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Abstract—High frequency trading strategies in the foreign
exchange (FX) market often attempt to extract the latent
signals in extremely noisy price moves to help inform trading
decisions. Due to the fast-paced environments within which
these decisions are made, intelligent trading is an impossible
task for the human mind. Deep reinforcement learning (DRL)
offers human-like intelligence and high speed computation but,
due to the noisy nature of the tick data, can be prone to
learning sub-optimal policies as a result of misleading feature
and reward signals. In this work we use an intrinsic time
sampling method referred to as directional changes (DC), which
reports information whenever there is a significant change in
price. By sampling tick data from nine FX currency pairs for
2250 datasets, we were able to train reinforcement learning (RL)
agents using the Proximal Policy Optimisation (PPO) algorithm
to identify and trade profitable strategies in high frequency
FX environments. The resultant models were compared to four
benchmarks including buy and hold, moving average crossover,
relative strength index and a rule-based DC strategy, across
three different metrics (namely returns, maximum drawdown,
and Calmar ratio), with the reinforcement learning models
outperforming them all.

Index Terms—directional changes, high frequency trading,
machine learning, deep reinforcement learning

I. INTRODUCTION

The foreign exchange (FX) market is a decentralized mar-
ket that facilitates the trading of currencies twenty-four hours
per day and five days per week. Various strategies are used
to trade the FX market profitably, but all focus on success-
fully predicting price movements. For the growing number
of market participants that use machine learning (ML) to
trade, this generally involves two main steps: identifying
significant market indicators and applying the appropriate
ML techniques [1]. Indicators depend on the underlying data
which can itself be sampled in various ways, including fixed
interval sampling and intrinsic time sampling. Fixed interval
sampling involves taking a snapshot of the price at fixed
time intervals which results in a physical time series of
price data. Due to the non-linear and non-stationary nature
of FX data, the fixed interval sampling approach is prone to
ignoring significant price movements that may occur between
adjacent snapshots [2]. Intrinsic sampling is an alternative
approach based on taking snapshots of the market when
events considered significant occur [3].

Directional changes (DC) sampling [4] is an example of
an intrinsic sampling technique. The motivation for using DC

in this work is firstly, due to the inherent confirmation of an
existing trend, simple rule-based strategies can be built using
just the sampling information. Secondly, the nature of the
sampling algorithm provides significant information clarity
over fixed interval sampling as it reports significant price
moves by removing the noise, therefore removing many of
the false signals associated with other sampling methods.
The DC sampling method generates an event summary by
recording key events in the market according to a threshold
θ. The threshold, predetermined by a trader, expresses a
percentage change in market price that is considered sig-
nificant. The key events are recorded as alternating upward
and downward directional changes trends respectively. Each
trend is subdivided into a directional change (DC) event
and an overshoot (OS) event with the OS event immediately
following the DC event.

ML is a technique that has been used to create profitable
trading strategies both with [5] and without [6] the DC
framework. DRL enables agents to learn complex policies
[7], [8] and make decisions almost instantaneously, due to the
policy function being learned by a deep neural network. In
this work we leverage PPO, a type of DRL algorithm known
for it’s training efficiency and stability [9], both of which
offer significant benefits when dealing with noisy financial
data. We create an environment within which the DRL agent
is able to learn and trade using DC data. Our aim is to
show that the DC sampling algorithm can provide the agent
with the correct information and enables the agent to use
it’s inherent ability to learn complex policies, to outperform
other benchmark strategies. This would therefore demonstrate
the value of the combination of both DRL and DC sampling
within a high frequency FX environment.

The rest of the paper is organised as follows: Section II
presents an overview of the related empirical work that ex-
plore ML and RL techniques for trading. Section III presents
the background information required for an understanding
of the DC framework and deep reinforcement learning.
Section IV describes our methodology. Section V presents
the experimental setup. In Section VI we present our findings.
Finally, Section VII concludes the paper and discusses future
work.
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II. RELATED WORK

In 1997 [4] introduced the concept of transforming phys-
ical time series into DC series and empirically formalised
12 DC-based scaling laws using high-frequency data from
13 major FX markets. Subsequent works, such as [10]
formalised additional scaling laws. Other works, such as [11]
proposed new DC-based indicators, which were used for
tasks such as profiling data and identifying regime changes.

