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Abstract—We present the updated version of the HSI-Drive
dataset aimed at developing automated driving systems (ADS)
using hyperspectral imaging (HSI). The v2.0 version includes
new annotated images from videos recorded during winter and
fall in real driving scenarios. Added to the spring and summer
images included in the previous v1.1 version, the new dataset
contains 752 images covering the four seasons. In this paper,
we show the improvements achieved over previously published
results obtained on the v1.1 dataset, showcasing the enhanced
performance of models trained on the new v2.0 dataset. We also
show the progress made in comprehensive scene understanding
by experimenting with more capable image segmentation models.
These models include new segmentation categories aimed at
the identification of essential road safety objects such as the
presence of vehicles and road signs, as well as highly vulnerable
groups like pedestrians and cyclists. In addition, we provide
evidence of the performance and robustness of the models when
applied to segmenting HSI video sequences captured in various
environments and conditions. Finally, for a correct assessment
of the results described in this work, the constraints imposed
by the processing platforms that can sensibly be deployed in
vehicles for ADS must be taken into account. Thus, and although
implementation details are out of the scope of this paper, we focus
our research on the development of computationally efficient,
lightweight ML models that can eventually operate at high
throughput rates. The dataset and some examples of segmented
videos are available in https://ipaccess.ehu.eus/HSI-Drive/.

Index Terms—hyperspectral imaging, dataset, scene under-
standing, autonomous driving systems, fully convolutional net-
works

I. INTRODUCTION

The exploration of hyperspectral imaging (HSI) processing
techniques in the development of autonomous driving systems
(ADS) and advanced driver assistance systems (ADAS) is now
possible due to the availability of small-size, snapshot hyper-
spectral cameras that enable the recording of hyperspectral
images at video rates from moving platforms [1], [2]. However,
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there are inherent technological constraints and engineering
challenges associated with acquiring and processing spectral
data at video rates in real driving conditions since outdoor
recording implies dealing with varying lighting and weather
conditions, the presence of fast moving objects, etc. Processing
the spectral information contained in such images implies
handling a variety of non-controlled natural illumination and
backgrounds, sensor saturation effects, the presence of objects
at very different distances and sometimes severe spectral
mixing due to sensor technology and limited spatial resolution.
To address these challenges in intelligent vision applications,
spectral data need to be preprocessed and complemented with
relevant spatial information.

Deep learning models, particularly fully convolutional net-
works (FCNs), have demonstrated outstanding performance in
capturing spatial features of objects with various sizes and
shapes and have been widely applied to the segmentation
of hyperspectral images [3]–[6]. The availability of large
volumes of data is crucial for the development of robust deep
learning models trained on datasets with high data variabil-
ity. Unfortunately, there are only a few datasets specifically
designed to train and test HSI-processing ML systems for the
development of ADS [1], [7]–[9]. In particular, HSI-Drive [10]
is a structured HSI dataset that is being used for the research of
hyperspectral image segmentation systems to be deployed as
ADAS in automobiles. In this paper, we present the extended
version of HSI-Drive database (v2.0), which contains more
than double the data than the previous v1.1 version. We show
how the availability of more data acquired in more diverse
environments allows to develop more accurate and robust HSI
segmentation models, as well as to widen the capabilities of
the HSI processing systems for a more comprehensive scene
understanding.

The remainder of the paper is organized as follows: Section
II provides detailed information about the updates in the new
version of the HSI-Drive dataset. Section III presents the
experimental setup, including data partitioning, preprocessing,
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TABLE I
FREQUENCY OF EACH OF THE CLASSES IN THE HSI DRIVE V2.0 DATASET.

Total Road R. Marks a Veg.b Pain. Met. c Sky Concrete Ped. d Water Unpain. Met. e Glass
Num. pixels 43 947 503 26 690 619 1 325 343 9 339 224 948 852 2 511 496 2 315 153 209 531 12 330 348 341 246 614

% 100 60.73 3.02 21.25 2.16 5.71 5.27 0.48 0.03 0.79 0.56
aRoad Marks. b Vegetation. c Painted Metal. d Pedestrian. e Unpainted Metal.

