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Abstract—A fundamental principle of Granular Computing is
that of an information granularity distribution and its optimiza-
tion process. It has been used in system modelling to elevate a
numerical model to its granular counterpart, which is more in
rapport with reality. For example, in decision-making with fuzzy
preference relations, it has been applied to enhance the existing
numerical consistency improvement procedures. However, even
though different protocols of information granularity distribution
have been proposed, only the one based on a uniform and
symmetric distribution and the one based on a symmetric but
non-uniform distribution have been considered. Given that there
exist others, this study aims to analyze how we can take advantage
of all of them to improve the consistency of the fuzzy preference
relations. Some numerical experiments are also completed to
show the performance of these protocols.

Index Terms—consistency, decision-making, fuzzy preference
relation, information granularity

I. INTRODUCTION

Decision-making consists in an individual or a group of
them taking part to decide on the most suitable alternative
between a set of them [1]. The most suitable alternative is
the one that achieves the highest preference degree accord-
ing to the individuals’ viewpoints. Hence, the modeling of
the individuals’ viewpoints plays a pivotal role in decision-
making. Between the existing ways of doing it, the pairwise
comparisons in the form of preference relations have been
demonstrated as a useful tool because they facilitates the
aggregation of individual judgments into group ones and allow
more precise assessments [2]. However, they could exhibit
some contradictions [3]. It is obvious that decisions adopted
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based on contradictory (inconsistent) opinions must be avoided
to ensure the validity of the outcome. Because consistency
has been perceived as a measure of rationality [4], it allows
degrees of performance, which implies the reliability of a
preference relation can be measured by a consistency degree
[5]. Numerous procedures attempting to improve consistency
have been constructed [6]. In most of them, the improvement
of consistency is achieved at the expense of high divergences
between the original preference relation and the altered one,
which is the cause of an information loss.

This issue has recently been resolved by integrating some
restrictions into the improvement consistency process through
the distribution of an average level of information granularity
[7], [8]. The idea is to model the pairwise comparisons through
information granules that make available a flexibility degree
that can be exploited to improve the consistency. Conforming
to it, different granular procedures have been developed to
improve consistency [8]–[10]. Their common feature is the use
of a uniform and symmetric distribution of information gran-
ularity. Although these procedures improve the consistency
while restrict the range in which the pairwise comparisons
are modified, it has been demonstrated that the flexibility and
performance of these procedures is enhanced by an optimal
(non-uniform) information granularity distribution [11]–[13].

There exist however unresolved issues to be addressed.
Besides a symmetric information granularity distribution (both
uniform and non-uniform) we can find other protocols of infor-
mation granularity distribution [14]. The objective of this study
is to describe how we can improve the consistency of the fuzzy
preference relations with the existing protocols of information
granularity distribution and their ensuing optimization.

This study is arranged as follows. Background knowledge
is offered in Section II. Section III gives a description of
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the existing protocols of information granularity distribution
and their ensuing optimization to improve the consistency
of a fuzzy preference relation. Numerical experiments are
completed in Section IV to show the essence, flexibility and
performance of the protocols. To conclude, Section V points
out conclusions and future research directions.

II. PRELIMINARIES

First, the decision-making process with fuzzy preference
relations is described. Second, the consistency concept in
fuzzy preference relations is presented. Finally, the basics of
the particle swarm optimization (PSO) are recalled.

A. Fuzzy Decision-Making

Let ai be an alternative, with i = 1, 2, . . . ,m. A decision-
making process aims to produce an ordering of the alternatives
based on the assessments provided by an individual or a group
of them. The higher the position of an alternative in this
ordering, the more suitable the alternative as solution to the
decision-making process [1].

A preference relation modeling pairwise comparisons is
the most used structure of preference elicitation in decision-
making. However, to model the pairwise comparison, a domain
of representation must also be established [16]. In this re-
search, fuzzy preference relations are assumed, i.e., preference
relations based on values in-between [0, 1] to model the
pairwise comparisons. We assume them because they have
widely been used in decision-making and most of the granular
procedures improving consistency are based on them [9], [11].

Definition 2.1: [15] “A fuzzy preference relation, F , is given
by its membership function µF : A× A → [0, 1], where A is
the set of alternatives.”