ML is a popular technical approach for building DC
based trading strategies. Works such as [12] and [13] use
evolutionary algorithms to build trading strategies. In both
works the DC framework outperformed the physical time-
based algorithm. Genetic algorithms (GAs) have also been
used to develop strategies in DC event-series [14] and [15].
Both [14] and [15] generate DC based strategies using GAs
that outperform a number of non-DC benchmark strategies.

A number of approaches to trading use ML methods other
than evolutionary algorithms and without the DC framework
such as [6]. These works span multiple financial instruments,
demonstrating effective derivations of numerous different
trading strategies. Reinforcement learning has been applied
to algorithmic trading in plenty of literature [16], [17]. The
approaches taken by researchers vary, but ultimately revolve
around the design of the environment. The environment
itself encapsulates the action space, state space and reward
function. This fundamental approach, that can be observed as
early as 1998 with [16], remains consistent today with recent
papers such as [18], also demonstrating the same emphasis
on the careful cultivation of environment representation and
achieving similarly promising results.

To the best of our knowledge, only shallow RL techniques
have been used in conjunction with the DC sampling frame-
work [19], [20]. Both these works use a system referred
to as ‘DCRL’, that uses Q-learning to identify an optimal
trading policy with lookup tables, as opposed to deep neural
networks. The performance of the DCRL algorithm demon-
strates favourable performance in both works when evaluated
on stock market data. The combination of DC event series
created from high-frequency FX data and ML techniques, in
general, has offered a successful approach to creating trading
strategies. However, after conducting the above review of
the literature, it can be deduced that DRL has not been
explored in depth when considered alongside directional
changes. Given the success of DRL in other domains and
the portability of this approach to high frequency trading, we
propose a novel system of DRL agents for trading in high-
frequency FX trading environments under the DC sampling
framework.

III. BACKGROUND INFORMATION

A. Directional Changes

Directional changes is a data sampling technique used
in creating intrinsic time-series from a physical time-series.
First, a threshold value θ that expresses a significant change
in price is predetermined by a trader. Successive alternating
snapshots of the market are then recorded when a change
in price is equal to or greater than the threshold, creating a
time-series that obfuscates noise between adjacent snapshots.

A DC trend can either be an uptrend or a downtrend. The
DC trend is composed of a directional change (DC) event and
an overshoot (OS) event. A directional changes confirmation
(DCC) point is the moment in time when price is observed
to be greater than a given threshold and demarcates the DC
event from the OS event. The end of an OS event is known as
a directional change extreme (DCE) point. It is determined in
hindsight, after the next DC event in the opposite direction is
confirmed. To conduct the sampling algorithm the initial price
is considered the DCC point of the first upward move. From
this initial DCC point the algorithm iterates over each price,
noting any new extreme points as the current DCE of the
move and locks this value in as soon as the DCC in the other
direction is posted. A graph demonstrating this algorithm in
action is shown in Figure 1. The green and red dotted lines
represent the DC and OS moves of the 0.025% sampling
summary while the blue and purple solid lines represent the
DC and OS moves of the 0.015% sampling summary, both
are laid over the raw tick prices represented by the thinner
solid grey line. Point A denotes the DCE of the previous
down trend and the start of the new up trend. This continues
to point B which signifies the DCC of the uptrend with the
following dotted red line denoting the OS move. From the
figure we can see that a lower threshold value means a higher
sampling frequency as the numerous moves in period C all
occur in the time it takes the 0.025% move from A to D,
consisting of a single up and down trend. This constitutes
one of the advantages of DC sampling. More specifically,
the use of different DC thresholds provides a different view
of the data: smaller thresholds allow the detection of more
events and, as a result, actions can be taken promptly; on the
other hand, larger thresholds detect fewer events, but provide
the opportunity of taking actions when bigger price variations
are observed.

B. Reinforcement Learning

Reinforcement learning (RL) is a subset of ML that relies
on the use of an agent, an environment and the commu-
nication of states, actions and rewards to train an optimal
policy that maximises reward in an environment. The policy
itself is the decision making mechanism of the agent, which
generates an action based on the state and reward provided by
the environment at the current time step. Taking this action
generates a new state and reward and the cycle continues until
a termination condition is met. This cycle acts as the agent’s
experience and different RL algorithms are implemented in
order to build out the policy that maximises the cumulative
reward over the whole engagement with the environment.

