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Abstract—Uncertainty estimation is an important task for
critical problems, such as robotics and autonomous driving,
because it allows creating statistically better perception models
and signaling the model’s certainty in its predictions to the
decision method or a human supervisor. In this paper, we propose
a Variational Neural Network-based version of a Voxel Pseudo
Image Tracking (VPIT) method for 3D Single Object Tracking.
The Variational Feature Generation Network of the proposed
Variational VPIT computes features for target and search regions
and the corresponding uncertainties, which are later combined
using an uncertainty-aware cross-correlation module in one of
two ways: by computing similarity between the corresponding
uncertainties and adding it to the regular cross-correlation values,
or by penalizing the uncertain feature channels to increase
influence of the certain features. In experiments, we show that
both methods improve tracking performance, while penalization
of uncertain features provides the best uncertainty quality.

Index Terms—3D Single Object Tracking, Point Cloud, Uncer-
tainty Estimation, Bayesian Neural Networks, Variational Neural
Networks, Machine Learning for Embedded Devices

I. INTRODUCTION

3D Singe Object Tracking (3D SOT) is the task of tracking
an object in a 3D scene based on the given initial object
position. This task combines challenges from both 3D Object
Detection, as objects have to be accurately located in space,
and 3D Multiple Object Tracking, as the object of interest has
to be distinguished from similar objects. There is a variety
of sensors that can be used for 3D SOT, including single
or double camera setups, Lidar and Radar. While the camera
setups are the cheapest option, they capture images which lack
valuable depth information for 3D SOT, which can be provided
by Lidar sensors. Lidars generate point clouds, which are sets
of 3D points detected as the positions in the 3D scene of light
beam reflections. The explicit depth information makes Lidar
the most common choice for many 3D perception methods,
including 3D SOT. The SOT is performed by predicting the
offset of the object’s position with respect to its previous
known position. This has been approached by using correlation
filters [1], [2], deep learning methods to directly predict the
object’s offset [3], or by using Siamese methods which search
for the position with the highest similarity score [4]–[8]. Since
3D perception methods are often used in critical fields, such
as robotics or autonomous driving, it is important to provide
accurate predictions and confidence estimations to avoid costly
damages.

Uncertainty estimation in neural networks allows for using
the network’s outputs to better indicate the confidence in its
predictions and to improve their statistical qualities, leading to
better performance. The practical applications of uncertainty
estimation are studied for several perception tasks, including
3D Object Detection [9]–[11], 3D Object Tracking [12], [13],
3D Human Pose Tracking [14], and Steering Angle Prediction
[15]. These methods provide an improvement in percep-
tion and control by using an uncertainty estimation process.
However, most of these methods adopt single deterministic
approaches to estimate different types of uncertainty, or use
Monte Carlo Dropout (MCD) [16] as an approach to estimate
epistemic uncertainty. According to experiments in [17] on the
uncertainty quality of different types of Bayesian Neural Net-
works (BNNs), MCD achieves the worst uncertainty quality.

Utilization of uncertainty estimation for perception can be
divided into two categories: to improve accuracy of perception
and to use uncertainty to change the decision of the control
system. The first approach is easier to implement with existing
datasets and tools, which is the reason why we chose it in
our work. This approach is based on the assumption that
statistically better models and processes lead to better gener-
alization and more robust models. Both uncertainty estimation
and utilization processes theoretically lead to an improvement
in the aforementioned metrics. The decision-based approach
uses uncertainty measurements from the perception model
and utilizes that to either switch control from the model to
a human expert (such as in autonomous driving or critical
system control) or to a more accurate but resource-demanding
model. This approach is harder to implement and test, and is
a direction for future work.

