, control allocation algorithms must usually be
utilized to provide a unique solution, which hinders automation
of the DSE. Nevertheless, the aforementioned studies provide
compelling evidence that DSE can lead to improved system
performance, such as reduced energy consumption, improved
trajectory tracking performance, and increased system avail-
ability.

B. Reinforcement Learning for Optimal Control

With RL as a promising method for the automation of con-
trol strategies derivation [12]–[14], its suitability for exploring
a large design space is further evaluated in this work. Typically,
the learning period is in the range of several minutes to hours
depending on the problem and the used algorithm [15]–[17].
Since for RL, unlike supervised learning, the data is generated

during the learning phase, it is of particular importance that the
data is generated rapidly and that the RL algorithm is very data
efficient. To enable efficient learning of the control strategy,
a holistic view on the interaction loop is necessary. The
basic RL interaction loop is shown in Fig. 1. The controller
applies controls uk ∈ Uk(xk) based on the given state xk
and policy π on the environment. The environment transfers
the inputs to the next state xk+1 using the state transition
function xk+1 = fk(xk, uk) and returns a reward for each
step according to rk = gk(xk, uk, xk+1) and a terminal reward
rN = gN (xN). The learning objective is to find the optimal
policy π∗ maximizing the accumulated reward for a finite
horizon N problem with

π∗ = argmax
π

Jπ(x0)

= max
u

(
gN (xN) +

N−1∑
k=0

gk(xk, uk, xk+1)

)
.

(1)

Benchmarks for suitable RL agents without a focus on
modeling system dynamics can be found in [18] for continuous
control problems and in [19] for real-world problems. [20], on
the other hand, evaluates model-based reinforcement learning
algorithms. For the consideration of the algorithms we refer to
the aforementioned publications, since benchmarking of dif-
ferent RL algorithms for the given problem is not considered
in this study. In this study, the model-free on-policy algorithm
Proximal Policy Optimization (PPO) [21] is employed. This
algorithm strikes a favorable balance between sample com-
plexity, simplicity, and wall-time and has demonstrated strong
performance in [17], among others.

C. Plant model

Besides the agent, the environment is an integral part
of RL. Ideally, the environment should exhibit the Markov
property [22], allowing for the utilization of any initial state
without considering past history. This eliminates the need for
initializing starting states and significantly reduces the time
required. Plant modeling can generally be divided into three
approaches: (1) white-box, (2) black-box, and (3) gray-box
modeling [23]. White-box modeling relies on first principles,
i.e. physical laws, black-box modeling focuses on capturing
the input-output relationship without prior knowledge, and
gray-box modeling combines some knowledge of the system
with empirical data. Numerous publications address different
aspects and levels of granularity when it comes to modeling
vehicle dynamics, providing a spectrum of approaches that
fall within the gray-box approach. Some studies focus on first
principles modeling [24], [25], while others employ black box
models [26] and comparing the accuracy of different modeling
approaches with ground truth data [27]. [28] models the tire
using a Multi Layer Perceptron (MLP) and compares it to a
Pacejka tire model, while [29] incorporates an approximation
of the tire compensating limitations or shortcomings in the
original Pacejka model for high dynamics. [30] models the
longitudinal acceleration of a vehicle using an MLP network

526

architecture based on physical effects i.e. rolling and gradient
resistance or actor dynamics. In addition, data from previous
states and controls are fed back according to the Nonlinear
Autoregressive Exogenous Model (NARX) approach. How-
ever, their study only covers longitudinal dynamics. [31] and
[32] explore MLP modeling for low and high dynamics of
longitudinal and lateral vehicle dynamics, respectively. [33]
compares the timing requirements of MLP with a dynamic
nonlinear single-track vehicle model, focusing on MLP design
without considering the RL algorithm or timing requirements.
In summary, the focus of existing publications is on the
development of models for controller design rather than for
a data efficient RL.

[34] considers acceleration of the plant model and an
informal hyperparameter search of the RL agent to reduce
the wall-time for a fixed set of training episodes. However,
the different modeling approaches are not compared in terms
of time requirements and no hyperparameter optimization is
performed for the RL algorithm.