Deep reinforcement learning (DRL) refers to the intersec-
tion of reinforcement learning and deep learning, where the
reinforcement learning algorithm is designed to train a deep
neural network to learn the policy. Since a policy is just a
mapping of states to actions, the format of this mapping can
be extended from a simple table with learned values (as used
in traditional Q-learning techniques [19]) to a deep neural
network, as they are universal function approximators. Using
a deep neural network to learn the optimal policy to move
around the environment is beneficial for learning policies in
environments with large, continuous state spaces as optimal
actions can be inferred from the experience of similar states.
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Fig. 1: Directional Changes Sampling Diagram of EUR/CHF at θ = 0.015%, 0.025%

Proximal Policy Optimisation (PPO) [9] is a DRL algo-
rithm that has been designed to take smaller steps when
optimising the policy in order to make the learning process
more stable than other DRL algorithms. A common imple-
mentation of PPO uses an actor-critic architecture. Both the
actor and critic can be represented as a deep neural network
that partially share a beginning portion of the network, but
ultimately produce different outputs. The task of the actor
network is to learn the policy as a mapping of states to actions
and the task of the critic network is to learn the cumulative
reward as a result of the states and actions.

The general approach to training using PPO starts with the
actor taking actions based on the current policy. The expected
cumulative reward is then calculated by the critic network
and used in the calculation of the advantage value. Once the
advantage is calculated from a batch of time steps, the result
of the objective function can be obtained. This objective
function then allows the actor-critic network to apply gradient
descent to both the actor and critic network and improve the
policy. See Algorithm 1 for the pseudo code of this algorithm.

Algorithm 1 PPO Algorithm

Require: Actor policy πθ with parameters θ, environment
with maximum time steps T , number of iterations N ,
number of epochs K

1: for i← 1 to N do
2: Collect a set of trajectories D = τ using actions

generated by policy πθ in the environment for T time
steps

3: Compute advantages A(τ) for each state in each
trajectory using the critic network

4: Compute surrogate objective L(θ) using the trajecto-
ries and advantages

5: for j ← 1 to K do
6: Compute gradients ∇θL(θ) using D and A(τ)
7: Update policy πθ parameters using optimiser
8: end for
9: end for

IV. METHODOLOGY

An overview of the methodology is presented in Figure
2. The data preparation phase (Section IV-A) begins by
transforming the tick data into a number of windows, each
split into training, validation and test sets, and subsequently
transforming the above data from physical tick data to events
series and generate the relevant indicators through the appli-
cation of the DC sampling algorithm. Next, we develop the
DRL environment (i.e. action space, state space, and reward
function) (Section IV-B), and train the neural network to learn
the optimal policy (Section IV-C). Afterwards, the algorithm
hyperparameters are tuned on the validation set and we then
re-train the model using the newly identified hyperparameter
values. In the end, we calculate the performance metrics
(presented in Section IV-D) on the test set. We present the
methodology in detail next.

A. Data Preparation

The raw tick data is first split into contiguous sets of
weekly data. Rolling windows are then generated from
groups of four consecutive weeks as shown in Figure 2.
Rolling windows allow each model to learn from recent
market history, so price behaviour in the training data is
similar to the test data [11]. Data split this way allows the
formation of contiguous test sets. Each window is then also
split into training, validation and test sets before applying
the DC sampling framework. The DC indicators in Table I
and the start and end price of each DC move are used as
features. NDC , CDC , and AT have 6 period variants: for 1,
10, 20, 30, 40, and 50 DC events. We also use a 3, 5, and
10 events moving average for OSV , TDC , and RDC , as this
provides an aggregation of more recent events and has shown
to be a successful approach in [13]. Aggregating some of the
indicators in this way provides more noise resistant signals
to the agent. Indicators with periods of 1 are also used to
give the agent some knowledge of recent price history.