In this paper, we introduce a Variational Neural Network
(VNN) [18] based version of the fastest 3D SOT method
called Voxel Pseudo Image Tracking (VPIT) [8] and propose
two ways, i.e., the uncertainty similarity approach and the
penalization approach, to utilize the estimated uncertainty
and improve the tracking performance of the model. The
similarity-based approach computes a similarity between the
estimated uncertainties to serve as an additional similarity
score, while the penalization approach focuses on certain
features by penalizing the feature values corresponding to
high uncertainties. We train a VNN version of PointPillars for
3D Object Detection to serve as backbone for the proposed
Variational VPIT (VVPIT) method. We, then, train the whole
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network following the VPIT’s training procedure, but use
the uncertainty-aware cross-correlation function and multiple
samples of the Variational Feature Generation Network to
compute uncertainty in the produced features. In experiments,
we show that the use of uncertainty leads to an improvement
in the model’s tracking performance, and the choice of the
penalty-based uncertainty utilization strategy leads to the high-
est improvement in Success and Precision metrics [19].

The remainder of the paper is structured as follows. Section
II describes related and prior work. In Section III we de-
scribe the proposed approach, including the Variational TANet
model and its training and the proposed uncertainty-aware
AB3DMOt. Section IV outlines the experimental protocol and
provides experimental results. Section V concludes this paper1.

II. RELATED WORK

Gawlikowski et al. [20] define four main categories of
uncertainty estimation methods, based on the strategies they
use to estimate the uncertainty of the model. Deterministic
Methods [12], [21] use a single deterministic network and
either predict its uncertainty by using an additional regression
branch, or estimate it by analyzing the output of the model.
Bayesian Neural Networks (BNNs) [22], [23] consider a distri-
bution over weights of the network and compute the outputs of
multiple model samples for the same input. The variance in the
network’s outputs expresses the estimated uncertainty, while
the mean of outputs is used as the prediction value. Ensemble
Methods [24], [25] consider a categorical distribution over the
weights of the network and train multiple models at once.
Test-Time Data Augmentation methods [26]–[28] apply data
augmentations commonly used in the training phase during
the inference to pass distorted inputs to a single deterministic
network and compute the variance in the model’s outputs.

Variational Neural Networks [18], [29] are similar to BNNs,
but instead of considering a distribution over weights, they
place a Gaussian distribution over the outputs of each layer and
estimate its mean and variance values by the corresponding
sub-layers. All types of uncertainty estimation methods, except
those in the Deterministic Methods category, use multiple
model passes to compute the variance in the network’s outputs.
This means the Deterministic Methods generally have the
lowest computational impact on the model, but they usually
perform worse than other methods. The single determinis-
tic network approach can be improved by considering the
Bayesian alternative, as it can be seen as a case of BNNs
with the simple Dirac delta distribution over weights, which
places the whole distributional mass on a single weight point.

The 3D SOT task is usually approached by using point-
based Siamese networks, which consider a pair of target and
search regions, predict a position of the target region inside
the search region and compute the object offset relative to the
previous object position. P2B [30], BAT [31], Point-Track-
Transformer (PTT) [32], [33] and 3D-SiamRPN [4] use point-
wise Siamese networks and predict object positions based

1Our code is available at gitlab.au.dk/maleci/opendr/vnn vpit opendr

on the comparison of target and search point clouds. 3D
Siam-2D [34] uses one Siamese network in a 2D Birds-Eye-
View (BEV) space to create fast object proposals and another
Siamese network in 3D space to select the true object proposal
and regress the bounding box. Voxel Pseudo Image Tracking
(VPIT) [8] uses voxel pseudo images in BEV space and
deploys a SiamFC-like module [5] to extract and compare
features from target and search regions. Instead of using
different scales, VPIT uses a multi-rotation search to find the
correct vertical rotation angle.

Bayesian YOLO [35] is a 2D object detection method that
estimates uncertainty by combining Monte Carlo Dropout
(MCD) [16] with a deterministic approach and predicts
aleatoric uncertainty with a special regression branch, while
computing the epistemic uncertainty from the variance in
MCD model predictions. Feng et al. [9] use a Lidar-based 3D
object detection method and estimate the uncertainty in the
predictions of the model in a similar way to Bayesian YOLO,
by using a partially MCD model for the epistemic uncertainty
estimation and using a separate regression branch for the
aleatoric uncertainty estimation. LazerNet [10] predicts the
uncertainty of a 3D bounding box using a single deterministic
network and utilizes the predicted uncertainty during the
non-maximum suppression process. This approach is further
improved by estimating the ground truth labels’ uncertainty
based on the IoU between the 3D bounding box and the
convex hull of the enclosed point cloud, and using the provided
uncertainties during the training process [11].