FCN model development, and the rationale behind each experi-
ment. Section IV presents the segmentation metrics for the dif-
ferent experiments. Additionally, it includes illustrations of the
segmentation system performance, showcasing the evaluation
of representative driving scenes. Finally, Section V concludes
the paper and discusses potential future work.

II. HSI-DRIVE V2.0

The v2.0 version of the HSI-Drive dataset [10], released in
December 2022, contains 752 manually labeled images from
recordings made in fall (201 images), winter (206 images),
spring (166 images) and summer (155 images). Compared to
the previous v1.1 dataset, which contains 276 images recorded
only in summer and spring, v2.0 provides an increase of
more than 272% in the total number of images and a great
improvement in terms of data diversity. The dataset contains
almost 44 million labeled pixels, categorized into 10 classes as
shown in Table I. Despite the labeling being primarily aimed
to benefit spectral classification, categories have been defined
to be significant to the scope of application, hence most of
them comprise different materials. In consequence, each class
exhibits very different spectral variability, which challenges
inter-class separability. For instance, while the Road category
encompasses only tarmac surfaces, the Pedestrian category
includes individuals such as passers-by, cyclists, motorcyclists
and animals. On the other hand, the careful structuring of the
dataset according to season of the year, weather conditions,
daytime and road type provides two potential avenues for
research: developing general and robust classification systems
that remain unaffected by the diversity of lighting and envi-
ronmental conditions, and selecting a specific subset of the
dataset to study phenomena closely associated with particular
driving and environmental situations.

The images in the dataset were captured using a Pho-
tonfocus camera equipped with an Imec 25-band VIS-NIR
(535nm-975nm) mosaic spectral filter on a CMOSIS CMV200
image wafer sensor [2]. The raw images in the dataset have
a spatial resolution of 1088 x 2048 pixels, with each pixel
measuring 5µm x 5µm. However, the spectral bands are
extracted from a mosaic formed by 5x5 pixel window Fabri-
Perot filters, resulting in a reduced resolution output cube with
216 x 409 x 25 size. The images were recorded with a digital
resolution of 12 bits, leading to an estimated signal-to-noise
ratio (SNR) ranging between 23.43dB and 27.29dB for the
recording setups used.

Acquiring images from a moving vehicle under varying
lighting conditions presents several challenges. First, to avoid
motion blur, an appropriate exposure-time limit has to be
set. This limit, in turn, challenges the acquisition of images

under low lighting conditions. Adjusting the sensor’s gain can
partially compensate for the lack of light, but it also amplifies
the noise in the image data. The f-number (aperture) of the
camera optics can also be readjusted to increase the reception
of light, but this affects the depth of field and the angle of
incidence of the light beams which, at the same time, produces
variations in the response of the Fabry-Perot filters of the
sensor. Secondly, in sunny conditions with significant light
contrasts between illuminated and shadowed surfaces, setting
the exposure-time becomes crucial to minimize or prevent
pixel saturation, which occurs due to the sensor’s limited
dynamic range. In the end, increasing the number of different
camera configurations results in a more burdensome and time-
consuming image preprocessing pipeline in order to preserve
the coherence of the spectral information of images which, at
the same time, may compromise the compliance with real-time
operation requirements of ADS/ADAS.

III. EXPERIMENTAL SETUP

A. Segmentation experiments

In this section, we present four experiments on HSI-based
semantic segmentation using HSI-Drive 2.0 data. Two ex-
periments (3- and 5-classes) have been previously conducted
in earlier studies [11], [12] and FCN models have been
updated and improved using the new data. The two new
experiments involve 6-class segmentation and expand upon the
5-class experiment by including the categories Painted Metal
and Pedestrian respectively. The purpose of these additions
is to enhance the overall understanding of the environment
perceived by the system, thereby contributing to improve
scene comprehension. As described below, obtained exper-
imental results demonstrate that incorporating new training
data enhances the classification capabilities, performance and
robustness of the developed segmentation systems.

Experiment 1 was designed to perform a simple segmenta-
tion of the Road (tarmac) and the Road Marks in the scenes.
This set-up is particularly useful for lane-keeping and trajec-
tory planning systems. In Experiment 2, additional information
about the background is incorporated by including Sky and
Vegetation categories. This extension enables the identification
of potential obstacles such as vehicles, cyclists, pedestrians,
etc., which may demand responsive actions. Furthermore, the
segmentation reveals the presence of road signs, traffic lights
and information panels located at the sides and above the
roads.