D. Research Gap and Contribution

The existing publications focus mainly on the accuracy
of different modeling approaches while there is a gap in
existing publications comparing these approaches in terms of
runtime as well as the interaction of the plant models with the
controller in an RL framework. Furthermore, there has been no
analysis of how RL can be used to determine generic control
within a DSE including failure cases. This paper aims to close
these gaps and aims to expedite the learning process of a single
policy for a specific design and scenario, with the objective
of evaluating a variety of architectures within a limited time
frame. Additionally, emphasis is placed on plant modeling and
the careful selection of an appropriate hyperparameter set for
the RL algorithm. This study is based on the premise that no
prior knowledge is involved and that learning can occur purely
from the interaction between the controller and the plant.
Thus, methods that incorporate an existing base policy, such as
transfer learning, are not addressed in this work. Furthermore,
multitask learning for different topologies and scenarios is
not the focus of this study, so a policy is learned for each
combination of topology and scenario as well as failure cases.

III. PROBLEM DEFINITION

As this study investigates the potential of learning a single
policy for a particular design and scenario, rather than conduct-
ing a comprehensive DSE, the methodology is demonstrated
through several illustrative examples. These examples are
introduced in the following.

Fig. 1 depicts the interaction loop between the controller
and the plant for the specified Optimal Control Problem
(OCP) exemplified on a vehicle architecture. The state vector
is defined by xk = [dx,k, dy,k, ψk, vx,k, vy,k, ψ̇k]

′ with global
vehicle longitudinal/lateral positions (dx,k/dy,k), vehicle lon-
gitudinal/lateral velocities in global coordinates (vx,k/vy,k)
and yaw angle/rate (ψk/ψ̇k). The exemplary design variant
considered in this study consists of single-wheel steering

Controller

Plant
Model

Maneuver

Rewards

States

s−1

Controls

R

Environment

yup

ylo

Fig. 1: Problem related controller and plant interaction scheme.

actuators on the front axle and single-wheel motors on the
rear axle. Thus, the control vector uk = [δl,k, δr,k, Tl,k, Tr,k]
consists of individually controlled left and right front steering
angles δl,k and δr,k as well as individually controlled left
and right wheel torques Tl,k and Tr,k at the rear wheels. The
environment is divided into the elements of plant model and
maneuver with the appropriate cost function in the subsequent
subsections.

A. Plant Model

In this study, a comparison is conducted between four
different model variants benchmarked against data generated
by a base implementation of the state space model solved
with a variable-step Dormand-Prince solver. The model archi-
tectures are shown in Fig. 2. The variant depicted in Fig. 2a
utilizes a nonlinear state space model based on a dynamic two-
track model, incorporating a Pacejka tire model to represent
tire forces and torques. The only difference compared to the
reference model is the solver. Instead of the variable step
solver a Runge Kutta (RK) 4 fixed step solver is used to
strike a balance between result accuracy and computational
speed. Since the model operates with the same number of
solver steps, parallelization can be easily implemented. An-
other variant (Fig. 2b) replaces the Pacejka tire model with
an MLP for tire modeling. These state space models can be
categorized as light gray-box models, as they integrate data-
driven modeling of tires into momentum or angular momentum
theorems. Furthermore, two MLPs are employed to model the
entire vehicle dynamics for comparison. One MLP (Fig. 2c)
is analogous to the nonlinear state space model and predicts
the next state based on the current state and inputs. This
variant falls into the category of dark gray-box models, as
it incorporates domain knowledge for the data generation.
The other machine learning approach corresponds to NARX
(Fig. 2d), which incorporates domain knowledge in the form of
time-delayed control signals and time-delayed system outputs
as well as their derivatives. This approach allows the network
to effectively learn the nonlinear system and its underlying
differential equations.

527

xk+1 = h(xk, uk,

Pacejka)

xk+1 = h(xk, uk,

TireNN)

State xk+1

State xk+1

State xk+1

State xk+1

Input uk

Input uk

Input uk

Input uk

uk−n

z−1

z−1

z−1

z−1

z−n

a)

b)

c)

d)

z−n

Fig. 2: Model architectures.

