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Abstract—We study Off-Policy Evaluation (OPE) in contextual
bandit settings with large action spaces. The benchmark
estimators suffer from severe bias and variance tradeoffs.
Parametric approaches suffer from bias due to difficulty
specifying the correct model, whereas ones with importance
weight suffer from variance. To overcome these limitations,
Marginalized Inverse Propensity Scoring (MIPS) was proposed
to mitigate the estimator’s variance via embeddings of an action.
To make the estimator more accurate, we propose the doubly
robust estimator of MIPS called the Marginalized Doubly Robust
(MDR) estimator. Theoretical analysis shows that the proposed
estimator is unbiased under weaker assumptions than MIPS
while maintaining variance reduction against IPS, which was
the main advantage of MIPS. The empirical experiment verifies
the supremacy of MDR against existing estimators.

Index Terms—Off-Policy Evaluation, Counterfactual Machine
Learning, Doubly Robust Estimator

I. INTRODUCTION

Many intelligent systems like recommendation systems [1]–
[5] and personalized medicine [6] gradually utilize individual-
level data to optimize their decision-making for individuals to
enhance the users’ experience. One of the ways to attain such
an aim is to conduct an A/B test online, but the drawback of
such an online algorithm [7], [8] is that it is costly and may
harm the user experience. Therefore, much research [9]–[16]
has been done to use the past data to evaluate the intervention
accurately, which is called Off-Policy Evaluation (OPE). Most
of the problems in OPE are formulated in the contextual
bandits’ settings [11] where we observe context (e.g., the
demography of the users), an action collected by the already
implemented policy in the system called behavior policy, and
reward (e.g., the click, purchase of the product, recovery of the
patient). In such settings, the goal of OPE is to evaluate the
counterfactual performance of the evaluation policy that the
system had not implemented. Unfortunately, with large action
spaces, which is often the case in the real world, existing
estimators suffer from bias due to misspecification of the
model or variance due to the wide range of importance weight.
To circumvent these limitations, Saito and Joachims [16]
proposed Marginalized Inverse Propensity Scoring (MIPS),
utilizing importance weight on the space of action embedding
to have lower variance. However, the assumption required
for the unbiasedness of MIPS does not necessarily hold, as

it requires that the embedding of the action fully mediates
the effect of the action on the reward, which is not realistic
in practice. To alleviate this limitation of MIPS, we develop
a doubly robust estimator called MDR, which is unbiased
under either the assumption required for MIPS or that on the
model while preserving the preferable variance reduction of
MIPS. Synthetic data analysis validates that MDR is the most
accurate estimator of existing estimators.

II. BACKGROUND

The data we consider is the contextual vector x ∈ X ⊆ Rdx ,
action a ∈ A, and reward r ∈ [0, rmax]. We assume that
we sample the context vector from an unknown distribution
x ∼ p(x), action a ∼ π(a|x) from the stochastic intervention
called policy π : X → ∆(A) given contextual vector x, and
reward r from an unknown distribution r ∼ p(r|x, a) given
contextual vector x and action a. We observe independent
and identically distributed n samples collected by the behavior
policy πb [17], [18]. Thus, the actually observed data called
logged bandit data D is given by D = {(xi, ai, ri)}ni=1 where
xi ∼ p(xi), ai ∼ πb(ai|xi), ri ∼ p(ri|xi, ai) for all i ∈ [n]. If
we know the distribution of contextual vector p(x) and reward
p(r|x, a), then we can obtain the performance of the policy
called value function V (π) of π, which means how good the
policy π is by

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)]

where q(x, a) = Ep(r|x,a)[r|x, a] is the expected reward given
contextual vector x and action a. However, as we do not know
the distribution of contextual vector p(x) and reward p(r|x, a)
in practice, we need to estimate the value function to evaluate
the performance of a policy π. We define the evaluation policy
πe whose value function should be estimated to distinguish it
from the behavior policy πb. Then, the problem of our interest
is how to construct the estimator V̂ (πe;D) ≈ V (πe) where
we use the Mean Squared Error (MSE)

MSE(V̂ (πe)) = ED

[
(V (πe)− V̂ (πe;D))2

]
= Bias(V̂ (πe)) + VD[V̂ (πe;D)]

as the quantity to measure how good the estimator is.
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III. EXISTING ESTIMATORS

There are three classical estimators to estimate the value
function V (πe): Direct Method (DM) [19], Inverse Propensity
Score (IPS) [20], and Doubly Robust (DR) [9]. These
estimators have drawbacks when the cardinality of the action
space is large. Marginalized Inverse Propensity Scoring
(MIPS) plays a significant role in large action spaces to
mitigate such shortcomings.

