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Abstract—Service robots are expected to autonomously per-
form a wide range of service tasks to satisfy users’ needs, but
are limited in practice by their weak decision-making capabilities.
This work introduces a Knowledge Acquisition Framework
(KAFS) to help robots make autonomous decisions through this
knowledge. This framework is divided into two parts: service
knowledge acquisition and scene knowledge construction and uses
a variety of intelligent methods to easily and accurately acquire
a large amount of service and scene knowledge. We demonstrate
the knowledge acquired by KAFS and validate the effectiveness
of KAFS on robot service tasks.

Index Terms—service robot, knowledge acquisition, decision
making

I. INTRODUCTION

As a major branch of robotics applications, service robots
have made great progress in robot perception and motion with
long-term research and development. There are also applica-
tions in real home scenarios, such as floor cleaning robots.
Although these robots provide some convenience, they are still
unable to perform generic service tasks autonomously to meet
the needs of users due to the robots’ limited decision-making
capabilities. However, robots can guide motion planning based
on their own knowledge base, just as humans. Therefore,
acquiring a large amount and high quality of knowledge is
essential to improve the intelligent decision making ability of
service robots under complex tasks.

The knowledge required in the process of intelligent robot
service includes service knowledge and scene knowledge.
Service knowledge provides the robot with specific execution
strategies for different service tasks. Scene knowledge is the
spatial knowledge of scenes and objects learned by the robot
in different service scenarios. By combining these two types
of information, the robot can perform multiple service tasks
in different service situations.

Therefore, we used advanced natural language processing
algorithms, deep neural network models, and service robot
research results to build KAFS (a knowledge acquisition

framework for service robots) for autonomously acquiring
service knowledge and scene knowledge in the intelligent
robot service process. The robot can guide its own service
behavior based on the explicit knowledge acquired by KAFS to
accomplish complex service tasks in a changing environment.

In this framework, the service knowledge acquisition starts
with designing a VSM-based thematic web crawler for crawl-
ing service knowledge from the web, followed by dividing
the clustered service knowledge into a task decision table
and a task execution table so that the robot can use this
service knowledge. Meanwhile, according to the actual service
situation, Apriori algorithm is used to mine potential service
rules and expand them into service task chains. The scene
knowledge is constructed according to the scene knowledge
framework, using ResNet-50 and Faster-RCNN models to
identify areas and objects, and using Neural Motifs model to
detect the location relationship between objects.

In our experiments, we first introduce the service knowl-
edge base and scene knowledge map constructed from the
knowledge acquired by KAFS, which can facilitate the robot’s
query. Then, we take the service task of ”make coffee” as
an example and show how the robot can use the service
knowledge and scene knowledge to complete the service task.
The experimental results show the effectiveness and robustness
of KAFS. Our contributions are as follows:

• Proposing KAFS (a knowledge acquisition framework
for service robots), which is an extensible, interpretable,
knowledge acquisition framework aimed at improving
the autonomous decision-making capabilities of service
robots.

• A specific method of acquiring service knowledge and
scene knowledge is given, by using various algorithms
and models.

• A service knowledge base and scene knowledge graph
available for use are constructed according to the methods
provided by KAFS, and the effectiveness of the frame-
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work is demonstrated by experimentally demonstrating
the robot’s use of knowledge to autonomously complete
service tasks.

II. RELATED WORKS

A. Service Task Understanding and Mining

Task understanding transforms abstracted natural language
instructions into knowledge that the robot itself can understand
and execute. Misra et al. [1] formed a dataset of the collected
tasks and the corresponding sequences of action execution.
Along with the establishment of Web-based knowledge sharing
sites, more and more work has begun to attempt to use public
knowledge resources for task decomposition [2]. Perera et al.
[3] utilized web resources to learn knowledge related to task
execution. Tenorth et al. [4] dealt with knowledge gaps based
on the KNOWROB knowledge system. Some recent studies
have utilized end-to-end learning methods to train robots to
move directly from verbal command inputs to executive action
outputs [5], [6], but limited by the size of the neural network
and the unavailability of high-quality data, this approach
performs poorly in terms of semantic generalizability.

