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ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a com-
mon neurobehavioral disorder in humans worldwide. While
extensive research has focused on machine learning meth-
ods for ADHD detection and diagnosis. Most methods rely
on high-cost equipment and trained staff for data collec-
tion, e.g., Magnetic Resonance Image (MRI) machine and
Electroencephalography (EEG) patch. Therefore, low-cost
sensors-based easy-to-process methods for ADHD detection
by exploiting action and behavior symptoms are required. We
present that skeleton-based action recognition has the poten-
tial to address the application due to the action-focused nature
of ADHD. Hence, this work proposes a novel ADHD detec-
tion system with a privacy-mitigating skeleton-based action
recognition framework by utilizing our new real multi-modal
ADHD dataset. Compared to the conventional methods, the
proposed method shows cost efficiency and significant per-
formance improvement. This method also outperforms the
conventional methods in accuracy and AUC on the real multi-
modal dataset. Furthermore, our proposed method based on
simple non-wearable sensors is widely applicable for ADHD
screening.

Index Terms— ADHD diagnosis, skeleton, action-
recognition, action classification

1. INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a com-
mon neurobehavioral and neurodevelopmental disorder af-
fecting 2-5% of school-age children worldwide, with a high
rate of undiagnosed cases among adults [1]. Recently, ma-
chine learning detection and diagnosis methods based on
Magnetic Resonance Imaging (MRI) [2] and Electroen-
cephalography (EEG) [3] have achieved high accuracy of
over 95% on related datasets [4], i.e., ADHD-200, but are
limited by their expensive equipment and high operational
costs [5]. Thus, there is a need for machine learning methods
based on low-cost data categories, e.g., video and audio, to
facilitate ADHD detection and primary diagnoses.

According to the Diagnostic and Statistical Manual of
Mental Disorders-Fifth Edition (DSM-V), the supportive ev-
idence shows that ADHD behavioral features such as fidget-

ing and restlessness in clinical notes are typically generalized
rather than characterized by the repetitive and stereotyped
movements [6]. Conventional clinical observation of ADHD
behavioral symptoms is limited by the difficulty in accurately
counting and extracting these characteristics [4, 7].

Action recognition methods have recently overcome man-
ual data processing limitations by extracting action informa-
tion, i.e., skeleton-joint, from raw videos. These methods
are unaffected by privacy-related information and demon-
strate remarkable robustness in dynamic environments and
complex backgrounds[8]. This paper proposes a novel ac-
tion recognition method based on the human skeleton-joint
modality. Furthermore, it explores the potential of ADHD
detection by identifying and analyzing raw video record-
ings. Our main contributions include: 1) to the best of our
knowledge, the first multi-modal ADHD dataset based on
real patients. Based on the characteristics of ADHD, a test
focusing on ADHD actions and reaction ability is designed
and implemented; 2) a novel ADHD detection system based
on action recognition networks; 3) new classification criteria
to provide detection results and analysis of ADHD behavioral
characteristics. We verify the efficiency and feasibility of the
system with ablation study results.

2. PROPOSED FRAMEWORK

2.1. Participants and Procedure

This study utilizes a real recorded multi-modal ADHD dataset
consisting of 7 adult ADHD subjects diagnosed by medical
consultants under DSM-V criteria and 10 neurotypical con-
trols. The dataset includes 3 males and 4 females with ADHD
and 9 males and 1 female in the control group. All subjects
are provided by the CNTW-NHS Foundation Trust, while the
control group volunteers are from Newcastle University.

The consecutive test focus on the ability of attention
and responsiveness is provided for all participants. We pre-
pare four continuous dialogue tasks: 1) a brief conversation
between the subjects, controls, and the interviewer, approx-
imately 10-20 minutes. The task consists of 21 questions
selected from Diagnostic Interview for ADHD in Adults
(DIVA), i.e., used by NHS medical consultants and profes-
sionals; 2) performing Cambridge Neuropsychological Test
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Automated Battery (CANTAB) tasks, including Cambridge
Gambling Task (CGT), Stop Signal Task (SST), Rapid Visual
Information Processing (RVP), and Spatial Working Mem-
ory (SWM). This task takes about 40-50 minutes; 3) beep
reaction task requires participants to respond to beeps of dif-
ferent lengths. This task takes 6 minutes; 4) watching videos,
including a math video labelled ‘boring’ and a rally video
labelled ‘exciting’. This task takes 10 minutes.