A. Direct Method
DM [19] uses the estimated expected reward function q̂ to

estimate the value function as follows.

V̂DM(πe;D, q̂) :=
1

n

n∑
i=1

Eπe(a|xi)[q̂(xi, a)]

=
1

n

n∑
i=1

∑
a∈A

πe(a|xi)q̂(xi, a).

where q̂(x, a) is the estimated expected reward
given contextual vector x and a. For instance,
we can consider the following function: q̂ =
argminq′∈Q

1
n

∑n
i=1 (yi − q′(xi, ai))

2 where Q is some
space of the model where we want to optimize q′. DM is
unbiased under the perfect estimation of the expected reward
[9] as follows.

Assumption 1 (Perfect Estimation of Expected Reward
Function). We say that the regression model q̂ has perfection
estimation if q̂(x, a) = q(x, a) for all context x ∈ X and
action a ∈ A.

In practice, it is significantly difficult to accurately estimate
the regression model q̂, so DM incurs a significant bias in the
event of a large action space.

B. Inverse Propensity Scoring
Unlike the parametric approach like DM, IPS [20] re-

weights the reward by the ratio of the propensity scores of
behavior and evaluation policies as follows.

V̂IPS(πe;D) :=
1

n

n∑
i=1

w(xi, ai)ri

where w(x, a) is a vanilla importance weight defined as
w(x, a) := πe(a|x)/πb(a|x). IPS is unbiased [16] under the
common support defined as follows, which often holds in
practice as long as the behavior policy assigns a non-zero
probability to the action whose probability in evaluation policy
is non-zero, defined as follows.

Assumption 2 (Common Support). We say behavior policy
πb satisfies the common support for the evaluation policy πe

if πe(a|x) > 0 =⇒ πb(a|x) > 0 for all x ∈ X and a ∈ A.

Furthermore, the variance of IPS [16] is as follows.

nVD

[
V̂IPS(πe;D)

]
= Ep(x)πb(a|x)[w(x, a)

2σ(x, a)2]

+Vp(x)

[
Eπb(a|x)[w(x, a)q(x, a)]

]
+Ep(x)

[
Vπb(a|x)[w(x, a)q(x, a)]

]

where σ(x, a) := Vp(r|x,a)[r|x, a] is the variance of the reward.
Though the unbiasedness of IPS is preferable, the importance
weight w(x, a) has a wide range, resulting in a significant
variance by the first and third terms when the cardinality of
the action space is large.

C. Doubly Robust

DR [9] combines the preferable properties of DM and IPS,
defined as follows.

V̂DR(πe;D, q̂)

=
1

n

n∑
i=1

{
Eπe(a|xi)[q̂(xi, a)] + w(xi, ai) (ri − q̂(xi, ai))

}
DR guarantees unbiasedness under either Assumption 1 or 2.
Furthermore, we have the variance of DR:

nVD

[
V̂DR(πe;D, q̂)

]
= Ep(x)πb(a|x)[w(x, a)

2σ(x, a)2]

+ Vp(x)

[
Eπb(a|x)[w(x, a)q(x, a)]

]
+ Ep(x)

[
Vπb(a|x)[w(x, a)∆(x, a)]

]
where ∆(x, a) := q(x, a) − q̂(x, a) is the prediction error of
the expected reward. When the cardinality of the action space
is large, the variance of DR gets large due to the first and third
terms.