B. Environment Development

Each window undergoes the same training process with
the same environment definition after the data is prepared.
The environment is defined as a custom environment in the
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Fig. 2: Experiment Methodology (see Section V-B for real network architecture)

TABLE I: DC Indicators
Where: θ is DC threshold and DCC is DC confirmation point (Periods marked with a * use a moving average of the indicator)

Indicator Description Equation Period
TMV Ratio of whole price move to threshold |∆price|

θ
1

OSV Percentage change between current DCC and previous DCC normalised by
threshold

(
DCCt−DCCt−1

DCCt−1

)
θ

(3, 5, 10)*

RDC Number of ticks adjusted by the return of the event (TMV ∗θ)
∆Eventt

(3, 5, 10)*
TDC Number of ticks over the course of the event ∆Eventno.ticks (3, 5, 10)*
NDC Number of ticks over a certain number of events

∑n
i=0 Eventno.ticksi (1, 10, 20, 30, 40, 50)

CDC Sum of |TMV | over a certain number of events
∑n

i=0 |TMV |i (1, 10, 20, 30, 40, 50)
AT Difference between the number of ticks spent on an up and down trend over

n events

∑n
i=0 UpEventno.ticksi−∑n
i=0 DownEventno.ticksi

(1, 10, 20, 30, 40, 50)

Gym [21] library so that it is compatible with the appropriate
reinforcement learning and deep learning libraries.

1) Action Space: The action space of the agent is the
set of possible actions the agent can take at any given time
step. We choose the discrete action space of buy or sell for
this experiment after some preliminary testing. During the
preliminary testing we found that, if given the option to buy,
sell or hold, the agent holds to avoid transaction costs. By
restricting the agent to buy or sell we force the agent to make
a trading decision. The agent therefore holds the position until
it suggests an action in the opposite direction. This approach
appears to provoke much more trading while still allowing for
transaction costs and coaxes the agent into learning a more
profitable strategy.

2) State Space: State space is the representation of the
environment at any given time step. The state at each time
step is represented by a preceding window of price data and
relevant features as defined in Section IV-A. The selection of
the appropriate size for the previous window of time steps
(also known as the state space lag) to be provided as input
to the agent, represents another hyperparameter that requires
tuning (see Section V-B for details).

3) Reward Function: Each agent is provided with a fixed
starting balance and is rewarded with the profit of a trade
once the position is closed and otherwise receives a reward

of zero. This reward function then creates a balance between
the agent’s desire to trade as much as possible to build up
profit but also prompts the agent to identify effective trading
opportunities that would not present losses.

C. Deep Reinforcement Learning Training

The training process involves iterating over the environ-
ment for a number of time steps, a hyperparameter of the
training algorithm defined in Section V-B. With each time
step the state space is passed to the deep neural network
which in turn produces an action and expected cumulative
return. This process is largely abstracted by the Stable
Baselines 3 (SB3) library [22] with a PyTorch1 back-
end and can automatically step through this process and apply
the appropriate adjustments to the weights of the actor-critic
deep neural network. This whole process returns a trained
model per window, which then uses the validation set to
identify the correct set of hyperparameters as shown in Figure
2.

D. Performance Metrics

Trained agents are tested using a number of metrics, all of
which are based on marginal return (see Equation 1) which is
the return of each individual trade. The performance metrics

1https://pytorch.org/
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used are Total Return (see Equation 2), Maximum Drawdown
(see Equation 3) and Calmar ratio (see Equation 4) 2. Total
Return measures the final return of the system of agents and
Maximum Drawdown is used to measure the risk of the
system of agents by calculating the losses that have to be
incurred in order to produce the final return. Calmar Ratio is
then used to represent both these performance metrics in a
single value and therefore provide a measure of risk adjusted
return.

MR = ±%∆p ∗ Psize (1)

where: MR is marginal return, p is price, sign is changed
to reflect profit and loss, and Psize is the position size, this
represents the quantity of the currency pair being traded for
a specific position.

R =

no.trades∑
i=0

MRi (2)

where: R is total return, and MRi is the marginal return
defined in Equation 1 for trade i.

MDD =
ρ− τ

ρ
(3)

where: MDD is maximum drawdown, ρ is the peak balance
before largest drop, this refers to the largest balance observed
at the peak of the largest drop in the balance, and τ is next
lowest balance before a new high, this refers to the lowest
balance observed after the peak balance before the balance
rises above the peak value.