Videos are recorded by 3 GoPro cameras which contain
a front-faced Camera 1 to record facial information. Mean-
while, Cameras 2&3 record information on the left and right
sides of the torso and limbs, respectively. The resolution of
the three cameras is the same, i.e., 3840× 2160 pixels.

2.2. Proposed ADHD Detection System

We propose an action-based analysis system, which can be
used in ADHD detection with raw RGB videos and be a
competitive approach to clinical, EEG, and FMRI-based ap-
proaches. As aforementioned, the proposed method is simple
and efficient compared to conventional fMRI and EEG-based
methods because the video signal is easy to obtain with the
low equipment cost. The framework overview is shown in
Fig. 1. Details of each proposed task will be covered in the
following sections.

Fig. 1. Flow diagram of the proposed ADHD detection sys-
tem. The dashed lines are the format of each task, while the
solid lines point to the network and tasks of the system.

2.3. Skeleton Extraction and Action Recognition

In the frame segmentation task, the input video from our
ADHD multi-modal dataset is decomposed into a frame se-
quence of 25 FPS. We use the detector and estimator to
capture pose information in the frame sequence and record it
as a human skeleton-joint grid sequence in the skeleton ex-
traction task. Action-related information is extracted through
these tasks without contextual nuisances, such as background
variation and unrelated personnel interference [9].

In general, 2D poses are of better quality and higher ac-
curacy than 3D poses [10], which is crucial for applications
related to medical detection and diagnosis. In this work, a
ResNet50-based Faster-RCNN network is used as the detec-
tor [11]; the pose estimator is a pre-trained HRNet because
they achieve the state-of-the-art results on the commonly used
human posture estimation dataset: MPII (top) and COCO
(bottom) datasets [11]. As shown in Fig. 2, we use this com-
bination of detector and estimator to capture standard bench-
marks such as COCO-keypoints of subjects and controls in
a sitting position[8]. The 17 joint points are detected and
used in action and pose tasks. Skeleton-joint grid sequence
information is stored in a series of coordinate triplets (x, y, c),
where c is related to the number of joints, height, and weight
at each frame. (x, y) is the corresponding coordinates of the
c [8].

Fig. 2. Skeleton extraction results from left and right side
cameras in our dataset and the COCO-Keypoints information.

2.4. Performance Measurement

To the ADHD typical symptoms, the actions of subjects and
controls in our dataset mainly contain three categories: still
position, small ranges of limb fidgets, and large rotations of
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torso movements. The existing action recognition evaluation
criterion cannot be applied to ADHD-specific classification
and evaluate its action frequency characteristics. We propose
a novel Hyperactivity Score (HS) and a measurement named
Attention Deficit Ratio (ADR) as the evaluation criterion for
action classification of ADHD symptoms detection. They fo-
cus on the action change frequency of the subjects and con-
trols during the test, which is also defined as the model’s abil-
ity to focus on the movement or posture. The Hyperactivity
Score (HS) is calculated as :

HSn =

{
HSn−1 + 1, if ln = ln−1

HSn−1 − 1, otherwise
(1)

where n denotes the number of labels, HSn denotes the score
of n labels, ln denotes the nth label in the label sequence.
HS increases if the action is consistent in the continuous time
frame. Otherwise, it is reduced.

According to the effect of video length on HS, we nor-
malize the results by the ratio of HS to the n labels and de-
note it as ADR, which is calculated as:

ADR(%) =
HSn · 100

n
(2)

We use ADRL and ADRR, i.e., ADR measures of left
and right viewpoints recording for two cameras, respectively.
The final ADR is the average ADRL and ADRR.