The matrix F = [fij ] has typically been used to model the
fuzzy preference relation F . In this matrix, each component
fij = µF (ai, aj) is such that the higher fij , the higher the
individual’s preference of ai over aj : from fij = 1 denoting an
absolute preference of ai over aj , through fij = 0.5 denoting
indifference between the alternatives, to fij = 0 denoting an
absolute preference of aj over ai. Due to the components of
the leading diagonal, i.e., fii, are not taken into account, they
are symbolized as “–” [15].

B. Consistency

Handling a fuzzy preference relation involves to bear in
mind three rationality levels [17]: (i) Indifference is mandatory
between an alternative and itself, (ii) ai must be preferred to
aj if aj is not preferred to ai (reciprocity property), and (iii) ai
must be preferred to aj if ak is preferred to aj and ai is pre-
ferred to ak (transitivity property). The only rationality level
guaranteed by the formulation of a fuzzy preference relation
is the first one. In fact, as mentioned, the preference of an
alternative over itself is not taken into account. Nonetheless, to
give consideration to a fuzzy preference relation as consistent,
it must fulfill all the rationality levels, which has given rise
to a number of properties that should be fulfilled by a fuzzy
preference relation [18]. Between these properties, the additive

transitivity has widely been used because it makes easy the
verification of the consistency [6]. In [19], a procedure based
on this property was built to quantify the consistency degree
of a fuzzy preference relation. It refers to F as “additive
consistent” if for every three alternatives, ai, aj , ak, the values
fij , fjk, and fik satisfy:

fik = fij + fjk − 0.5 (1)

To measure the consistency, this procedure estimates fik
(i ̸= k) by means of an intermediate alternative aj and (1):

ef j
ik = fij + fjk − 0.5 (2)

Then, the average of all ef j
ik estimates the value of fik that

is denoted as efik:

efik =
1

m− 2

m∑
j=1;j ̸=i,k

ef j
ik (3)

The preference degrees present an absolute consistency if
ef j

ik = fik ∀j. Nonetheless, in real-world situations, it hardly
happens. Consequently, the assessments could not satisfy (1).
In [19], it was shown that the value that can be assigned
to ef j

ik is located in [−0.5, 1.5]. Therefore, to normalize the
expression domain, the final estimated value of fik (i ̸= k),
referred to as cfik, was computed as:

cfik = med{0, 1, efik} (4)

where med designates the median function.
The error between fik and cfik, referred to as ϵfik, is

obtained as:
ϵfik = |cfik − fik| (5)

Considering these values, the consistency degree of F ,
referred to as cd (the higher the value of cd, the higher the
consistency degree of F ), is computed as [19]:

cd =
1

m2 −m

m∑
i,k=1;i̸=k

(1− ϵfik) (6)

C. PSO Algorithm

PSO is a bio-inspired technique that emulates the movement
and intelligence of a swarm to solve an optimization task [20].
It is an iterative process where the particles of the swarm work
together in an intelligent way by exploring and exploiting a
d-dimensional search space for locating the optimal solution
according to a given quality measure (fitness function g). For
a comprehensive explanation of this algorithm and its variants
refer to [20] and [21].

In this study, we use the generic version, where the par-
ticle’s velocity, vi = (vi,1, . . . , vi,d), is updated according to
vi(t + 1) = ωvi(t) + c1r(xli − xi) + c2s(xg − xi), where r =
(r1, . . . , rd) and s = (s1, . . . , sd) are two vectors of random
numbers obtained from the uniform distribution over [0, 1], and
“t” designates the index of the current generation (iteration).
In terms of the coefficients, c1 and c2 are two acceleration
coefficients that influence the step size taken by the particle
i towards its best position, xli = (xli,1, . . . , xli,d), and the
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global best position, xg = (xg1, . . . , xgd), respectively, and ω
stands for the inertia weight [20], [21]. The next position of the
particle is obtained according to xi(t+1) = xi(t)+vi(t+1).
We use this algorithm because its implementation is very easy,
it has few parameters to adjust, and its convergence is very
fast [21].