CalmarRatio =
R

MDD
(4)

E. Trade Filtering

In preliminary result analysis on a subset of pairs and
thresholds, the agent seemed to learn to trade in periods of
low volatility (see period C in Figure 1). These low volatility
periods consist of successive DC trends with little or no
overshoot as shown by the 0.015% DC moves in Figure 1.
The agent appears to identify these low volatility periods and
engage in the fast opening and closing of trading positions by
entering a position at the DCC point of an up or down trend
in the opposite direction and exiting the trade on the next
tick. This behaviour continues until the DRL agent identifies
the end of the low volatility period. As a consequence of
these observations, a filter is added that only allows the agent
to trade when there has been a series of trends with no
overshoot. The optimal number of preceding no-overshoot
trends is identified using a grid search as described in Section
V-B.

V. EXPERIMENTAL SETUP

A. Data

The tick data for the nine currency pairs is down-
loaded from TrueFX.com3. Data for currency pairs AUD/JPY,

2The Calmar ratio metric was used to focus more on the worst
case scenario, a topic more appropriate for high-frequency traders,
as opposed to Sharpe Ratio as mentioned by Richard Olsen in
https://hughchristensen.com/papers/academic papers/eforex-072007.pdf

3https://www.truefx.com/truefx-historical-downloads/

EUR/CHF, EUR/GBP and EUR/JPY are taken from the
period 01/05/2022 to 30/04/2023, the remaining five currency
pairs all include USD (AUD/USD, GBP/USD, NZD/USD,
USD/CHF and USD/JPY) and are sampled from the period
of 01/02/2021 to 31/01/2022. After some preliminary tested
we decided that each window consists of 4 weeks of data
with a shift of 1 week between windows as this generates
an appropriate number of trends per window suitable for
training. The sampling process is applied independently per
training, validation and test set and is repeated for the set
of windows per pair with an array of seven DC thresholds
(θ), ranging from 0.017% to 0.025% with gaps of 0.002%
between each threshold totalling 2250 (9 pairs × 5 thresholds
× 50 windows) datasets. Each threshold produces a different
summary of the data, we therefore need to test the DRL
strategy on multiple thresholds to identify how effective it is
at trading under the DC sampling framework.

B. Hyperparameter Tuning

An approach is developed to filter out trades suggested by
the agent outside low volatility periods. Using the DC frame-
work, the filter identifies how many previous trends have no
overshoot event. If the number of previous consecutive no OS
trends is above a certain threshold then the agent is allowed
to trade. The correct value was found with a grid search over
values of 2, 5, 10 and 20 on the validation set, with the best
performing value used to produce the final results from the
test set. We also optimise state space lag (see Section IV-B2)
and training time steps (see Section IV-C) using a grid search
on a subset of all pair and threshold data. State space lag was
optimised over values of 5, 10 and 20 and training time steps
was grid searching up to 1 million time steps. We found a
performance drop off for larger state space lag values so 5
trends was the most appropriate value. We also found that
models performed most favourably after 200,000 time steps
of training with no performance gains after this point.

We ran a grid search over an array of different deep
neural network model architectures and activation functions
for the PPO policy and value networks. Using a subset of all
validation sets, we determined that with two hidden layers of
64 units each and the ReLU activation function we obtained
the best results. The number of input neurons is defined by
the 30 input features per time step, as shown in Table I and
the DC start and end prices, multiplied by the state space lag
of 5 time steps. The final two neurons of the policy network
are then buy and sell actions. The full architecture of the
policy network is therefore (150, 64, 64, 2).

C. Benchmarks

The following benchmarks have been devised with the in-
tention of testing how the DRL agent compares to commonly-
used trading strategies.

a) Buy and Hold (B&H): The B&H strategy enters a
long position on the first trend and then exits that position on
the final trend, making a single trade over the duration of the
data. The B&H strategy is a common financial benchmark,
as it’s a passive strategy (not active trading) and is a useful
comparison to strategies that perform active trading.
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b) Moving Average Crossover (MAC): This is technical
analysis strategy that uses moving average (MA) crossover
signals. This strategy calculates three MAs at periods of 7000,
14000 and 28000. The slowest MA (28000 period) is used as
a trade filter, if the 7000 period MA crosses above the 14000
period MA and this happens above the filter MA, then a buy
trade is entered. Conversely, if the 14000 period MA crosses
over the 7000 period MA underneath the filter MA then a
sell signal is given and the trade is exited. Factors of these
three MA period choices are commonly used in the literature
[23].