D. Marginalized Inverse Propensity Scoring

To tackle the problem of the significant bias of DM and
variance of IPS and DR under large action spaces, MIPS
[16] was proposed. Instead of using the importance weight
w(x, a) used in IPS, MIPS uses the marginal importance
weight w(x, e) where e ∈ E ⊂ Rde is the embedding of the
action. For instance, if action a is the movie we recommend,
the embedding e can be the genre, directors, and actors which
categorize the movie. If the embedding characterizes the film
well, we can reduce the cardinality of embedding space |E|.
Therefore, using the embedding for the marginal importance
weight improves the variance of the MIPS. To use action
embedding, we define the new data-generating process and
value function as follows.

We assume that we sample the action embedding e from
an unknown distribution e ∼ p(e|x, a) given x and a, and the
reward from an unknown distribution r ∼ p(r|x, a, e) given x,
a, and e. Thus, the logged data D is

D = {(xi, ai, ei, ri)}ni=1

∼
n∏

i=1

p(xi)πb(ai|xi)p(ei|xi, ai)p(ri|xi, ai, ei)

. Furthermore, we define the value function V (π) as follows.

V (π) := Ep(x)π(a|x)p(e|x,a)p(r|x,a,e)[r]

= Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]

= Ep(x)π(a|x)[q(x, a)]

where q(x, a, e) := Ep(r|x,a,e)[r|x, a, e] is the expected reward
function given x, a, and e and q(x, a) := Ep(e|x,a)[q(x, a, e)].
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Having the new data-generating process and the definition
of the value function, MIPS [16] is defined as follows.

V̂MIPS(πe;D) :=
1

n

n∑
i=1

w(xi, ei)ri

where w(x, e) := p(e|x, πe)/p(e|x, πb) is the marginal
importance weight and p(e|x, π) :=

∑
a∈A π(a|x)p(e|x, a) is

the marginal distribution of e given the context vector x and
policy π. MIPS is unbiased under two assumptions as follows.

Assumption 3 (No Direct Effect of Action on Reward). Given
context x and action embedding e, action a and reward r are
independent (a ⊥⊥ r|x, e)

No direct effect assumption means that the action
embedding e fully mediates the effect of action a on the reward
r.

Assumption 4 (Common Embedding Support). We say that
the data-generating process satisfies the common embedding
support if p(e|x, πe) =⇒ p(e|x, πb) for all x ∈ X and e ∈ E .

Common embedding support is a weaker assumption than
the common support necessary for the IPS’s unbiasedness.
Even with the considerable variance reduction of MIPS against
IPS, the unbiasedness of MIPS is not necessarily guaranteed
in practice as Assumption 3 usually does not hold due to the
difficulty finding the perfect embedding of the action.

IV. PROPOSED ESTIMATOR

In this section, we combine MIPS and DR to construct a
more accurate estimator to overcome the shortcomings of DM,
IPS, DR, and MIPS.

A. Marginalized Doubly Robust

Using the preferable properties of MIPS and DR, we
propose the novel estimator called Marginalized Doubly
Robust (MDR) as follows.

V̂MDR(πe;D, q̂)

=
1

n

n∑
i=1

{
Eπe(a|xi)[q̂(xi, a)] + w(xi, ei) (ri − q̂(xi, ai, ei))

}
The first term of MDR is the baseline estimator, which uses
the regression model q̂ to incorporate the parametric approach.
The second term incorporates the importance weight w(xi, ei)
on the action embedding space to weight the residuals of
the estimated expected reward function, having the doubly
robust structure. Intuitively, MDR is supposed to estimate the
value function of the evaluation policy more accurately than
IPS since MDR has a lighter importance weight than IPS to
mitigate the high variance. At the same time, it has doubly
robust properties, which require weaker assumptions to be
unbiased than MIPS. We theoretically analyze the statistical
properties of MDR in the following subsection.

B. Theoretical Analysis

MDR has a doubly robust property under either the no direct
effect and the common embedding support or the following
assumption about the precision of the prediction of the reward
function.