III. IMPROVING CONSISTENCY BY DISTRIBUTING AN
AVERAGE LEVEL OF INFORMATION GRANULARITY

The improvement of the consistency of a fuzzy preference
relation entails that the individual must not have objection
to modify the provided preferences. It calls for a specific
flexibility degree that the individual must accept and that
can be modeled by the information granularity concept [8].
Briefly, to facilitate the consistency improvement, the pairwise
comparisons should be considered as granular realizations
instead of precise numerical values in-between [0, 1]. The
advantage of using the notion of information granularity is
that it controls the difference between the initial preferences
and the modified ones to some extent [8].

The existing granular procedures for improving consistency
have modeled the granular realizations as intervals, and an
information granularity level has been used to determine
the length of the intervals. It means that an interval-valued
preference relation, IV (F ), is built (IV (·) symbolizes an
interval-valued preference relation family). In short, the length
of the intervals makes available a flexibility that has been
exploited to optimize a given optimization criterion that, in
this case, is related to the consistency.

The rest of this section discusses how the current proto-
cols of information granularity distribution, and their ensuing
optimization, can be applied to improve the consistency. The
protocols discussed are: (i) a uniform and symmetric informa-
tion granularity distribution (s1), (ii) a uniform but asymmetric
information granularity distribution (s2), (iii) a non-uniform
but symmetric information granularity distribution (s3), and
(iv) a non-uniform and asymmetric information granularity
distribution (s4).

A. Uniform and Symmetric Distribution

Considering F , this protocol substitutes the numeric values
of the entries by intervals that are distributed symmetrically
around them and that have the same length. Let ε ∈ [0, 1] be
the average level of information granularity allowed by the
individual, then we focus on each entry fij , whose value is
modified within this interval:

ivij = [max(0, fij − 0.5ε),min(1, fij + 0.5ε)] (7)

Let F ∈ IV (F ), then this optimization model can be estab-
lished: 

max
fij

cd

s.t.

{
|f ij − fij | < 0.5ε

f ij ∈ [0, 1]

(8)

The PSO algorithm is employed to resolve model (8),
which returns the modified (optimal) fuzzy preference relation

F maximizing the consistency. In this case, the dimension
d of the particles is m2 − m, which corresponds to the
number of decision variables in model (8). The constraints are
managed by the next expression that converts the value of each
component of the particle, xi,h ∈ [0, 1], to its corresponding
value within the admitted interval:

f ij = y + (z − y)xi,h (9)

where z and y are the upper and lower boundaries of the
interval ivij .

B. Uniform but Asymmetric Distribution

Comparing to the previous protocol, this one provides more
flexibility because, even though it is based on intervals with
equal length, the intervals are asymmetrically allocated around
the numeric value contained in each element of F . This
asymmetric distribution brings a higher flexibility level that
can be exploited during the optimization process. Considering
fij , its value is modified within:

ivij = [max(0, fij − γijε),min(1, fij + (1− γij)ε)] (10)

where γij ∈ [0, 1] controls the asymmetric location of the
interval related to fij and whose length is determined by
the average level of information granularity ε. It means that
different asymmetric locations of the intervals are allowed
from one component to other, which increases the available
flexibility level.

Let F ∈ IV (F ), then this optimization model can be
established: 

max
fij

cd

s.t.

{
|f ij − fij | < ε

f ij ∈ [0, 1]

(11)

The PSO algorithm is applied to resolve model (11), but
different from protocol s1, the constraints are managed as:

f ij = y + (z − y)xi,h (12)

where y and z are max(0, fij − ε) and min(1, fij + ε),
respectively. According to it, through (10), we can compute
the intervals where the values of the optimal fuzzy preference
relation, F , are set, i.e.:

γij =


ε− |fij − f ij |

2ε
, if fij ≤ f ij

1−
ε− |fij − f ij |

2ε
, otherwise

(13)

C. Non-uniform but Symmetric Distribution

Considering F , this protocol substitutes the numeric values
contained in its entries by intervals distributed symmetrically
around them. However, in this case, each interval could have
a different length. As a consequence, each fij is associated
with a different information granularity level εij . Considering
fij , its value is modified within:

ivij = [max(0, fij − 0.5εij),min(1, fij + 0.5εij)] (14)
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Let F ∈ IV (F ), then this optimization model can be
established:

max
fij

cd

s.t.


m∑
i=1

m∑
j=1;j ̸=i

2|fij − f ij | ≤ (m2 −m)ε

f ij ∈ [0, 1]