c) Relative Strength Index (RSI): The RSI strategy is
based on the RSI technical analysis indicator. The RSI strat-
egy uses the RSI indicator with a 140 period and values of 75
and 25 as overbought and oversold levels. The 140 period was
selected based on the period choices in the literature [23] and
a grid search was run over overbought and oversold levels to
determine the best pair of values. The entry rules are defined
so that whenever the RSI crosses below the oversold level, a
buy trade is executed and the opposite when the overbought
level is crossed. As the price reverses back to the market
equilibrium and reaches the opposite overbought or oversold
level, the trade is exited and any profits or losses are taken.

d) Blind Low Volatility (BLV): This benchmark strategy
uses the low volatility filter applied to the DRL agent but with
a simple rule-based trading strategy that tells the agent to buy
at the DCC of a downtrend and sell at the DCC of an uptrend
when the filter allows trading. When the filter no longer
allows trading, the rule-based system will exit the market
and not trade until permission from the filter is granted again.
This system is used as a comparison to test if the DRL agent
is learning a simple rule-based strategy or if there is more
intelligent behaviour being exhibited.

VI. RESULTS

The following results show the outcome of simulating
trading for a whole year across the test set of each window,
per pair, under a 0.025% transaction cost.

The return results in Table II show that there are no pairs
with extreme losses and the pairs that make gains tend to
make large gains. Pairs EUR/CHF, EUR/GBP and EUR/JPY
demonstrate extremely high profit levels at all thresholds.
When analysing the trading decisions made for these pairs
it is clear that the agent has learnt to trade quickly during
prolonged periods of low volatility. This rapid entry and
exit of trades demonstrates that the agents have identified
profitable periods within the price data across many different
training sets and applied this policy profitably to the test set.
AUD/JPY and USD/CHF also performed well with positive
returns across all thresholds. The remaining pairs produced
returns ranging from -1.80% to 0.07. Given the lack of
low volatility periods in the other pairs it can be deduced
that the agents tend towards learning these quick entry and
exit strategies, as demonstrated in EUR/CHF, EUR/GBP and
EUR/JPY, that make significant profits. It is also worth noting
that DRL’s performance is consistently good across all DC
thresholds, and it improves as the DC threshold increases.
Lastly, the benchmark strategies all produced marginally
positive and negative returns under the same position sizes
and transaction costs, apart from the buy and hold strategy

which consisted of larger and more sporadic positive and
negative returns.

The associated risk with the trading strategies was also
measured using maximum drawdown as defined in Equation
3. The results in Table III show that all pairs generate compa-
rable levels of maximum drawdown. NZD/USD demonstrates
the highest levels of maximum drawdown across all pairs, this
poor performance is consistent with the total return results as
NZD/USD also performed the worst for each threshold. Most
other pairs produce maximum drawdown levels of less than
1% with only a few just exceeding this value. This is most
likely due to the low position sizes of the trades, allowing
models to excel in periods of low volatility where multi-
ple short trades can be entered in quick succession. When
comparing the DRL algorithm to the traditional technical
analysis benchmark strategies of MAC and RSI, it is clear
that there are no differences in maximum drawdown of any
magnitude. The BLV strategy, demonstrates significant levels
of maximum drawdown reaching highs of around 80% in
some cases.

We can measure the risk adjusted return of each strategy by
using the Calmar ratio (Equation 4) as this is an aggregated
measure of total return and maximum drawdown. The results
in Table IV show that the Calmar Ratio follows a similar
pattern to the total returns in Table II. EUR/CHF, EUR/GBP
and EUR/JPY are the best performers with extremely high
Calmar Ratios, AUD/JPY performed well with results again
following the same pattern as the total returns. USD/CHF
showed Calmar Ratios above 1.0 4 on all but one threshold,
again demonstrating strong performance. We also see DRL’s
performance improving for higher DC thresholds. RSI also
showed some good results but not to the level of the DRL
strategy. RSI is a conservative strategy by nature and as a
result can provide some consistently positive results with
favourable maximum drawdown levels. The risk/reward ratio
however, as shown by the Calmar Ratio, exposes the down-
sides of this RSI strategy as it performs worse than the DRL
strategy despite the favourable maximum drawdown results.
The MAC strategy was outperformed by both the RSI strategy
and the DRL strategy but outperformed the BLV strategy. It
can also be observed from Tables II, III and IV, that the larger
thresholds tend to perform better than lower thresholds.