Zhong et al. [12] perform 3D Multiple Object Tracking
(MOT) by using a single deterministic network for 3D Object
Detection to predict the uncertainty in outputs and providing
the estimated uncertainties to the tracker by replacing the unit-
Gaussian measurement noise in Kalman filter [36] with the
predicted uncertainties. Uncertainty-Aware Siamese Tracking
(UAST) [37] performs 2D single object tracking by using a
single deterministic network and computing the distribution
over the outputs by quantizing over the specific range of values
and predicting the softmax score for each quantized value. The
final regression value is computed as an expectation of the
corresponding quantized distribution, and the distributions are
used to estimate better confidence scores and select the best
box predictions.

To the best of our knowledge, there are no methods that
utilize uncertainty for 3D Single Object Tracking. Moreover,
the estimation of uncertainty for related tasks, such as 2D
Single Object Tracking, 3D Multiple Object Tracking or 3D
Object Detection, is based on single deterministic networks
or MCD, despite the fact that the statistical quality of single
deterministic networks can be improved by using a Bayesian
alternative, and that MCD tends to produce the worst quality
of uncertainty between BNNs [17].

III. METHODOLOGY

We select the Voxel Pseudo Image Tracking (VPIT) [8]
method as a base model for uncertainty estimation in 3D single
object tracking, as it achieves the highest inference speed on
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Fig. 1: Variational Voxel Pseudo Image Tracking structure.

an outdoor KITTI tracking dataset [38]. Additionally, VPIT
suffers less speed loss when running on embedded devices,
compared to the powerful desktop GPUs, which are the target
devices for applying 3D perception methods. The difference
in speed loss between VPIT and other real-time 3D SOT
methods [30], [32] is explained by the specific architecture
of such devices, where RAM and GPU memory are shared,
meaning that transfer of data between CPU and GPU is instant,
and VPIT is more suitable for such memory architecture.
The speed of the model is an important factor because the
addition of uncertainty estimation usually results in an increase
in computational requirements, which forces the use of more
lightweight models or devices with higher computational ca-
pabilities, but the addition of uncertainty estimation may result
in a difference between a costly or dangerous outcomes, e.g., a
crash of an autonomous car or robot, and an in-time prevented
perception loss by either the model itself, or the decision-based
control system. Voxel Pseudo Image Tracking uses PointPillars
[39] as a backbone to create voxel pseudo images and to
process them with a Feature Generation Network (FGN),

which consists of the convolutional part of the PointPillars’
Region Proposal Network. The search and target features are
compared with a convolutional cross-correlation function that
calculates a pixel-wise similarity map. The highest value in
this similarity map is used to determine the object position
offset between frames.

We train a Variational VPIT (VVPIT) model by replacing
the FGN subnetwork with a Variational Neural Network
(VNN) [18], [29] based version of it, i.e., we create a Varia-
tional FGN (VFGN). The structure of the proposed Variational
VPIT model is present in Fig. 1. The input point cloud is
voxelized and processed by a small Pillar Feature Network to
create a Pseudo Image of the region of interest. The search and
target sub-images are processed with the same VFGN network
that uses Variational Convolutional (VConv) layer to create
outputs of multiple network samples for the same input, which
are then processed to compute mean and variance for the
output features. The number of samples can be dynamic and
is not required to be the same during training and inference.
For each of the target and search regions, VFGN produces a
set of outputs in the form Y = {yi, i ∈ [1, . . . , P ]} which
correspond to the outputs of P sampled VFGN models, with
Y s = {ysi , i ∈ [1, . . . , P ]} corresponding to the search region
output set and Y t = {yti , i ∈ [1, . . . , P ]} to the target region
output set. The number of samples P can be different for each
set, but for simplicity, we use the same number of samples for
both target and search regions. The means and variances of the
outputs are computed as follows:

ysm =
1

P

P∑
i

ysi , ysv = diag

(
1

P

P∑
i

(ysi − ysm)(ysi − ysm)T

)
,

ytm =
1

P

P∑
i

yti , ytv = diag

(
1

P

P∑
i

(yti − ytm)(yti − ytm)T

)
,

(1)

where ysm, ysv and ytm, ytv are the mean and variance values of
search and target output feature sets, respectively, and diag(·)
is a function that returns the main diagonal of a matrix. Fig. 2
shows an example of the mean and variance values of features
generated by the VFGN for a search region with a car in the
center. The background pixels have mostly high certainty, as
all sampled models agree on them being irrelevant. The high
magnitude features at the top part of the car have the highest
uncertainty, as different model samples can disagree on the
details in the appearance of the object.

The proposed VVPIT method can utilize the predicted
uncertainties in different ways. The simplest way is to entirely
ignore the uncertainty values and process the mean outputs
only with the regular cross-correlation function g(a, b), de-
fined as a 2D convolution conv2Dω=b(a) with ω being the
kernel weights. This still leads to a statistically better model
which can provide better predictions, but it can be further
improved by utilizing the predicted uncertainties in the cross-
correlation module. Since most 3D SOT methods compare
region features in a similarity manner, we focus on similarity-
based approaches to use the uncertainty values, instead of
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applying distance-based approaches. We propose a double
similarity-based process to utilize uncertainty, which treats
mean and variance values as separate feature sets and uses
the convolutional similarity function g(a, b) on both of them
independently. The final similarity value ĝdouble is obtained
by linearly the similarities of the mean and variance of the
outputs as follows:

ĝdouble(y
s
m, ytm, ysv, y

t
v) = g(ysm, ytm) + λg(ysv, y

t
v), (2)

where λ is a variance weight hyperparameter. This approach
is based on the idea that positions with similar uncertainties
should be prioritized, as there is a high chance of them repre-
senting the same object. Humans can also treat uncertainties
as separate features. Let us consider a task of classifying
triangle and circle images, where some objects are rounded
triangles. Based on the deformation degree, people will have
different values of aleatoric uncertainty in their predictions,
as they will have harder time classifying rounded triangles
as only one of the two classes. If a person is asked to track
these objects, the aleatoric uncertainty in predictions may be
the only feature needed to distinguish between objects, given
that size, thickness and other features are identical. This is
achieved by describing the tracked objects as “definitely a
circle”, “triangle with some curves”, “in between the circle and
the triangle”, which leads to low chances of mixing up these
objects during tracking. The same principle can be applied for
Lidar-based 3D SOT task. However, there are many different
sources of uncertainty, considering the varying point cloud
density, possible occlusions and object rotation. Some parts
of the object of interest may have uncertain features, and
this uncertainty is likely to be preserved during the tracking
process.

In addition to the above approach, we also define an uncer-
tainty penalization process which places focus on features with
higher certainty and penalizes the uncertain feature values.
This is achieved by dividing each mean feature value during
the convolutional process by the corresponding normalized
variance score, as follows:

∀c, vcn(v) = (ρ− 1)
vc −min(vc)

max(vc)−min(vc)
+ 1,

∀px,∀py, ĝpen(y
s
m, ytm, ysv, y

t
v)

px,py =

=
2ỹsm

px,py ỹtm
px,py

vn(ỹsv)
px,py + vn(ỹtv)

px,py

,

(3)

where the vn(v) function is used to normalize the variance
predictions by the channel-wise minimum and maximum
values to be in [1, ρ] range, with a hyperparameter ρ that
defines how much the uncertain predictions are penalized,
vcn(v) implements the normalization procedure for a single
channel c. For an input j, the notation j̃ denotes the tensor
with convolutional patches of j, and jpx,py corresponds to the
values of j at position (px, py).