(15)

where ε is the average level of information granularity allowed
by the individual, i.e.:

ε =
1

m2 −m

m∑
i=1

m∑
j=1;j ̸=i

εij (16)

Through model (15), the valued assigned to f ij is calcu-
lated. After that, the value assigned to εij is obtained. Let
∆1 = (m2 −m)ε−

∑m
i=1

∑m
j=1;j ̸=i 2|fij − f ij |, then, εij is

allocated as:

εij =

2|fij − f ij |+
1

#Υ1
∆1, if (i, j) ∈ Υ1

0, otherwise
(17)

where Υ1 = {(i, j) | f ij ̸= fij} and #Υ1 is its cardinality.
If ∆1 = 0, then the unique solution is εij = 2|f ij − fij |. The
PSO algorithm is applied to resolve model (15). The dimension
d of the particles is also m2 − m, which is the number of
decision variables in model (15). Because xi,h(t) ∈ [0, 1],
h = 1, 2, . . . , d, to manage the constraints in model (15), the
fitness function g of the PSO is defined as:

g(xi(t)) =

{
cd, if e(xi(t)) = 1

0, otherwise
(18)

where cd is the value of the consistency achieved considering
the fuzzy preference relation generated by the vector received
as parameter and computed using (6), and e is a function that
controls that the information granularity level injected is lower
than the one allowed by the individual. If the modified fuzzy
preference relation constructed through the vector received as
parameter has an average information granularity level higher
than the one allowed, this function returns 0 as the fuzzy
preference relation is not valid. If not, it returns 1.

Using the PSO, the entries of the fuzzy preference relation
are modified to maximize the value of cd. Then, using (17),
the value of every εij is obtained.

D. Non-uniform and Asymmetric Distribution

This protocol replaces the numeric values contained in F
by intervals with different length that are distributed asym-
metrically around them. Considering fij , its value is modified
within:

ivij = [max(0, fij −γijεij),min(1, fij +(1−γij)εij)] (19)

where γij ∈ [0, 1] controls the asymmetric location of the
interval associated with fij and whose length is εij .

Let F ∈ IV (F ), then this optimization model can be
established:

max
fij

cd

s.t.


m∑
i=1

m∑
j=1;j ̸=i

|fij − f ij | ≤ (m2 −m)ε

f ij ∈ [0, 1]

(20)

where ε is the average information granularity level allowed
by the individual (see (16)).

Through model (20), we obtain the value that corresponds
to f ij . After that, we calculate the value assigned to εij . Let
∆2 = (m2 − m)ε −

∑m
i=1

∑m
j=1;j ̸=i |fij − f ij |, then, εij is

distributed as:

εij =

|fij − f ij |+
1

#Υ2
∆2, if (i, j) ∈ Υ2

0, otherwise
(21)

where Υ2 = {(i, j) | f ij ̸= fij} and #Υ2 is its cardinality. If
∆2 = 0, then the unique solution is εij = |f ij − fij |.

Using the PSO as in protocol s3, the entries of the fuzzy
preference relations are modified to maximize the value of cd.
Then, through (21), the value of every εij is obtained. Finally,
by using (19), we can compute the intervals where the values
of the optimal fuzzy preference relation, F , are located, i.e.:

γij =


εij − |fij − f ij |

2εij
, if fij ≤ f ij

1−
εij − |fij − f ij |

2εij
, otherwise

(22)

IV. NUMERICAL EXPERIMENTS

Let us suppose the following fuzzy preference relation
containing the preferences expressed by an individual on five
alternatives (m = 5):

F =


− 0.98 0.28 0.65 0.20

0.09 − 0.95 0.81 0.80
0.98 0.00 − 0.11 0.98
0.29 0.42 0.94 − 0.01
0.62 0.94 0.17 0.84 −


Through (6), the consistency degree of F is 0.653. To increase
this value, we make use of the distribution of the information
granularity along with its optimization. Concretely, we apply
the four protocols described in Section III. Apropos of the
average information granularity level ε, we assume a value of
0.1. Regarding to the PSO, after intense experimentation, it
is executed with the following values: ω = 0.2; c1 = c2 =
2; the number of generations is 100; and the swarm size is
10(m2 −m). In what follows, we present the results returned
by each protocol and investigate their performance for diverse
values of the average information granularity level.