B. Scenarios

The study incorporates two maneuvers: the run-in to steady-
state circular travel and the Double Lane Change (DLC)
maneuver. The trajectories are shown in Fig.1 in the block
maneuver for illustration.

The objective of the run-in to steady-state circular travel
maneuver is to achieve steady-state in cornering on a track
with a target radius R starting from straight driving at constant
speed [35]. Depending on the cost function, achieving the
desired outcome can be accomplished through various control
signals due to the degrees of freedom of the system due
to over-actuation. In addition, the maneuver can be used to
investigate the path following ability of the vehicle involving
system failures such as the sudden loss of a wheel-individual
drive or brake torque or the malfunction of a power steering
actuator.

The DLC maneuver is used to evaluate a controller’s ability
to track trajectory and stabilize vehicle motion [36]. The lower
and upper boundary of a DLC is defined by ylo,k = flo(dx,k)
and yup,k = fup(dx,k) respectively, based on the longitudinal
position. Furthermore, the maneuver can also serve as a mean
to assess the vehicle’s path following ability in dynamic
scenarios.

C. Control Cost Function

The optimization objective is formulated in (2) and can
be divided into two main parts. The primary part ε1 is the
path following accuracy, which aims to ensure that the vehicle
remains within the lane limits of the DLC maneuver or follows
the desired radius of the steady-state circular travel. Secondary
components ε2 include maintaining a consistent driving speed,
a uniform driving torque, and steering angle distribution. In
addition, the shortest path within the boundaries is also tracked
to provide information on energy consumption. This objective
can also be extended to incorporate the energy consumption
of all involved actuators in future work. The two objectives
are weighted by the corresponding weights w1 and w2. Since
there is no dedicated final state, the terminal penalty of (1) is
set to zero.

J∗1 (x0) = min
δi,k,Ti,k

[
N−1∑
k=0

[w1 · ε1 + w2 · ε2]

]
(2a)

s. t.
xk+1 = f(xk, δi,k, Ti,k),with i ∈ l, r (2b)
− δmax ≤ δi,k ≤ δmax (2c)
− Tmax ≤ Ti,k ≤ Tmax (2d)
x0 = [0, 0, 0, v0, 0, 0]

′ (2e)

IV. IMPLEMENTATION AND ANALYSIS OF PLANT MODEL

This section focuses on the development of plant models
and the analysis of their performance. This includes the imple-
mentation and evaluation of various models representing the
dynamics of the system under study. All models considered in
this study are derived from the base model. This is a nonlinear
three degree of freedom (longitudinal and lateral motion as
well as yaw rotation) state space model using a Pacejka tire
model for the tire force and torque calculation solved by a
variable step Dormand Prince solver. The nonlinear state space
model with the Pacejka tire incorporates the same dynamics,
but is suitable for parallelization and implemented in Python
using Numba [37]. The data for all MLPs are generated
by using the base model. Thus, the data for the tire MLP
are generated based on the Pacejka implementation and are
sampled with uniformly distributed inputs from the sub model.
The MLPs for the whole vehicle dynamics, on the other hand,
are based on trajectories. These trajectories are created during
RL with the base model by recording the state transitions for a
set of controls. The trajectories are decomposed into individual
state transitions depending on the history for training the
MLPs. Hyperparameter optimization is performed for all mod-
els to determine the optimal number of layers and the number
of nodes per layer. The criterion used for hyperparameter
optimization is the closed loop performance, which means that
the models are validated with respect to all trajectories. The
Mean Absolute Error (MAE) is used as the validation metric,
since this metric gives less weight to individual outliers in the
data and evaluates all standardized elements in the state vector
equally. The results of the best MAE from hyperparameter

528

mean absoulte error [-]

NARX dynamics

NN dynamics

state space
NN-tire RK
state space
Pacejka RK

10−2

Fig. 3: Mean absolute errors of the state predictions compared to the
base implementation.

optimization are presented in Fig. 3 referenced to the base
model (state space Dormand Prince).