We follow the VPIT’s training protocol and initialize a
VVPIT model based on the VNN version of PointPillars for
3D Object Detection. After the initialization, the model is

(a) Mean (b) Variance (c) Mean & certainty

Fig. 2: An example of (a) mean, (b) variance and (c) mean and
certainty features of a search region with a car in the center.
Lighter color in the mean and variance images corresponds to
higher values. Red color channel represents certainty in the
corresponding pixel values, and blue color channel represents
the mean feature values. The purple color indicates that the
feature values and the certainty in those values is equally high,
while the blue pixels signal features with high values and low
certainty.

trained with the Binary Cross-Entropy (BCE) loss between
the ground truth and the predicted score maps. Multiple
VFGN samples are used during both training and inference
to compute the mean and the variance in the target and
search region features, which are later combined by using an
uncertainty-aware cross-correlation module using one of the
processes described above.

IV. EXPERIMENTS

We use the KITTI [38] tracking dataset to train and test
models. Following the standard protocol, we use KITTI track-
ing training subset for both training and testing, as the test
subset does not provide the initial ground truth positions. The
tracks [0, . . . , 18] are used for training and validation, and
tracks 19 and 20 are used to test the trained models. Model
performance is computed using the Precision and Success [19]
metrics, which are based on the predicted and ground truth
objects’ center difference and 3D Intersection Over Union,
respectively. VPIT uses a pre-trained PointPillars network
to initialize its pseudo image generation and FGN modules.
To follow the same procedure, we train a VNNs version of
PointPillars on the KITTI [38] detection dataset, use it to
initialize the VPIT model and train the corresponding model
for 64, 000 steps with different number of training VFGN
samples per step in [1, . . . , 20] range. For the double similarity
uncertainty utilization method, we test the variance weight
hyperparameter λ in the range of {0.1, . . . , 1} with step 0.1
and for the uncertainty penalization approach, the ρ value is
tested for the range of {2, . . . , 5} with step 1. The best models
are reported for each uncertainty estimation method.

Table I contains the evaluation results of regular VPIT and
the Variational VPIT (VVPIT) models with different ways to
utilize the predicted uncertainty. We report the best-performing
models for each uncertainty utilization process, which are
obtained by using 20 samples of the VFGN module. By com-
puting the average of predictions and discarding the variances,
VVPIT achieves higher tracking performance compared to the
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TABLE I: Precision and Success values on the KITTI single
object tracking experiments for VPIT and Variational VPIT
(VVPIT) models.

Method Uncertainty Success Precision

VPIT - 50.49 64.53
VVPIT averaging 51.97 66.69
VVPIT double similarity 52.62 66.56
VVPIT uncertainty penalization 53.30 67.79

VPIT model. By utilizing uncertainties, the Success and Pre-
cision values are further improved. Both double similarity and
uncertainty penalization processes lead to better models, but
the penalization process leads to a better tracking performance.

V. CONCLUSIONS

In this paper, we proposed a method to utilize uncertainty
in 3D Single Object Tracking which uses a Variational Neural
Network (VNN) based version of the VPIT 3D Single Object
Tracking method to estimate uncertainty in target and search
features and combines these features with an uncertainty-
aware cross-correlation module. We proposed two ways to uti-
lize uncertainty in cross-correlation, i.e., by double similarity
which adds a similarity in uncertainties to the regular cross-
correlation, and by uncertainty penalization which penalizes
uncertain features to shift focus to the more reliable feature
channels. Additionally, we tested the model’s performance
without exploiting the estimated uncertainties, as it still leads
to a statistically better model compared to regular VPIT. The
use of VNNs improves the tracking performance of VPIT in
all cases, with the uncertainty penalization leading to the best
Success and Precision values. The estimated uncertainty can
also be used to alert a decision system whether the model
should be trusted, or a human expert or a more accurate but
a computationally-heavier model should be deployed to avoid
failures. This approach to uncertainty estimation is a direction
for future work and can be built on top of the proposed
architecture.
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