To further investigate the algorithms’ returns performance,
we applied Friedman’s non-parametric test, and we present
the results in Table V. For each algorithm, the table shows the
average rank according to the Friedman test (first column),
and the adjusted p-value of the statistical test when that
algorithm’s average rank is compared to the average rank of
the algorithm with the best rank (control algorithm) according
to the Conover post-hoc test (second column).5 As we can
observe, the proposed DRL algorithm ranks first in terms
of returns and Calmar ratio, and statistically outperforms all

4A Calmar Ratio above 1.0 means that total return is greater than
maximum drawdown.

5Due to the fact that the B&H, MAC, and RSI methods are not using the
DC framework, we can only obtain a single metric value (return, maximum
drawdown, Calmar ratio) per currency pair, whereas for DRL and BLV we
obtain 5 values (one per threshold). To be able to perform the statistical
tests, the B&H, MAC, and RSI values are duplicated to match the number
of thresholds per pair.
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TABLE II: Total Return (%) by DC threshold for DRL and BLV. B&H, MAC, and RSI strategies are physical time based
strategies, so only a single value is presented per currency pair. Best value per currency pair is denoted in boldface.

Pair / Treshold 0.017% 0.019% 0.021% 0.023% 0.025% B&H MAC RSIDRL BLV DRL BLV DRL BLV DRL BLV DRL BLV
AUD/JPY 8.21 -33.42 14.17 -28.85 20.92 -24.92 22.78 -22.26 24.02 -19.87 -0.13 -2.02 1.04
AUD/USD 0.07 -0.93 -1.11 -0.78 -0.69 -0.62 -0.76 -0.56 -1.09 -0.38 -10.48 -0.33 -0.15
EUR/CHF 858.26 -86.25 1830.56 -80.36 1848.58 -75.17 2788.97 -70.80 2518.33 -67.23 -4.41 -1.55 0.95
EUR/GBP 619.09 -78.84 834.59 -73.10 752.50 -67.50 996.22 -63.16 1025.83 -58.47 3.85 -1.48 -0.26
EUR/JPY 5698.05 -95.57 8007.05 -93.50 10196.62 -91.30 11586.09 -88.99 9795.96 -86.61 10.95 -2.92 1.50
GBP/USD -0.23 -4.16 -0.88 -3.18 -0.08 -2.14 -0.07 -1.65 -0.84 -1.24 -3.86 -0.41 1.22
NZD/USD -1.80 -2.68 -1.14 -2.28 -1.66 -2.09 -0.76 -1.82 -1.24 -1.77 -10.01 -0.30 0.31
USD/CHF 0.46 -4.71 0.26 -4.18 1.06 -3.44 1.14 -3.08 1.42 -2.81 2.73 -0.18 -0.43
USD/JPY -0.12 -2.72 -0.22 -2.14 -0.28 -1.57 -0.38 -1.33 -0.27 -1.14 8.96 -0.18 0.21

TABLE III: Maximum Drawdown (%) by DC threshold for DRL and BLV. MAC and RSI strategies are physical time based
strategies, so only a single value is presented per currency pair. B&H cannot be calculated, as it only performs a single
trade. Best value per currency pair is denoted in boldface.