For determining an appropriate level of parallelization, the
MLP dynamics model with the DLC maneuver and the hyper-
parameters of Table I are wrapped in the RL loop. Thereby,
the time until the convergence of the policy optimization
was measured 50 times for each number of parallelized state
transitions. The run-times of the experiments were measured
on an Intel® Xeon® E3-1270 v6 with 8 logical processors.
In addition, both the training process and data acquisition
were performed on the Central Processing Unit (CPU), since
the network for policy and value function are very small,
resulting in little benefit from Graphics Processing Unit (GPU)
computation, and data transfer between Random-Access Mem-
ory (RAM) and GPU takes considerable additional time. The
results are depicted in Fig. 4. The shortest learning time is
achieved using ten parallel interactions. Parallelization is lim-
ited by factors such as the number of CPU cores and memory
usage, which restrict the number of parallel instances that
can be effectively simulated. To overcome these limitations
[17] proposes utilizing end-to-end training on GPU, which
can offer improved performance and efficiency compared to
pure CPU-based or CPU-GPU-mixed training methods. For
comparison to existing publications, the evaluation times of
the individual models are considered for a single as well
as parallel state transitions. In parallel, ten trajectories are
generated simultaneously, starting from the same initial state
as defined in (2), but with different action sequences.

Fig. 5 illustrates the speed improvement ratio of the four
models compared to the base implementation. The run times
were calculated as the average of 100000 runs. All four mod-
eling approaches are divided into single and parallel respec-
tively. Single means that one state transition is performed after
another, whereas parallel indicates that ten state transitions are
performed in parallel and the proportion of one transition is
represented in the bar chart. For each model, the first function
call is not considered because the code is compiled only on the
first call. Using the Numba-Jit decorator in compilation mode
results in the best performance, as the function is compiled
to run independently without the involvement of the Python
interpreter.

re
la

tiv
e

w
al

l-
tim

e
[-

]

n parallel interactions [-]

0.2

1

0.4
0.6
0.8
1.0
1.2
1.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 4: Comparison of RL learning duration depending on the number
of parallel environment interactions.

NARX dynamics

NN dynamics

state space
NN-tire RK

state space
Pacejka RK

single
parallel

speed improvement ratio [-]
101 102 103

Fig. 5: Speed improvement ratio for the four models compared to the
base implementation.

In summary, the parallelizable state space model with Pace-
jka tire shows the best accuracy, suffering only from the errors
of simplified numerical integration. It gains a slight speed
advantage of about 5.5 times over the base implementation
for the single state transition by compilation and less solver
steps, but becomes about 35 times faster by parallelization.
The approximation of the Pacejka tire model does not provide
a significant speed advantage compared to the base imple-
mentation. However, it is still valuable, particularly in areas
where the Pacejka model exhibits poorer performance. The
approximation helps to improve the accuracy and reliability
of tire modeling, compensating for any limitations or short-
comings in the original Pacejka model, as shown in [29].
Significant speed advantages are provided by the two MLP
models in approximating the entire vehicle dynamics. Since
the training data are generated from the state space model and
therefore each state has the Markov property, the history is not
advantageous in the NARX approach. The NARX architecture
or recurrent networks in general become relevant when the
data comes from real field data or from a more complex
vehicle dynamics model based on multi-body modeling such
as CarMaker or ADAMS/Car when transient transitions occur.
Especially in terms of parallelization, the two models are up
to 1500 times faster than the base implementation.

529

TABLE I: Parameter of RL algorithm.

Parameter Value
batch size 10
update frequency 5
learning rate actor 1e-4
learning rate critic 1e-2
subsampling fraction 0.3
multi step actor 40
multi step critic 80
likelihood ratio clipping 0.1
discount factor 0.99
parallel interactions 10
exploration 0.01
actor/ baseline NN 2 layers each 32 nodes

V. EVALUATION OF RL LOOP

This section considers the closed-loop system, incorporating
model in the RL loop. The interaction between the plant mod-
els and the RL algorithm is examined, studying how the RL
algorithm optimizes the control strategies within the closed-
loop system in normal and failure mode. For solving the RL
optimization problem a PPO algorithm [21] from the Python
framework Tensorforce [38] is used. Based on the parallelized
state space model with Pacejka tire model, a hyperparameter
optimization is performed. The optimal parameters for both
scenarios in terms of optimal cost and shortest learning time
are shown in Table I.