A. Uniform and Symmetric Distribution

For each component of F , this protocol builds intervals
whose length is 0.1, being symmetrically distributed around
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the value given by the individual. As an example, for f13, the
interval built is [0.23, 0.33]. Considering it, the PSO produces:

F =


− 0.93 0.32 0.69 0.24

0.13 − 0.90 0.76 0.75
0.93 0.00 − 0.15 0.93
0.33 0.46 0.89 − 0.05
0.57 0.89 0.21 0.79 −


Through (6), the consistency degree of F is 0.696. In this
case, because all the intervals have the same length and are
allocated symmetrically around the initial value given by the
individual, we do not show neither the information granularity
level distributed nor the intervals constructed.

B. Uniform but Asymmetric Distribution
For each component of F , this protocol builds intervals

whose length is 0.1, but, different from the above protocol,
they are asymmetrically distributed around the value provided
by the individual. Considering it, the PSO generates:

F =


− 0.88 0.37 0.74 0.29

0.18 − 0.85 0.71 0.70
1.00 0.00 − 0.20 0.88
0.38 0.51 0.84 − 0.10
0.56 0.84 0.26 0.74 −


Through (6), the consistency degree of F is 0.733. This
protocols distributes the same information granularity level to
each component of F , 0.1 in this case. Related to the intervals,
IV contains the intervals built for each component of F :

IV =

[
− [0.88, 0.98] [0.275, 0.375][0.645, 0.745][0.195, 0.295]

[0.085, 0.185] − [0.85, 0.95] [0.71, 0.81] [0.70, 0.80]
[0.90, 1.00] [0.00, 0.10] − [0.105, 0.205] [0.88, 0.98]

[0.285, 0.385][0.415, 0.515] [0.84, 0.94] − [0.005, 0.105]
[0.54, 0.64] [0.84, 0.94] [0.165, 0.265] [0.74, 0.84] −

]
C. Non-uniform but Symmetric Distribution

For each component of F , this protocol builds intervals
of different length symmetrically distributed around the value
provided by the individual. Because ε = 0.1, it means that the
average of the length of the intervals must be 0.1. Considering
it, the PSO returns this optimal fuzzy preference relation:

F =


− 0.76 0.27 0.65 0.20

0.20 − 0.94 0.80 0.79
0.97 0.07 − 0.17 0.95
0.29 0.41 0.68 − 0.02
0.62 0.93 0.33 0.83 −


Through (6), the consistency degree of F is 0.722. Based
on this optimal fuzzy preference relation, the matrix, D,
is constructed, which contains the information granularity
distributed to each entry of F :

D =


− 0.44 0.02 0.00 0.00

0.22 − 0.02 0.02 0.02
0.02 0.14 − 0.12 0.06
0.00 0.02 0.52 − 0.02
0.00 0.02 0.32 0.02 −


Considering the information granularity level distributed to
each component, the matrix IV containing the intervals built
for each component of F is the following:

IV =


− [0.76, 1.00] [0.27, 0.29] [0.65, 0.65] [0.20, 0.20]

[0.00, 0.20] − [0.94, 0.96] [0.80, 0.82] [0.79, 0.81]
[0.97, 0.99] [0.00, 0.07] − [0.05, 0.17] [0.95, 1.00]
[0.29, 0.29] [0.41, 0.43] [0.68, 1.00] − [0.00, 0.02]
[0.62, 0.62] [0.93, 0.95] [0.01, 0.33] [0.83, 0.85] −



D. Non-uniform and Asymmetric Distribution

For each component of F , this protocol builds intervals of
different length asymmetrically distributed around the value
provided by the individual. As in the previuos protocol,
because ε = 0.1, it means that the average of the length of
the intervals must be 0.1. Considering it, the PSO generates
the following optimal fuzzy preference relation:

F =


− 0.51 0.29 0.65 0.20

0.38 − 0.94 0.80 0.79
0.69 0.29 − 0.38 0.81
0.29 0.41 0.88 − 0.01
0.62 0.93 0.25 0.82 −


Through (6), the consistency degree of F is 0.781. Based
on this optimal fuzzy preference relation, the matrix, D,
is constructed, which contains the information granularity
distributed to each entry of F :