Assumption 5 (Perfect Estimation of Expected Reward given
x, a, and e). We say regression model q̂(x, a, e) perfectly
estimates the expected reward function q if q̂(x, a, e) =
q(x, a, e) for all x ∈ X , a ∈ A, and e ∈ E

Proposition 6 (Unbiasedness of MDR). MDR is unbiased
under either Assumptions 3 and 4, or Assumption 5. See
Appendix A for the proof.

Proposition 6 shows that MDR is more likely to be unbiased
than MIPS as MDR requires weaker assumptions than MIPS
due to its doubly robust structure. As we know the variance of
DR, we only focus on reducing the variance of MDR against
DR as follows.

Proposition 7 (Variance Reduction of MDR against DR).
Under Assumptions 2, 3, and 4, the difference between the
variances of DR and MDR is

n
(
VD

[
V̂DR(πe;D, q̂)

]
− VD

[
V̂MDR(πe;D, q̂)

])
= Ed̄πb

[
w(x, a)2∆(x, a)2 − w(x, e)2∆(x, a, e)2

]
where d̄πb

(x, a, e) :=
∑

r dπb
(x, a, e, r) and dπb

(x, a, e, r) :=
p(x)πb(a|x)p(e|x, a)p(r|x, a, e) are visitation measures and
∆(x, a) := q(x, a) − q̂(x, a) and ∆(x, a, e) := q(x, a, e) −
q̂(x, a, e) estimation errors. See Appendix B for the proof.

If we assume that action embedding represents the action
well, which can be guaranteed using the estimator selection
method called SLOPE [14], [21] or PAS-IF [22] to execute the
data-driven embedding selection, vanilla importance weight
w(x, a) is often larger than marginal importance weight
w(x, e). In addition, ∆(x, a) is larger than ∆(x, a, e) for most
cases. Thus, we have the variance reduction.

VD

[
V̂DR(πe;D, q̂)

]
> VD

[
V̂MDR(πe;D, q̂)

]
Note that as the variance of DR is smaller than IPS, that of
MDR is also smaller than IPS.

V. SIMULATION STUDY

We conducted the synthetic data experiment by
implementing MDR we proposed using the Open Bandit
Pipeline [23]. The Python code for the simulation can be
found in the https://github.com/tatsu432/DR-estimator-OPE-
large-action. The simulation environment is mostly the same
as MIPS [16].

A. Synthetic Data

In the synthetic data, we define the data-generating process
as follows. The contextual vector x is drawn i.i.d from the 10-
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Fig. 1. MSE (left), Bias (center), and variance (right) of DM, IPS, DR, MIPS, and MDR(ours) when we change the cardinality of the action space

dimensional standard normal distribution. Given action a, the
embedding of the action is drawn i.i.d from the distribution

p(e|x, a) =
∏

k∈[de]

exp(αa,ek)∑
e′∈Ek

exp(αa,e′k
)

where αa,ek is a set of parameters drawn from the standard
normal distribution N (0, 1) and the cardinality of the action
embedding space is 10; Ek = [10]. The behavior policy πb is
then defined as

πb(a|x) =
exp(β · q(x, a))∑

a′∈A exp(β · q(x, a′))
where β is the parameter that handles the optimality of the
behavior policy and q(x, a) := Ep(e|x,a)[q(x, e)]. The expected
reward function q(x, e) given context x and action embedding
e is defined as

q(x, e) =
∑

k∈[de]

ηk · (x⊤Mxek + θ⊤x x+ θ⊤e xek)

where M, θx, and θe are parameters whose elements we
sample from the uniform distribution whose range is [−1, 1]
and ηk represents the importance of the k-th dimension of the
action embedding sampled from Dirichlet distribution such
that

∑
k∈[de]

ηk = 1. Then the evaluation policy πe whose
value function we want to estimate is defined as

πe(a|x) := (1− ϵ) · 1{a = argmax
a′∈A

q(x, a′)}+ ϵ/|A|

where ϵ ∈ [0, 1] represents the quality of the evaluation policy
πe and we set it to ϵ = 0.05.