The newly designed Experiment 3 incorporates the segmen-
tation of Painted Metal surfaces. This category specifically
focuses on the presence of vehicles and traffic signs, which
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could help to improve systems for signal identification, emer-
gency braking, collision alerts, and adaptive cruise control.
Experiment 4 aims to cover the segmentation of pedestrians,
cyclists and motorcyclists, whose effective identification is the
prerequisite for their protection in ADS.

B. Data partition and preprocessing

The 752 images were divided into 5 subsets for a 5-
fold cross-validation training scheme. The partitioning was
performed based on a proportionality criterion considering
the distribution of the images across the dataset structure, i.e.
daytime, climatology, season and road type. To prevent local
overfitting and improve the generalization performance of the
models, a validation subset was used for early stopping in
training. Specifically, 3 subsets were used for training (60%),
1 for validation (20%), and 1 for testing (20%). To mitigate
the influence of random weight initialization, each training was
repeated 3 times.

Regarding raw image preprocessing stage, we performed
image cropping, reflectance correction through dark and flat
images, and partial demosaicing by spatial bilinear interpola-
tion (see [12] for further details). We have removed the median
filtering step included in previous experiments since it was
observed that spatial filtering does not yield any improvements
when training models that incorporate convolutional spatial
filters. Finally, to enhance image invariance to lighting con-
ditions (shadow removal), a per-pixel normalization (dividing
each pixel’s value by the sum of its spectral signature) is per-
formed at the end of the preprocessing pipeline, as described
in [13], which extends the work from [14] to the hyperspectral
domain.

C. Model training and optimization

In this work, we continue to explore encoder-decoder FCN
models to effectively combine spectral and spatial features for
the semantic segmentation of HSI. Compared to the tiny FCN
models reported in [12], we have explored deeper encoder
structures to make the most of the availability of new data
and perform the segmentation of the whole images in a single
pass. Training on larger images implies using deeper networks
to effectively extract spatial features at different scales.

The models were trained on a NVIDIA GFORCE RTX-
3090 with 24GB of memory. During training, a batch size
of 23 images was utilized, while a batch size of 49 images
was used for validation. Best fitting was obtained for an
Adam optimizer with an initial learning rate of 0.001, gradient
decay factor of 0.9, squared gradient decay factor of 0.999,
200 epochs, and data shuffling at each epoch. The objective
function was an inverse-frequency weighted cross-entropy loss
to ensure higher weights for the minority classes.

A grid search hyperparameter optimization study was con-
ducted to search for the best trade-off between model complex-
ity and classification performance. Explored model hyperpa-
rameters were the encoder-depth (2, 3, 4, and 5), the input
image-size (whole image versus image patching), the number
of filters in the input convolutional layer (8, 16, and 32), the

size of convolutional kernels (3 and 5), and the dropout layer
placement (after each encoder block or only after the first
and last ones) and dropout rates (0, 0.2, 0.5). During training,
regularization techniques were applied to the convolutional
filters and three different learning rates (0.01, 0.001, 0.0001)
were also essayed. The resulting optimum model, which is
a modification of the architecture shown in Fig. 6 of [12],
is composed of 32 filters in the first convolutional block, an
encoder depth of 5 layers, and 3x3 convolutional kernels. Since
a stride value of 2 in the pooling layers constraints the input
image size to be a multiple of 2 raised to the encoder depth,
the largest compatible size is 192x384 so, during training,
each 216x409 image is divided into four 192x384 overlapping
patches. During testing, patches can be merged to recover the
original size if necessary.

The model contains a total of 31.10 million parameters
and requires 34.87 giga floating-point operations (GFLOPS)
per inference. In order to meet the demanding latency and
memory footprint implementation constraints of ADAS/ADS
systems, we simplified the model by applying an iterative
pruning algorithm based on the analysis of the computational
complexity of each layer and the evaluation of the model’s
accuracy. As a result of this optimization process, the compu-
tational load was reduced to 8.49 GFLOPS and the number
of parameters to only 320K with no noticeable impact on the
model’s accuracy, even after 8-bit integer quantization was
performed. The detailed description of the procedure followed
to achieve this remarkable model compression is out of the
scope of this paper and will be published in a near future.