Rule patterns at the multitasking level require new rules
to be inferred by means of pattern mining. Najafabadi et al.
[7] captured multiple purchase records for each transaction
based on association rules. Zhang et al. [8] proposed a fuzzy
association rule mining algorithm to model the links between
different types of crime rates. These applications show the re-
alistic possibility of employing association mining algorithms
to deal with hidden service patterns during robotic tasks.

B. Expression of Environmental Information

The representation of environmental information has been a
key direction in the research field of intelligent robot services.
Silberman et al. [9] modeled support relationships for typical
object regions in the environment, reflecting the physical
interactions of the regions. Shi Y et al. [10] proposed modeling
environmental context through a data-driven approach. With
the construction of large-scale datasets, it has become a
common practice to express structure into a natural language
expression through neural network modeling [11]- [14], which
is gradually replacing the traditional methods. The current use
of neural networks provides the basis for robots to construct
knowledge from scenes.

III. SERVICE KNOWLEDGE ACQUISITION

Our work uses natural language to characterize the service
knowledge, which is easy for humans to understand and for
robots to acquire autonomously. Since the Internet contains
a large amount of information related to home services, it
is possible to extract this information into the deep knowl-
edge needed for service tasks. First design high performance
thematic web crawlers to extract relevant knowledge from
the web. After that, we use the text clustering method to
integrate the massive task knowledge and construct the service
knowledge base according to certain rules, so that the robot
can obtain the strategy to complete the task by querying the

knowledge base. To make the robot service more intelligent
and humanized, the Apriori algorithm is used to mine potential
service rules to expand a single service task into a multi-
service task chain.

A. Designing a Thematic Web Crawler

Setting the initial link queue and initial topic description of
a web page as the basis for crawling, the accuracy of both
plays a vital role in obtaining high quality topic pages. The
crawler simulates a browser client sending a request to the
corresponding web server and obtaining the valid content of
the web page. The similarity between the crawled page and the
initial topic is calculated using the vector space model (VSM)
to determine whether this page is relevant to the topic.

VSM treats a document as a vector of n-dimensional fea-
tures, n depending on the number of document feature words.
The text di can be expressed as d⃗i = (w1i, w2i, . . . , wni),
wki denotes the weight of feature word k. The weights are
calculated using the TF-IDF algorithm, which is often used in
technical fields such as information retrieval and text mining.
Based on the obtained word weights, the similarity between the
crawled pages di and the initial topic dj is measured using the
cosine distance metric (1). If the similarity is greater than the
set threshold, the text content of the page is stored, otherwise
the page is discarded.

sim (di, dj) =

∑
kwki × wkj√∑

k(wki)
2
√∑

k(wkj)
2

(1)

B. Extraction and Storage of Service Knowledge

Since service knowledge is jointly extracted from multiple
knowledge sources in the network to enrich the knowledge
base, there is a large amount of knowledge redundancy. Text
clustering algorithms are needed to merge similar service
knowledge and distinguish tasks with different descriptions to
save knowledge storage space and improve the efficiency of
robots querying service policies. Service knowledge clustering
using BIRCH algorithm, a hierarchical text-based clustering
method. Using this method, the text closest to the center of
mass in each clustering feature is extracted and stored as
representative service task knowledge.

The service knowledge extracted from the network is ex-
pressed in the form of natural language, and this type of
knowledge cannot be directly used by robots, so it is necessary
to adopt a form of knowledge representation suitable for use in
robot services. Considering that even for the same service task,
the strategy for performing the task is never the same because
the robot faces different service items in the environment, the
method of deciding the service strategy based on the task
semantics and object conditions is proposed. Task semantic
forms such as: ”make coffee”, ”make tea”, and ”turn on the
TV”. Depending on the object’s conditions, there exist many
different ways to perform each task. Use the extracted service
knowledge to autonomously construct a task decision table
(TABLE. I), and decide the execution method by querying
this table.
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TABLE I
TASK DECISION TABLE

Task Objects Topic
make coffee cup coffee water A0001
make coffee kettle coffee cup A0002

Then use the service knowledge to construct a task execu-
tion table (TABLE. II) to give the specific execution strategy
for each execution method, so that the robot can follow the
steps to complete the service task. The literature states that
service knowledge consists of four types of key information:
instruction action object (Vaction), action operation object
(Vobj), service object (Vper), and location object (Vloc), so
the service knowledge is disassembled into these four types
of information.