The detection results R are obtained by binary classifica-
tion of the ADR results of all participants using a determined
threshold T . The diagnosis result is calculated as :

R =

{
ADHD, if ADR < T

Control, otherwise
(3)

The performance of the proposed ADHD detection sys-
tem is also evaluated by the standard measurements, e.g., ac-
curacy, sensitivity, precision, and the area under curve (AUC).

3. EXPERIMENTS

3.1. Dataset Preparation

We use our real multi-modal ADHD dataset for the proposed
ADHD diagnosis system. Especially to recognize ADHD
symptom-related actions, a three-classes-action ADHD dataset
is used for training and testing in action recognition.

The ADHD detection dataset contains the left and right
body information recorded by two side cameras. The whole
dataset contains 34 videos. In the action recognition part, we
divide the subjects’ actions in the sitting state into three cate-
gories, i.e., still-position (Action 1), which contains 88 video
clips, limb-fidgets (Action 2) with 110 clips, and torso move-
ments (Action 3) with 101 clips. Each of the clips is between
10-15 seconds. The training, validation, and testing data split
is 7/1/3, respectively.

The input frame is reduced from 3840 × 2160 to 1080 ×
920 and down-sampled from 32 to 25 FPS to minimize the
computation cost. 2D-Poses are captured and estimated by
the top-down estimator from RGB inputs, as shown in Fig. 2.
Actions are labeled per 50 frames in the training and detection
steps.

3.2. Experiment Setup

We exploit a 3D-CNN structure (PoseC3D) as the main core
network [8]. Different from commonly used GCN methods
in skeleton-based action recognition, PoseC3D is a novel
backbone that takes the 2D-Poses as the heatmap stacks of
skeleton joints rather than graph coordinates. On the tempo-
ral dimension, the heatmap sequence of different time steps
consists of a 3D-dimension heatmap volume. PoseC3D is
more robust to the upstream pose estimation and temporal
actions due to the 3D structure of heatmap [8]. Compared
with grid-based GCN methods, the interoperability of PoseC-
onv3D makes it easier to process human skeletons in the
multi-modality and the multi-modal fusion, potentially used
in ADHD detection and diagnosis. Meanwhile, the PoseC3D
performs better on most existing action detection datasets,
such as UCF101, NTURGB-D, FineGYM, etc. [12].

Different from the original implementation [8], the first
convolution layer of our PoseC3D network is changed to
17×25×56×56 kernels with 1×1 stride to fit the size of our
input data format. The training epochs for the action clas-
sification are 30, and the learning rate is 4 × 10−3. All the
experiments are run on a workstation with four Nvidia GTX
1080Ti GPUs and 16 GB of RAM.

3.3. Time-Action based Diagnosis Results and Compar-
isons

According to DSM-V, some symptoms of hyperactivity-
impulsivity are observable in ADHD adults, such as difficulty
in sitting still, fidgeting legs, tapping with a pen, etc., and
those actions are not characterized by repetitive stereotypi-
cal movements [6]. However, it is hard to manually record
irregular, high-frequency, and small-range actions during
the traditional diagnostic process. Through our system, the
skeleton-based poses and actions of each participant are fully
captured and visualized. Fig. 3 shows the action recognition
results timeline bar chart from a randomly selected subject
and control.

Through Fig. 3, it can be easily observed that the ac-
tion change frequency for the ADHD subject is significantly
higher than the control. We further provide the ADR perfor-
mance of 7 subjects and 10 controls as shown in Table 1.

From Table 1, the average ADRAvg for 7 subjects and
10 controls are 71.7% and 79.8%, respectively. The average
ADRAvg of all 17 participants is 76.5%. Therefore, 76.5% is
adapted as the threshold for ADHD detection.
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Table 1. The Attention Deficit Ratio (ADR) comparisons for the overall subjects and controls. And ’S’, ’C’, ’F’, ’M’ indicate
subject, controls, female, and male, respectively. Each result is the average of 5 experiments.