IV. RESULTS

Tables II to VI show the segmentation metrics (Recall,
Precision, and Intersection over Union, IoU) for complete
216x409 images in each experiment. Global metrics consider
the frequency of each class in the dataset, while weighted
metrics consider the inverse frequency of each class in the
dataset, prioritizing minority classes. The formulas used to
calculate the metrics can be found in [11].

A. Segmentation results

In experiment 1, class division was: Road - 60.73%, Road
Marks - 3.02% and No Drivable - 36.25%. The results pre-
sented in Table II depict significant improvements compared
to the previous models trained on the v1.1 dataset. The overall
IoU shows a notable increase from 91.50 to 96.87, while
the weighted IoU improves from 72.60 to 88.55. Particularly,
the precision of the Road Marks class substantially increases
from 77.22 to 95.53. Moreover, as we will discuss later, the
satisfactory performance of the network extends robustly to
unlabeled pixels, as observed in video sequences.

In experiment 2, class division was: Road - 60.73%, Road
Marks - 3.02%, Vegetation - 21.25%, Sky - 5.71% and Other -
9.29%. As shown in Table III, the addition of two new classes
with good separability indexes (Vegetation and Sky) does not
penalize the accuracy for other minority classes. Again, there
is a significant improvement when compared to the results
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TABLE II
SEGMENTATION METRICS FOR EXP. 1: THREE CLASSES

Mean ± Std
Metric Recall Precision IoU
Road 99.20 ± 0.48 98.34 ± 0.61 97.57 ±0.38

Road Marks 91.09 ± 2.53 95.53 ± 1.04 87.39 ±2.94
No Dri 97.67 ± 1.02 98.75 ± 0.89 96.47 ±0.49
Global 98.40 ± 0.24 98.40 ± 0.24 96.87 ±0.47

Weighted 91.98 ± 2.21 95.92 ± 0.92 88.55 ±2.60

obtained on the v1.1 dataset, with the global IoU increasing
from 87.66 to 94.51, and the weighted IoU rising from 75.93
to 87.18. This improvement is mainly attributed to the increase
in IoU of the Road Marks class from 64.90 to 86.08.

In experiment 3, class division was: Road - 60.73%, Road
Marks - 3.02%, Vegetation - 21.25%, Painted Metal - 2.16%,
Sky - 5.71% and Other - 7.13%. As shown in Table IV, while
the mean precision of the Painted Metal class is 85.20%, the
recall value of 65.40% requires improvement. Nevertheless,
due to its heterogeneous nature and high intra-class variability,
a more detailed analysis of the segmented images is required
in order to determine whether classification successes and
failures occur consistently or under particular lighting or
weather conditions.

In experiment 4, class division was: Road - 60.73%, Road
Marks - 3.02%, Vegetation - 21.25%, Pedestrian - 0.48%, Sky
- 5.71% and Other - 8.81%. The precision obtained for the
Pedestrian class is similar to that obtained in Experiment 3 for
the Painted Metal class but with a better recall (mean 70.20).

B. Influence of lighting and weather conditions

The structured organization of the HSI-Drive dataset allows
for defining subsets of data that were obtained under similar
circumstances. Here we present the results of an experiment
aimed to analyze the consequences of training the FCN with

TABLE III
SEGMENTATION METRICS FOR EXP. 2: FIVE CLASSES

Mean ± Std
Metric Recall Precision IoU
Road 99.35 ± 0.33 98.11 ± 0.55 97.49 ± 0.47

Road Marks 90.85 ± 1.48 94.23 ± 2.34 86.08 ± 2.93
Vegetation 97.84 ± 0.67 96.88 ± 1.24 94.86 ± 1.53

Sky 92.49 ± 2.46 98.55 ± 0.40 91.24 ± 2.20
Other 85.75 ± 3.36 91.01 ± 2.71 78.96 ± 1.79
Global 97.12 ± 0.41 97.10 ± 0.42 94.51 ± 0.75

Weighted 91.18 ± 1.29 95.10 ± 1.41 87.18 ± 2.02

TABLE IV
SEGMENTATION METRICS FOR EXP 3: SIX CLASSES.