TABLE II
TASK EXECUTION TABLE

Topic Step Vaction Vobj Vper Vloc

1 take cup null null
A0001 2 put coffee null cup

3 put water null cup

C. Expansion of Service Knowledge

In fact, in advanced task scenarios for personalized services,
the various service operations are interconnected, so that a
single service task can be expanded into a multi-service task
chain. For example, when the robot performs the service of
turning on the TV, it may also need to perform the service
task of fetching fruits, which is an implicit service association
knowledge. Knowledge expansion is achieved at the service
rule level by extracting the implicit service knowledge gener-
ated by the robot in the service. The Apriori algorithm [15] is
a frequent itemset algorithm for mining Boolean association
rules, which is widely used in various research fields. Based
on the Apriori algorithm, a service rule expansion algorithm
for robots can be designed (TABLE. III).

TABLE III
SERVICE RULE EXPANSION ALGORITHM

Algorithm: Service rule expansion algorithm
Input: robot service items I , transaction data set TD, cycle count k.
Output: new service rules.
1: Generate the candidate 1 item set C1, k = 1.
2: Scan the transaction dataset TD, and count the number of
2: occurrences of each item in C1, filter out the least supported items,
2: and generate the candidate frequent 1 item set L1.
3: Associate L1 with itself to generate the candidate 2-item set C2,
2: k = 2.
4: When k >= 2, the number of occurrences of each item in Ck is
2: scanned in the data set TD, and the set of items meeting the mini-
2: mum support is filtered out as the candidate frequent k-item set Lk .
5: Generate the candidate set Ck+1 by associating Lk with itself.
6: Repeat step 4 until the final set of frequent items is found.
7: The set of items satisfying the support and confidence requirements
2: is used as a new rule for intelligent robot services Rnew .
8: Return Rnew .

IV. SCENE KNOWLEDGE CONSTRUCTION

The advanced cognitive ability of service robots relies on
effective modeling of environmental structures, but there are
numerous scenes and objects in the home service environ-
ment, and there are complex and variable spatial connections
between service objects and scenes. Therefore, modeling only
the overall space is not only inefficient but also challenging to
extract the semantic information required for advanced service
instructions. Through scene knowledge construction, the attri-
bution relationship between objects and environment and the
relative position relationship between objects and objects are
abstracted using semantics, and the objects are recognized at
the instance level. A unified knowledge construction is formed.

A. Building a Scene Knowledge Framework

The scene knowledge in the service environment contains
the spatial attribution relationship between objects and areas
and the location relationship between objects. According to
the characteristics of the environment, a progressive spatial
attribution relationship of ”functional area - sign object -
service object” can be drawn, as shown in Fig. 1. Functional
areas describe high-level scenes, such as bedrooms, living
rooms, etc. Service objects refer to objects that the robot needs
to perform operations on, such as cups, phones, etc. The sign
objects often have more obvious visual characteristics and have
a strong location invariance, the location of such objects and
service objects are closely linked, with space ”sign” roles, such
as tables, coffee tables, etc. The spatial hierarchy is reflected
by such a chained semantic description that conceptualizes the
robot’s workspace.

Fig. 1. Scene knowledge framework

B. Identification of Areas and Objects

1) Functional area Identification: The different functional
areas directly affect the robot’s judgment of the services re-
quired by humans, and by acquiring the semantics of different
areas, the service robot can make more accurate decisions.
Using a classical deep residual network (ResNet-50) [16], the
information from the environment pictures collected by the
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robot is fed into the neural network for classification and
recognition to determine the functional properties of each area.