Samples S2 (M) S6 (M) S9 (F) S10 (F) S12 (F) S13 (M) S14 (F)
C1 (M) C3 (M) C4 (M) C5 (M) C7 (M) C8 (M) C11 (M) C15 (M) C16 (F) C17 (M)

ADRAvg(%) 48.9 75.7 74.6 71.9 72.6 72.1 76.1
80.8 79.9 83.9 81.7 67.8 84.0 81.3 86.6 65.6 86.5

Fig. 3. Action change timeline chart of a randomly selected
subject and control. Action 1 is still-position, Action 2 is
limb-fidgets, and Action 3 is torso movements.

In the next experiment, we compare the proposed method
with the other two commonly used skeleton-based action
recognition networks (ST-GCN, MS-G3D) in our action
recognition task. To ensure the fairness of the experiment, we
use the same configurations, i.e., estimator, detector, learning
rate, and evaluation matrix, for ST-GCN and MS-G3D as
the proposed PoseC3D. Based on this basic framework, we
adapt two popular 3D structure networks,i.e., C3D and R3D,
to the action recognition task. Different from skeleton-based
methods, these two networks both use the raw RGB frame
sequence as input. The training epochs for the action clas-
sification are 80, and the learning rate is empirically set to
1× 10−9.

We further calculate the precision, sensitivity, accuracy,
and AUC of four comparison networks: ST-GCN, MS-G3D,
C3D, and R3D [12, 13, 14, 15], and our proposed PoseC3D
framework in Table 2.

Table 2. ADHD detection system performance with different
neural networks.

Precision(%) F1(%) Accuracy(%) AUC
R3D [15] 58.8 74.0 58.8 0.50
C3D [14] 85.7 70.6 70.6 0.71

ST-GCN [12] 100.0 75.0 76.4 0.70
MS-G3D [13] 85.7 70.6 70.6 0.72

PoseC3D 100.0 88.9 88.2 0.83

From Table 2, the proposed PoseC3D is significantly
higher than the C3D, R3D, ST-GCN, and MS-G3D in preci-
sion, accuracy, F1 Score, and AUC. The Posec3d takes ad-
vantage of combining the skeleton grid and heatmap, which
leads to improved performance on action recognition tasks,
indicates a clear differentiation between ADHD subjects and
controls in diagnosis outcomes, as well as improved detection

accuracy.

3.4. Ablation Study

In the ablation study experiment, the original ADHD-3
dataset is shattered and labelled as ADHD subjects and con-
trols. The C3D-1 is a diagnostic discriminant network trained
on this binary ADHD classification dataset. Apart from the
binary ADHD classification dataset, PoseC3D adds the skele-
ton information extraction task. The PoseC3D-2 and C3D-2
are action recognition networks with and without skeleton
extraction task trained on the three-class action dataset, as
mentioned in Section 3.1, respectively. It is highlighted that
the action recognition task and the ADR task are closely re-
lated and cannot be separated. The AUC results are shown in
Table 3:

Table 3. Ablation study results with AUC.
Task Network AUC

- C3D-1 0.50
Skeleton PoseC3D-1 0.59

Action+ADR C3D-2 0.71
Skeleton + Action + ADR PoseC3D-2 0.83

According to the results of the ablation study, firstly,
the action recognition module plays an important role in the
overall diagnostic system, which significantly improves diag-
nostic accuracy by extracting and classifying action features.
Secondly, the skeleton extraction task improves the detection
accuracy on the basis of the action recognition task by its
robustness for the impact of environmental interference.

4. CONCLUSION

This paper proposed an ADHD detection system based on
a skeleton-joints modality action recognition framework. A
novel measure named ADR was proposed to evaluate the at-
tention deficit performance of the action recognition results.
The experimental results demonstrated that our system out-
performs state-of-the-art methods regarding precision, accu-
racy, and AUC with high efficiency. Our systems are cost-
effective and easily integrated into clinical practice. In future
work, we plan to expand the dataset to cover a real-world pa-
tient distribution and record more multi-modal data such as
EEG and fMRI for fusion and evaluation of related results.
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Furthermore, we will focus on the effectiveness of deep learn-
ing models, particularly those based on graph convolutional
networks and spatial-temporal architectures, to achieve supe-
rior results in action recognition tasks, thereby enabling the
development of more efficient diagnostic systems for various
applications.
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