B. Results

Fig. 1 shows the MSE, bias, and variance of DM, IPS,
DR, MIPS, and MDR. As the number of action spaces |A|
gets large, DM, IPS, and DR have high MSE. For DM, this
is primarily because of the significant bias, whereas for IPS
and DR, we can attribute this to the substantial variance
caused by the wide importance weight. MIPS and MDR
overcome this problem by using the marginalized importance
weight. Furthermore, MDR has a lower bias than MIPS in
this settingthis favorable property of MDR against MIPS
results from the doubly robust property of MDR. Moreover,
the variance of MDR is reduced against IPS and DR, as
we derived in the theoretical analysis. Thus, the empirical

experiment demonstrates that MDR enables us to evaluate the
value function more accurately than DM, IPS [20], DR [9],
and MIPS [16].

VI. CONCLUSION AND FUTURE WORK

We studied OPE with large action spaces and proposed the
MDR, which has the doubly robust property to be unbiased
under weaker assumptions than MIPS and has a significantly
lower variance than IPS. The simulation study demonstrates
that MDR outperforms other existing estimators, including
MIPS.

Our study gives rise to several interesting future directions.
It is crucial to find the better action embedding e to have the
standard embedding support, which is one of the assumptions
for the unbiasedness of MDR, so in the future, it would
be interesting to find the algorithm to construct the better
embedding. Moreover, other estimators might be doubly robust
under different assumptions. Thus, it would be intriguing
to compare the candidates of MDR by simulation study or
combine them to construct the triply robust estimator.
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APPENDIX A
PROOF OF THE UNBIASEDNESS OF MDR

Proof. First, when Assumption 4 is satisfied, we have

ED

[
V̂MDR(πe;D, q̂)

]
= V (π) + Ep(x)πb(a|x)p(e|x,a)p(r|x,a,e)

[{
Eπe(a′|x)[q̂(x, a

′)]

− w(x, e)q̂(x, a, e)
}]

(1)

= V (π) + Ep(x)πe(a′|x) [q̂(x, a
′)]

− Ep(x)

[∑
a∈A

πb(a|x)
∑
e∈E

p(e|x, a)p(e|x, πe)

p(e|x, πb)
q̂(x, e)

]
(2)

= V (π) + Ep(x)πe(a′|x) [q̂(x, a
′)]

− Ep(x)

[∑
e∈E

p(e|x, πe)

p(e|x, πb)
q̂(x, e)p(e|x, πb)

]
= V (π) + Ep(x)πe(a′|x) [q̂(x, a

′)]

− Ep(x)

[∑
a∈A

πe(a|x)q̂(x, a)

]
= V (π)

For (1), we use the i.i.d assumption of the data. For (2), we
use the no direct effect q(x, a, e) = q(x, e).

Secondly, when the Assumption 5 is satisfied, we have

ED

[
V̂MDR(πe;D, q̂)

]
= ED

[ 1
n

n∑
i=1

{
Eπe(a|xi)[q̂(xi, a)]

+ w(xi, ei) (ri − q̂(xi, ai, ei))
}]

= ED

[
1

n

n∑
i=1

Eπe(a|xi)[q̂(xi, a)]

]
+ ED [w(xi, ei) (ri − q(xi, ai, ei))] (3)

= ED

[
1

n

n∑
i=1

Eπe(a|xi)[q(xi, a)]

]
+ ED [w(xi, ei) (ri − q(xi, ai, ei))] (4)

= V (π) +
1

n

n∑
i=1

Ep(xi)πb(ai|xi)p(ei|xi,ai)p(ri|xi,ai,ei)

[
w(xi, ei)

(
ri − q(xi, ai, ei)

)]
= Ep(x)πb(a|x)p(e|x,a)p(r|x,a,e) [w(x, e) (r − q(x, a, e))]

+ V (π) (5)
= V (π)

For (3) and (4), we use the assumption of the unbiasedness of
the estimated expected outcome function. For (5), we use the
i.i.d. assumption.
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APPENDIX B
PROOF OF THE VARIANCE REDUCTION OF MDR

Proof. Under Assumptions 2, 3, and 4 (i.e., the common
support, no direct effect of action on reward, and the common
embedding support), we can derive the variance reduction of
MDR against DR as follows.