Fig. 6 illustrates the learning process for the run-in to
steady-state driving maneuver without failures. The gray en-
velope curve represents the reward collected during training,
while the blue curve represents the reward collected during
greedy testing. The orange dashed line indicates the best
reward achieved throughout the training process. During train-
ing, the reward appears lower due to sub optimal actions
resulting from Gaussian noise induced by the mixture density
network of the policy. Nevertheless, irrespective of the initial
parameter set, the reward consistently converges towards the
optimal value of 1.0 throughout the learning process. It should
be noted that the optimal reward of 1.0 cannot be fully
achieved due to the influence of the run-in and the associated
deviation of the yaw rate.

Fig. 7 depicts the curves of five repetitions for the DLC
maneuver without failure (left) and with a loss of function
failure in the left steering actuator (right). Based on the cost
function, which requires equal torque on the left and right
side, the failure of the left actuator must be compensated
by the remaining steering actuator. This may include, for
example, the energy consumption of the actuators to evaluate
the efficiency of the system, or, for example, the maximum of
control variables and control speeds to support the sizing of the
actuators within the DSE. Additionally, it is evident that higher
power output is required in the presence of a failure, as the
wheel with the faulty actuator acts as a driving resistance. The
lower part of the plot illustrates the aggregated states, where
it can be observed that the longitudinal velocity of the vehicle
remains constant, as any deviation from the desired velocity
is penalized by the cost function. In addition, by looking at

co
lle

ct
ed

re
w

ar
d

[-
]

episode number [-]

-0.5

0.0

0 50 100 150 200 250

0.5

1.0

reward collected during testing
reward collected during training

best observerd training reward

Fig. 6: Illustration of learning process of five random parameter sets.

the trajectories of the slip angles and the yaw angles, it can be
observed that the handling of the vehicle is the same in both
cases. Therefore, it is evident that the algorithm is capable
of accommodating varying numbers of actuators, which is
a crucial aspect within the scope of the application. Minor
variations in the curve profiles can be attributed to differences
in the initial parameterization of the agents.

Table II serves as a summary of the study. It presents the
average reward collected, the number of episodes, and the time
required for the agent to learn for all scenarios and failure
cases, as well as the four models across five evaluations. It is
noteworthy that the duration of the run-in cornering maneuver
is limited to a maximum of 5 minutes, whereas the DLC
maneuver can take up to 19 minutes. This discrepancy arises
from the fact that the run-in cornering maneuver simulates a
maximum of 50 steps per episode, while the DLC maneuver
requires approximately 120 steps. The rewards obtained for
the DLC maneuver are slightly lower due to the inability to
achieve the shortest path based on the initial velocity and the
dynamics of the employed model [13]. The advantage in terms
of speed offered by the models is limited since the duration of
training and action generation depends on the RL algorithm,
resulting in only a two- to threefold speed advantage provided
by the models. Nevertheless, these results demonstrate that,
under a specific set of hyperparameters for the RL algorithm,
various scenarios and failure cases can be addressed with
different models.

VI. CONCLUSION

This study provides further insights and advancements in the
field of DSE and environment modeling for RL methods based
on the example of vehicle dynamics. By comparing different
modeling approaches, the study contributes to the evaluation
of vehicle performance and extends the state-of-the-art in
temporal evaluation of vehicle dynamics models. This study
demonstrated the applicability of RL for the automation of a
design space exploration. The approach of training an agent
for each topology, failure case, and maneuver was proven to
be feasible, particularly in design spaces involving smaller

530

(a) Conrols for DLC without failure case. (b) Conrols for DLC with failure of steering FL.

(c) States for DLC without failure case. (d) States for DLC with failure of steering FL.

Fig. 7: Illustatration of trajectories for DLC with and without failure case determined with state space with Pacejka tire model.