D =


− 0.47 0.01 0.00 0.00

0.29 − 0.01 0.01 0.01
0.29 0.29 − 0.27 0.17
0.00 0.01 0.06 − 0.00
0.00 0.01 0.08 0.02 −


Considering the information granularity level distributed to
each component, the matrix IV containing the intervals built
for each component of F is the following:

IV =


− [0.51, 0.98] [0.28, 0.29] [0.65, 0.65] [0.20, 0.20]

[0.09, 0.38] − [0.94, 0.95] [0.80, 0.81] [0.79, 0.80]
[0.69, 0.98] [0.00, 0.29] − [0.11, 0.38] [0.81, 0.98]
[0.29, 0.29] [0.41, 0.42] [0.88, 0.94] − [0.01, 0.01]
[0.62, 0.62] [0.93, 0.94] [0.17, 0.25] [0.82, 0.84] −


E. Comparative Analysis

Although the average level of information granularity al-
lowed has been low (ε = 0.1), the results achieved by each
protocol show that a distribution of information granularity
along with its optimization can significantly improve the
consistency compared to when precise numerical values are
utilized, i.e., the numerical procedure developed in [19], which
gets a consistency degree of 0.653, has been improved by
its granular counterparts, s1, s2, s3, and s4, which achieve a
value of 0.696, 0.733, 0.722, and 0.781, respectively. We have
also conducted an experiment in which 100 fuzzy preference
relations have randomly generated with different number of
alternatives (m = 4, m = 5, m = 6, and m = 7). Assuming
ε = 0.1, the results show that the consistency achieved by the
procedure developed in [19] has been improved by its granular
counterparts, s1, s2, s3, and s4, with an average percentage
of 6.7%, 12.4%, 10.7%, and 19.8%, respectively.

Finally, using F and with the objective of investigating the
impact of ε on the performance of the protocols, we execute
them by setting ε to 0.2, and 0.3. Table I shows the evolution
of the values for the consistency for different granule sizes. It
seems easy to understand that the greater the ε injected into the
model, the higher the probability of reaching higher values of
consistency (cd). This can be observed in Table I, where a clear
increasing trend in the values of cd is visible in line with the
increment of the values of ε. This is due to the greater the value
assigned to ε, the higher the length of the intervals in which the
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TABLE I
VALUES OF cd FOR CHOSEN VALUES OF ε

ε = 0.1 ε = 0.2 ε = 0.3
s1 0.696 0.733 0.781
s2 0.733 0.832 0.914
s3 0.722 0.780 0.893
s4 0.781 0.895 0.978

preference degree can be located and, therefore, the possibility
of maximizing the consistency is greater. On the other hand,
independently of the average information granularity level
allowed, the protocol based on an asymmetric and non-uniform
distribution of information granularity is the one that achieves
greater values of the consistency. It seems natural because,
between all the protocols discussed, this is the one exhibiting
the highest flexibility level.

V. CONCLUSIONS

This study has discussed four protocols of information
granularity distribution to improve the consistency degree of a
fuzzy preference relation. While there have been other studies,
concretely those coming from a symmetric distribution of
information granularity (both uniform and non-uniform), a
complete study considering all the protocols has not been
completely performed. The numerical experiments carried out
has shown the effectiveness and performance of the protocols.
Comparing to the protocols based on a symmetric distribution,
those based on an asymmetric distribution have reached greater
values of consistency. Between them, the protocol based
on a non-uniform distribution of information granularity has
reached the best value. The reason is that this protocol is the
most flexible, which allows for a more effective usage of the
resources by allocating higher information granularity levels
to the entries that require it the most.

As a first step at attempting to improve this study, the next
research directions emerges. Because PSO (metaheuristic) has
been used to obtain the modified fuzzy preference relation
improving the consistency, a statistical analysis is critical in
examining if the comparative results presented in Section IV-E
are conclusive or not. On the other hand, the need for a
two-objective optimization becomes apparent in case of group
decision-making. Here, besides the consistency, the consensus
[22], [23], i.e., the agreement between the individuals, could
also be maximized.
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[23] M. Świechowski, J. Kacprzyk, and S. Zadrȯzny, “A novel game playing
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