Pair / Treshold 0.017% 0.019% 0.021% 0.023% 0.025% MAC RSIDRL BLV DRL BLV DRL BLV DRL BLV DRL BLV
AUD/JPY 0.95 33.42 1.21 28.85 0.52 24.92 0.63 22.26 0.44 19.87 2.03 0.45
AUD/USD 0.45 0.93 1.25 0.78 0.71 0.63 0.96 0.57 1.18 0.38 0.35 0.57
EUR/CHF 0.88 86.25 0.11 80.36 0.13 75.17 0.09 70.80 0.04 67.23 1.55 0.16
EUR/GBP 0.48 78.84 0.12 73.10 0.09 67.50 0.05 63.16 0.10 58.47 1.49 0.77
EUR/JPY 0.19 95.57 0.15 93.50 0.15 91.30 0.14 88.99 0.21 86.61 2.92 0.30
GBP/USD 0.36 4.16 1.21 3.18 0.50 2.14 0.39 1.65 0.92 1.24 0.41 0.27
NZD/USD 1.83 2.68 1.53 2.28 1.81 2.09 1.09 1.82 1.38 1.77 0.30 0.60
USD/CHF 0.35 4.71 0.35 4.18 0.58 3.44 0.26 3.08 0.28 2.81 0.19 0.78
USD/JPY 0.30 2.72 0.65 2.14 0.34 1.57 0.48 1.33 0.32 1.14 0.20 0.43

TABLE IV: Calmar Ratio (%) by DC threshold for DRL and BLV. MAC and RSI strategies are physical time based strategies,
so only a single value is presented per currency pair. B&H cannot be calculated, as it only performs a single trade. Best
value per currency pair is denoted in boldface.

Pair / Treshold 0.017% 0.019% 0.021% 0.023% 0.025% MAC RSIDRL BLV DRL BLV DRL BLV DRL BLV DRL BLV
AUD/JPY 8.64 -1.00 11.71 -1.00 40.23 -1.00 36.16 -1.00 54.59 -1.00 -1.00 2.31
AUD/USD 0.16 -1.00 -0.89 -1.00 -0.97 -0.98 -0.79 -0.98 -0.92 -1.00 -0.94 -0.26
EUR/CHF 975.30 -1.00 16641.45 -1.00 14219.85 -1.00 30988.56 -1.00 62958.25 -1.00 -1.00 5.94
EUR/GBP 1289.77 -1.00 6954.92 -1.00 8361.11 -1.00 19924.40 -1.00 10258.30 -1.00 -0.99 -0.34
EUR/JPY 29989.74 -1.00 53380.33 -1.00 67977.47 -1.00 82757.79 -1.00 46647.43 -1.00 -1.00 5.00
GBP/USD -0.64 -1.00 -0.73 -1.00 -0.16 -1.00 -0.18 -1.00 -0.91 -1.00 -1.00 4.52
NZD/USD -0.98 -1.00 -0.75 -1.00 -0.92 -1.00 -0.70 -1.00 -0.90 -1.00 -1.00 0.52
USD/CHF 1.31 -1.00 0.74 -1.00 1.83 -1.00 4.38 -1.00 5.07 -1.00 -0.95 -0.55
USD/JPY -0.40 -1.00 -0.34 -1.00 -0.82 -1.00 -0.79 -1.00 -0.84 -1.00 -0.90 0.49

algorithms but RSI. In terms of maximum drawdown, DRL
ranks marginally second after RSI (average rank 2.03 vs
2.06), but is not statistically outperformed.

From the above, we can conclude that the proposed DRL
algorithm performs strongly in terms of returns and Calmar
ratio. In terms of risk, it’s performance is on par with RSI
and MAC. However, due to the fact that DRL produces
considerably higher returns for a similar level of risk on the
pairs that RSI also performs well on, we can conclude that
DRL is the best performing strategy overall. From Table IV
we can can see that when DRL is outperformed by RSI, it is
often in the order of 0.1%, whereas when DRL outperforms
RSI it is at a considerably higher magnitude, which is a factor
the significance testing does not account for.

VII. CONCLUSION

In conclusion, this paper has demonstrated that the combi-
nation of DRL with the directional changes framework leads
to profitable results at reduced risk. Our results have also
shown that the proposed DRL algorithm learns a strategy
that is able to outperform well-known physical time based
strategies such as B&H, MAC, and RSI. The strategy learned

often consists of short successive trades that last for short
periods of time.

The approach of trading in low volatility periods has
worked well for the agents in this experiment with a realistic
fixed transaction cost of 0.025%. In true market conditions
the spread can be variable and potentially widen to levels
higher than our fixed transaction cost with lower price volatil-
ity. This motivates us in future work to train separate, spread-
aware DRL agents in exclusively high volatility periods.
These periods offer more profit potential per trade and allow
trades to be simulated closer to the real market. This could
lead to more advanced systems that involve invoking agents
that are more appropriate given the market regime.
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