n
(
VD

[
V̂DR(πe;D, q̂)

]
− VD

[
V̂MDR(πe;D, q̂)

])
= Vp(x)πb(a|x)p(e|x,a)p(r|x,a,e)

[
Eπe(a′|x)[q̂(x, a

′)]

+ w(x, a) (r − q̂(x, a))
]

− Vp(x)πb(a|x)p(e|x,a)p(r|x,a,e)
[
Eπe(a′|x)[q̂(x, a

′)]

+ w(x, e) (r − q̂(x, a, e))
]

(6)

= Ep(x)πb(a|x)p(e|x,a)p(r|x,a,e)

[{
Eπe(a′|x)[q̂(x, a

′)]

+ w(x, a) (r − q̂(x, a))
}2

]
− Ep(x)πb(a|x)p(e|x,a)p(r|x,a,e)

[{
Eπe(a′|x)[q̂(x, a

′)]

+ w(x, e) (r − q̂(x, a, e))
}2

]
(7)

= Edπb

[{
Eπe(a′|x)[q̂(x, a

′)] + w(x, a)
(
r−

q̂(x, a)
)}2

]
− Edπb

[{
Eπe(a′|x)[q̂(x, a

′)] + w(x, e)

× (r − q̂(x, a, e))
}2

]
= Edπb

[
2Eπe(a′|x)[q̂(x, a

′)]
{
w(x, a)(r − q̂(x, a))

− w(x, e)(r − q̂(x, a, e))
}]

− Edπb

[
w(x, a)2(r

− q̂(x, a))2 − w(x, e)2(r − q̂(x, a, e))2
]

= Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]
{
w(x, a)∆(x, a)

− w(x, e)∆(x, a, e)
}]

− Ed̄πb

[
w(x, a)2∆(x, a)2 − w(x, e)2∆(x, a, e)2

]
Equation (6) is from the independent and identically
distributed data-generating process of context, action, action
embedding, reward, and the definition of DR and MDR. For
(7), as DR and MDR are unbiased under the assumptions,
we focus on the expectation of the second moment. For
Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, a)∆(x, a)
]
, we have

Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, a)∆(x, a)
]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
a∈A

πb(a|x)
πe(a|x)
πb(a|x)

∆(x, a)

]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
a∈A

πe(a|x)∆(x, a)

]
= Ep(x)πe(a|x)

[
2Eπe(a′|x)[q̂(x, a

′)]∆(x, a)
]

For Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, e)∆(x, a, e)
]
, we have

Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, e)∆(x, a, e)
]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
a∈A

πb(a|x)

×
∑
e∈E

p(e|x, a)p(e|x, πe)

p(e|x, πb)
∆(x, e)

]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
e∈E

p(e|x, πe)

p(e|x, πb)
∆(x, e)

×
∑
a∈A

πb(a|x)p(e|x, a)

]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
e∈E

p(e|x, πe)

p(e|x, πb)

×∆(x, e)p(e|x, πb)
]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
e∈E

p(e|x, πe)∆(x, e)

]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
e∈E

∑
a∈A

πe(a|x)

× p(e|x, a)∆(x, a, e)

]
(8)

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
a∈A

πe(a|x)

×
∑
e∈E

p(e|x, a)∆(x, a, e)

]

= Ep(x)

[
2Eπe(a′|x)[q̂(x, a

′)]
∑
a∈A

πe(a|x)∆(x, a)

]
= Ep(x)πe(a|x)

[
2Eπe(a′|x)[q̂(x, a

′)]∆(x, a)
]

For (8), we used the no direct effect. Therefore,

Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, a)∆(x, a)
]

= Ed̄πb

[
2Eπe(a′|x)[q̂(x, a

′)]w(x, e)∆(x, a, e)
]

holds, so we have

n
(
VD

[
V̂DR(πe;D, q̂)

]
− VD

[
V̂MDR(πe;D, q̂)

])
= Ed̄πb

[
w(x, a)2∆(x, a)2 − w(x, e)2∆(x, a, e)2

]
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