TABLE II: RL optimal cost as well as learning epochs and times for
each model variant.

state
space
Pacejka
RK

state
space
tire NN
RK

NN dy-
namics

NARX
dynam-
ics

Run-in Corner-
ing w/o failures

∑
r 0.9747 0.9757 0.9620 0.9747

#ep 259 278 426 285
t 4m 19s 2m 45s 3m 17s 1m 58s

Run-in Corner-
ing w/ FL steer-
ing failure

∑
r 0.9761 0.9753 0.9714 0.9784

#ep 327 320 393 363
t 5m 12s 3m 24s 2m 55s 2m 42s

Run-in Corner-
ing w/ RR
torque failure

∑
r 0.9778 0.9764 0.9721 0.9765

#ep 322 274 254 290
t 4m 57s 2m 39s 1m 37s 1m 57s

DLC w/o fail-
ures

∑
r 0.9226 0.9229 0.9150 0.9213

#ep 491 556 488 377
t 18m 52s 16m 9s 8m 16s 6m 33s

DLC w/ FL
steering failure

∑
r 0.9246 0.9237 0.9162 0.9262

#ep 503 498 504 640
t 16m 38s 19m 33s 9m 27s 13m 17s

DLC w/ RR
torque failure

∑
r 0.9244 0.9228 0.9255 0.9238

#ep 458 460 532 443
t 12m 18s 13m 55s 9m 39s 7m 35s

design spaces. This approach enables an automated exploration
of different configurations, allowing for a more thorough
analysis and comparison of system behavior. Nevertheless,
especially in high-dimensional design spaces, there is still
further methodological potential for carrying out DSE in a
time-efficient manner.

REFERENCES

[1] O. Burkacky, J. Deichmann, and J. P. Stein, “Automotive software and
electronics 2030 - mapping the sectors future landscape,” 2019.

[2] H. de Carvalho Pinheiro and M. Carello, “Design and validation of a
high-level controller for automotive active systems,” SAE International
Journal of Vehicle Dynamics, Stability, and NVH, vol. 7, no. 10-07-01-
0006, 2022.

[3] “Road vehicles - functional safety,” International Organization for Stan-
dardization, Geneva, CH, Standard ISO 26262:2018(E), 2018.

[4] C. Becker, A. Nasser, F. Attioui, D. Arthur, A. Moy, and J. Brewer,
“Functional safety assessment of a generic electric power steering system
with active steering and four-wheel steering features,” National Highway
Traffic Safety Administration, Washington, DC, Technical Report DOT
HS 812 575, 2018.

[5] M. Vaillant, M. Eckert, and F. Gauterin, “Energy management strategy to
be used in design space exploration for electric powertrain optimization,”
in Ninth International Conference on Ecological Vehicles and Renewable
Energies (EVER). IEEE, 2014.

[6] D. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific, 2019.

[7] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle
stabilization at the limits of handling,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1258–1269, 2013.

[8] S. Koehler, A. Viehl, O. Bringmann, and W. Rosenstiel, “Energy-
efficiency optimization of torque vectoring control for battery electric
vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 9,
no. 3, pp. 59–74, 2017.

[9] K. Polmans, “Torque vectoring as redundant steering for automated
driving or steer-by-wire.” Springer Fachmedien Wiesbaden, 2014, pp.
163–177.

[10] A. Kirli, Y. Chen, C. E. Okwudire, and A. G. Ulsoy, “Torque-vectoring-
based backup steering strategy for steer-by-wire autonomous vehicles
with vehicle stability control,” vol. 68, no. 8, pp. 7319–7328, 2019.

531

[11] O. Wallscheid and J. Bocker, “Derating of automotive drive systems
using model predictive control,” in IEEE International Symposium on
Predictive Control of Electrical Drives and Power Electronics (PRE-
CEDE). IEEE, 2017.

[12] K. G. Vamvoudakis, Y. Wan, F. L. Lewis, and D. Cansever, Eds., Hand-
book of Reinforcement Learning and Control. Springer International
Publishing, 2021.

[13] P. Hoffmann, K. Gorelik, and V. Ivanov, “Comparison of reinforcement
learning and model predictive control for over-actuated systems,” in 15th
International Symposium on Advanced Vehicle Control (AVEC ’22), no.
Th01C-01. JSAE, 2022, pp. 562–567.

[14] A. Aksjonov and V. Kyrki, “A safety-critical decision-making and
control framework combining machine-learning-based and rule-based
algorithms,” SAE International Journal of Vehicle Dynamics, Stability,
and NVH, vol. 7, no. 10-07-03-0018, 2023.