Mean ± Std
Metric Recall Precision IoU
Road 99.19 ± 0.55 98.13 ± 0.51 97.34 ± 0.36

Road Marks 91.42 ± 1.52 92.56 ± 1.90 85.20 ± 2.43
Vegetation 98.26 ± 0.92 95.45 ± 2.04 93.84 ± 1.81

Painted Metal 65.40 ± 4.84 85.20 ± 5.70 58.61 ± 4.44
Sky 95.24 ± 2.34 96.96 ± 1.99 92.30 ± 1.11

Other 77.85 ± 5.76 85.48 ± 1.71 68.65 ± 4.17
Global 95.48 ± 2.25 96.17 ± 0.61 93.07 ± 1.03

Weighted 79.26 ± 4.59 89.59 ± 2.95 74.45 ± 3.05

such subsets and t explore the performance of the FCN under
different conditions. This analysis provides insights into the
conditions that may be more demanding for the segmentation
system and serve as a valuable guide for future research efforts
to address those specific conditions.

According to the results shown in Table VI, some con-
clusions can be drawn. Regarding weather conditions, the
FCN achieves the best performance for the Cloudy subset.
This is consistent with the more favorable and homogeneous
illumination conditions, with lighter shadows and less overex-
posure. Rainy conditions are supposed to be more challenging
due to the reduced visibility and the high probability of the
presence of glares and light reflections, and condensation and
water drops on the lens. Unexpectedly, there is no significant
reduction in the general performance metrics compared to
other conditions, except for the Road Marks. The poorest
results were obtained in the Sunny subset, which contains
images with severe illumination contrast that combine very
low reflectance values in the shadows with overexposed areas
in the sunny areas.

Regarding lighting condition variability throughout the day,
the Midday subset, characterized by sufficient lighting regard-
less of weather conditions and a more zenithal position of the
sun, yields the best results. In contrast, both the Dawn and
Sunset subsets are the most challenging ones, as they often
contain images with severe glares, high contrasts, and low
lighting. However, there are no noticeable differences in the
global and weighted index values.

C. Detailed evaluation of some representative scenes

Although evaluation metrics provide useful insights into
classifier performance, the sparse annotation nature of the
HSI-Drive dataset images calls for analyzing the segmentation
performance in detail by visualizing the segmentation of entire
images. This qualitative approach helps better understand the

TABLE V
SEGMENTATION METRICS FOR EXP 4: SIX CLASSES.

Mean ± Std
Metric Recall Precision IoU
Road 99.02 ± 0.31 98.00 ± 0.79 97.04 ± 0.80

Road Marks 87.87 ± 4.05 91.66 ± 2.00 81.85 ± 4.37
Vegetation 98.34 ± 0.54 95.07 ± 2.22 93.56 ± 2.02
Pedestrian 70.02 ± 3.64 84.26 ± 8.15 61.94 ± 1.41

Sky 91.86 ± 9.78 97.44 ± 1.01 89.23 ± 8.66
Other 80.59 ± 6.87 89.83 ± 2.84 74.20 ± 7.07
Global 96.42 ± 1.07 96.37 ± 1.10 93.26 ± 1.97

Weighted 74.45 ± 3.48 86.49 ± 6.35 67.13 ± 1.47

TABLE VI
PERFORMANCE COMPARISON FOR DIFFERENT LIGHTING AND WEATHER

CONDITIONS IN EXP. 2.

Condition Dawn Midday Sunset Sunny Cloudy Rainy
Road 97.16 96.86 97.27 95.47 98.19 97.11

Road Marks 78.93 85.03 84.87 76.69 91.48 75.99
Vegetation 94.33 97.74 94.37 92.72 97.82 97.51

Sky 91.22 87.68 90.88 89.58 96.47 92.95
Others 80.45 80.33 72.89 73.76 80.49 78.02
Global 94.22 94.46 94.08 91.84 96.29 94.78

Weighted 84.06 86.46 84.67 80.35 91.61 83.37
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general performance of the segmentation system and its robust-
ness, especially under challenging conditions. In this section,
we provide a summary of the quality analysis performed on
several representative scenes. Moreover, certain peculiarities of
the system’s operation, such as the segmentation of far scene
backgrounds with low spatial resolution and severe spectral
mixing, are better perceived through the analysis of video
sequences rather than in still images. The reader is referred
to [10] for the viewing of some example videos. Since we
have not yet explored any techniques to enhance ML model
training using temporal information, these videos simply show
the frame-to-frame segmentation generated by the FCNs.

1) A highway scenario: Fig. 3 depicts a highway scenario
on a winter sunny morning, with traffic signs and guardrails
on both sides, vegetation on one side, sky in the foreground,
and vehicles about 25 meters ahead in both lanes. Despite the
challenging low-lighting conditions, the segmentation results
are highly satisfactory. In Experiment 3, the system effectively
distinguishes the road signs, the coachwork of the cars (Painted
Metal), and even detects the presence of a crane in the
background of the image.

2) Adverse lighting and weather conditions in highway:
Fig. 4 has been acquired on a winter rainy morning (two water
droplets can be seen in the image). It is important to note that
for the Experiment 1, the FCN is robust in this situation and,
for the Experiment 3 the segmentation errors occurs in the
driving direction primarily because of the presence of some
droplets. Interestingly, when analyzing the video sequence
corresponding to this image (refer to Fig. 5), it can be observed
that the truck is correctly segmented in the frames prior to the
appearance of the second droplet (frames 1 and 2). Tarmac
segmentation is robust in every moment despite the presence
of the left droplet.

3) Severe lighting contrasts: The presence of shadows,
particularly on sunny days, can result in significant lighting
contrasts that challenge the dynamic range of the sensor and
can hinder the accurate segmentation of scenes. Fig. 6 and Fig.
8 illustrate two examples of this situation. It can be observed
that the FCN successfully prevents generating erroneous edges
along the borders of the shadows, leading to an homogeneous
segmentation where errors are mostly limited to small artifacts
in the background. In the image of Fig. 6, captured on a
sunny winter morning, even the small vehicles traveling in the
opposite direction on the left side of the image are identified
by the FCN. However, due to the low resolution, it becomes
challenging to distinguish between the coachwork and the
lights of these vehicles. Regarding Fig. 8, despite two-thirds
of the image being in the shade and only one-third in direct
sunlight, there are no noticeable incorrect segmentations in
Experiment 1. In Experiment 3, there is only a small horizontal
artifact of the Road Marks class produced by a speed bump.

4) Overexposure: The limited dynamic range of the sensor
and the absence of automatic exposure control augment the
likelihood of overexposure events, particularly under varying
and high illumination conditions (reflections on surfaces, direct
sunlight hitting the camera, etc.). Pixel saturation can be catas-

trophic for the segmentation system, since the characteristic
spectral signature of materials’ reflectance is lost. Fig. 7, from
a video recorded on a winter sunny morning, with frontal
sunlight and severe glares on the tarmac, illustrates such a
situation. As can be seen, the scene is quite satisfactorily seg-
mented as vehicles, tarmac, vegetation and even the guardrail
are identified by the system. The misclassified pixels are just
some road marks erroneously classified as tarmac on the more
overexposed sections. To understand why this phenomenon
does not more severely affect the overall segmentation, we
show in Fig. 1 the significant differences in the number
of saturated pixels across the 25 spectral bands. The least
saturated band (24) contains only 9124 saturated pixels, while
the most saturated band (9), contains 21936 saturated pixels.
This demonstrates the advantage of using HSI with narrow,
separated bands in tackling such situations. In addition, it
is interesting to note that even the most saturated band still
provides valuable information (lights are clearly distinguished
from the coachwork).

5) Segmentation of scene backgrounds: The low spatial
resolution of the hyperspectral cubes challenges the accurate
segmentation of objects in the background of images due to the
lack of precise spatial information and the presence of strong
spectral mixing. However, this limitation does not significantly
constraint the applicability of the system, since misidentified
objects in the background are typically far away and they
appear correctly segmented as the car moves forward and the
distance to the object decreases. An example of this can be
observed in the sequence depicted in Fig. 15. In the first frame
of the sequence, a car is shown making a turn and moving
downwards. In that initial frame, a portion of the tarmac in
the far background is incorrectly classified as either Vegetation
or Other. However, as the car moves forward in the subsequent
frames, it can be observed that the same portion of tarmac is
accurately segmented.