[15] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Durr, “Super-
human performance in gran turismo sport using deep reinforcement
learning,” vol. 6, no. 3, pp. 4257–4264, 2021.

[16] L. Puccetti, A. Yasser, C. Rathgeber, A. Becker, and S. Hohmann,
“Speed tracking control using model-based reinforcement learning in
a real vehicle,” in IEEE Intelligent Vehicles Symposium (IV). IEEE,
2021.

[17] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” 2021.

[18] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” 2016.

[19] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
in Proceedings of The 2nd Conference on Robot Learning, ser. Proceed-
ings of Machine Learning Research, A. Billard, A. Dragan, J. Peters,
and J. Morimoto, Eds., vol. 87. PMLR, 2018, pp. 561–591.

[20] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang,
G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-based reinforce-
ment learning,” 2019.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[22] R. Sutton, Reinforcement Learning: An Introduction, ser. Adaptive
Computation and Machine Learning series. Cambridge, Massachusetts
London, England: The MIT Press, 2018.

[23] O. Nelles, Nonlinear System Identification. Springer International
Publishing, 2020.

[24] B. Heißing, M. Ersoy, and S. Gies, Eds., Fahrwerkhandbuch. Springer
Fachmedien Wiesbaden, 2013.

[25] D. Schramm, M. Hiller, and R. Bardini, Modellbildung und Simulation
der Dynamik von Kraftfahrzeugen. Springer Berlin Heidelberg, 2018.

[26] S. J. Rutherford and D. J. Cole, “Modelling nonlinear vehicle dynamics
with neural networks,” International Journal of Vehicle Design, vol. 53,
no. 4, p. 260, 2010.

[27] M. D. Lio, D. Bortoluzzi, and G. P. R. Papini, “Modelling longitudinal
vehicle dynamics with neural networks,” Vehicle System Dynamics,
vol. 58, no. 11, pp. 1675–1693, 2019.

[28] L. C. Sousa and H. H. V. Ayala, “Nonlinear tire model approximation us-
ing artificial neural networks,” in Procedings do XV Simpósio Brasileiro
de Automação Inteligente. SBA Sociedade Brasileira de Automática,
2021.

[29] F. Djeumou, J. Y. M. Goh, U. Topcu, and A. Balachandran, “Au-
tonomous drifting with 3 minutes of data via learned tire models,” 2023.

[30] S. S. James, S. R. Anderson, and M. D. Lio, “Longitudinal vehicle
dynamics: A comparison of physical and data-driven models under large-
scale real-world driving conditions,” IEEE Access, vol. 8, pp. 73 714–
73 729, 2020.

[31] X. Nie, C. Min, Y. Pan, K. Li, and Z. Li, “Deep-neural-network-based
modelling of longitudinal-lateral dynamics to predict the vehicle states
for autonomous driving,” Sensors, vol. 22, no. 5, p. 2013, 2022.

[32] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
J. C. Gerdes, “Neural network vehicle models for high-performance
automated driving,” Science Robotics, vol. 4, no. 28, 2019.

[33] F. Hegedüs, P. Gáspár, and T. Bécsi, “Fast motion model of road vehicles
with artificial neural networks,” Electronics, vol. 10, no. 8, p. 928, 2021.

[34] Y. Berthelot, “A journey towards faster reinforcement learning,” Towards
Data Science, 2021. [Online]. Available: https://towardsdatascience.
com/a-journey-towards-faster-reinforcement-learning-1c97b2cc32e1

[35] “Road vehicles - vehicle dynamics test methods - part 1: General condi-
tions for passenger cars,” International Organization for Standardization,
Geneva, CH, Standard ISO 15037-1:2019(E), 2019.

[36] “Passenger cars - test track for a severe lane-change manoeuvre - part
1: Double lane-change,” International Organization for Standardization,
Geneva, CH, Standard ISO 3888-1:2018(E), 2018.

[37] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[38] A. Kuhnle, M. Schaarschmidt, and K. Fricke, “Tensorforce: a tensorflow
library for applied reinforcement learning,” Web page, 2017. [Online].
Available: https://github.com/tensorforce/tensorforce

532