6) Intra-class variability: The Painted Metal category, as
an example, contains various object-types such as speed signs,
information panels, vehicles, traffic lights or street lamps.
Similarly, the Pedestrian class encompasses pedestrians, cy-
clists, motorcyclists and even animals, where the differences
in clothing further contribute to the spectral diversity. As
mentioned in Section III, the high intra-class spectral vari-
ability of these classes can be a handicap for their correct
classification. To better illustrate the difference between these
classes and other classes with low variability, Fig. 2 shows
box plots and histograms of outliers in the spectral signatures
of 100,000 random pixels from three minority classes: Road
Marks, Painted Metal, and Pedestrian. It can be observed that
Road Marks exhibits a more compact distribution with fewer
outliers compared to the other two classes. Painted Metal
and Pedestrian exhibit alternate variability across the spectral
bands, but Painted Metal contains more outliers in each band.
These findings align with the numerical results presented in
Tables II to V.

a) Painted Metal: Despite its high intra-class variability,
the significant contribution of spectral information to the seg-
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mentation performance becomes evident if one observes, for
example, how the FCN correctly differentiates the front views
(Painted Metal) and the rear views (Unpainted Metal/Other) of
signals as shown in Fig. 9 and in Fig. 10. However, there are
also situations where the network is not robust, such as that
shown in Fig. 11, where a black-painted vehicle is sometimes
confused with tarmac. Although good segmentation of dark
vehicles has also been obtained in other situatoins (see Fig.
3, Fig. 7, Fig. 8, and Fig. 14), there is no clear evidence of
the metamerism of RGB images being completely overcome
in this case.

b) Pedestrian: Hereunder, we show examples of how the
spectrally diverse elements that comprise Pedestrian class are
segmented. In Fig. 9, the correct identification of a pedestrian
on the road shoulder can be observed. Fig. 10 and Fig. 11
provide two good examples where a cyclist on the right road
shoulder is quite accurately detected in an interurban road on a
rainy morning. However, in Fig. 13, although the pedestrians
in the background and the woman in the second plane are
correctly identified, the FCN is not able to detect the woman
in the foreground. Similarly, in Fig. 14 a couple of pedestrians
have not been identified by the FCN. Nevertheless, when we
examine frames from the corresponding video sequence (Fig.
15), we can observe how, in the second frame, the pedestrians
are detected even when they are far away and, in the third
frame, they are accurately segmented. Further investigation is
needed to understand the cause of this instability and improve
the overall performance of pedestrian segmentation.

V. CONCLUSIONS

This article introduces HSI-Drive v2.0, the second version
of the HSI-Drive dataset, comprising 752 images depicting
real traffic scenarios throughout all seasons of the year. The
dataset contains approximately 44 million manually labeled
pixels divided into 10 categories, based predominantly on the
spectral reflectance properties of materials found in driving
environments. This extended dataset significantly augments the
pixel count for the underrepresented classes, which enables the
development of more accurate and robust ML segmentation
models for improved scene understanding in ADS.

The potential of this new dataset is demonstrated through
various experiments with a newly redesigned FCN model,
showcasing substantial improvements over previous results
obtained with version v1.1. The updated model has also been
evaluated in two new six-class experiments comprising the
Painted Metal and Pedestrian classes. Despite the high spectral
intra-class variability in these classes, the results remain quite
satisfactory, considering that the model was trained and tested
on data captured under highly variable and challenging lighting
and weather conditions.

Future work will concentrate on enhancing the segmentation
system’s overall performance in two key directions. First,
the adoption of edge preserving techniques will be explored
to achieve more accurate object-background boundaries. Sec-
ondly, spatio-temporal approaches will be essayed not only to
improve video segmentation accuracy but also to reduce the

computational load of sequential frame-to-frame segmentation.
Additionally, further investigation will be conducted to better
understand the contribution of hyperspectral information in
overcoming the metamerism of RGB imaging, specially under
challenging conditions. Finally, the models and algorithms
will have to be optimized and efficient and secure processing
architectures developed, to enable the deployment of these sys-
tems on resource and power constrained embedded platforms
suitable for the implementation of ADAS and ADS.
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Fig. 1. Grayscale images of the most saturated (left) and least saturated (right) bands and number of saturated pixels by band (center) of image 566, captured
during a winter, sunny morning, in a road with overexposure
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Fig. 2. Boxplots (top) and number of outliers (bottom) of Road Marks (left), Painted Metal (middle) and Pedestrian (right) classes using the spectral signatures
of 100000 random pixels from each class.
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Fig. 3. Image 557 (f4, AG2, 10ms), captured during a winter, sunny morning, in a highway: (far left) Exp2 segmentation, (left) Exp2 ground-truth, (center)
false color, (right) Exp3 segmentation and (far right) Exp3 ground-truth.
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Fig. 4. Image 752 (f8, AG2, 20ms), captured during a winter, rainy morning, in highway under adverse lighting and weather conditions: (far left) Exp1
segmentation, (left) Exp1 ground-truth, (center) false color, (right) Exp3 segmentation and (far right) Exp3 ground-truth.
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Fig. 5. Segmentation of video sequence 752, captured during a winter, rainy morning, in highway under adverse lighting and weather conditions. The time
difference between every two frames is 3s.
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Fig. 6. Image 560 (f4, AG2, 10ms), captured during a winter, sunny morning, in road with intense contrasts: (far left) Exp2 segmentation, (left) Exp2
ground-truth, (center) false color, (right) Exp3 segmentation and (far right) Exp3 ground-truth.
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Fig. 7. Image 566 (f4, AG2, 10ms), captured during a winter, sunny morning, in a road with overexposure: (far left) Exp2 segmentation, (left) Exp2 ground-
truth, (center) false color, (right) Exp3 segmentation and (far right) Exp3 ground-truth).
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Fig. 8. Image 228 (f8, AG1, 10ms), captured during a spring, sunny midday, in an urban environment with shadows: (far left) Exp1 segmentation, (left) Exp1
ground-truth, (center) false color, (right) Exp3 segmentation and (right) Exp3 ground-truth.
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Fig. 9. Image 404 (f8, AG1, 10ms), captured during a fall, sunny midday, in road with Painted/Unpainted metal objects with similar shape: (far left) Exp3
segmentation, (left) Exp3 ground-truth, (center) false color, (right) Exp4 segmentation and (far right) Exp4 ground-truth.
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Fig. 10. Image 301 (f8, AG2, 20ms), captured during a summer, rainy morning, with a cyclist and Painted Metal objects: (far left) Exp3 segmentation, (left)
Exp3 ground-truth, (center) false color, (right) Exp4 segmentation and (far right) Exp4 ground-truth.
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Fig. 11. Image 677 (f4, AG2, 10ms), captured during a spring, rainy midday, in a road with a cyclist on the right shoulder: (far left) Exp3 segmentation,
(left) Exp3 ground-truth, (visible) false color, (right) Exp4 segmentation and (far right) Exp4 ground-truth.
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Fig. 12. Segmentation of video sequence 677, captured during a spring, rainy midday, in a road with a cyclist on the right shoulder. The time difference
between every two frames is 2s.

Road Mark Veg Sky Other
NoLab Road Mark Veg Sky Other

Road Mark Veg Ped Sky Oth
NoLab

Road
Mark

Veg
Ped

Sky
Oth

Fig. 13. Image 229 (f8, AG1, 10ms), captured during a spring, sunny midday, in urban environment with two pedestrians in a zebra crossing: (far left) Exp2
segmentation, (left) Exp2 ground-truth, (center) false color, (right) Exp4 segmentation and (far right) Exp4 ground-truth.
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Fig. 14. Image 651 (f4, AG1, 10ms), captured during a winter, sunny midday, in road with two pedestrians walking in the right road shoulder: (far left) Exp3
segmentation, (left) Exp3 ground-truth, (center) false color, (right) Exp4 segmentation and (far right) Exp4 ground-truth.
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Fig. 15. Segmentation of video sequence 651, captured during a winter, sunny midday, in road with two pedestrians walking in the right road shoulder. The
time difference between every two frames is 2s.
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