2) Sign Objects Identification: The distance between the
objects and the ground can be used to determine whether
the object is a sign object or not because it is placed on the
ground due to its properties. Therefore, in this paper, RGB-D
images are used to obtain the 3D coordinates of the objects
and the target detection frame, and the two are combined
to obtain the sign object. Detect object position using the
Faster-RCNN algorithm [17] and transform pixel coordinates
to camera coordinate system using depth information.

3) Service Object Instantiation Identification: The complex
background of objects in the service scenario can confuse
object instance detection, so a two-stage instance detection
algorithm is used to obtain higher performance. After the
robot acquires the pictures containing objects in the scene,
the target detection frame is obtained by the Faster-RCNN
algorithm to extract the objects from the background to reduce
the noise brought by environmental information in the object
instance recognition. Then the extracted objects are re-fed to
the neural network to extract high-dimensional features, and
the service objects instance cognition is completed by the
feature similarity judgment of the item and the instance.

C. Detecting the Positional Relationship between Objects

The Neural Motifs model [18] is used to detect the po-
sitional relationships between objects. The model uses global
prior knowledge in the scenario to guide the target relationship
prediction task to improve accuracy. The model first generates
item features and location vectors by Faster-RCNN. After
that, the context framework is used to incorporate contextual
information into target detection by coding and decoding two
LSTMs to re-predict the target labels. Finally, it is combined
with visual prediction to achieve location relationship predic-
tion between pairs of items.

V. EXPERIMENTS

In our experiments, by randomly giving some service com-
mands to the service robot, we test whether the robot can
autonomously reason, decide and execute the service tasks us-
ing the service knowledge and scene knowledge extracted from
KAFS. Here is an example of the ”make coffee” command,
showing the entire experiment process of the robot using the
KAFS to complete the service requirements autonomously.

The selected real robot model is TIAGO, whose modules
mainly include: TIM561 LIDAR sensor, movable base, ma-
nipulator, and other hardware. The robot platform was used to
model the home environment, represented by a 2D raster map,
which was used to assist the robot in performing its tasks, and
the experimental platform is shown in Fig. 2:

A. Service Knowledge Base

The service knowledge base consists of a task decision table
(TABLE. I) and a task execution table (TABLE. II). A large
expansion of the service rules is implemented in accordance
with the thematic web crawler and extraction and storage of

Fig. 2. Experimental platform

service knowledge. To ensure that the robot can efficiently
query the service knowledge, these data are stored using a
MySQL database. A total of 2521 task execution methods
corresponding to 247 tasks are stored in the task decision table,
with an average of 10 different execution methods for each
task. The task execution table, on the other hand, provides
specific execution steps for each execution method in the
decision table, with an average of three steps required for each
method.

B. Scene Knowledge Graph

The scene knowledge graph uses the graph form to integrate
the scene knowledge obtained by scene knowledge construc-
tion, as shown in Fig. 3. The nodes of the knowledge graph are
divided into three categories, which correspond to functional
area, sign object, and service object in the scene knowledge
framework. And respectively by the corresponding neural
network algorithm in the identification of areas and objects to
complete the recognition. The edges of the knowledge graph
have different labels depending on the nodes. One category
is the relationship labels (BeTo, Rel) that indicate spatial
belonging, where BeTo is the belonging of the sign object
and functional area, and Rel is the belonging of the sign
object and the service object. The other category is the location
relationship labels between objects, such as ”on”, ”in”, ”near”,
etc., which can be accurately determined by the model in
detecting the positional relationship between objects.

C. Complete Service Process

After receiving the ”make coffee” command, the robot
extends its service knowledge through the expansion of service
knowledge. Specifically, (make coffee, serve fruit, serve trash-
can) constitutes a frequent triple set that is a strong association
rule satisfying the confidence threshold and support threshold.
That is, in the coffee-making task, the user’s implied service
requirements include ”serve fruit” and ”serve trash-can”, so
the latter is also added to the service task, and this kind
of autonomous reasoning is very humanized, as shown in
Fig. 4(a). Query the most appropriate execution steps for each
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Fig. 3. Part of scene knowledge graph

task from the task decision table, as shown in Fig. 4(b). There
are 10 rows for ”make coffee” and 1 row for each of the other
two tasks. The most suitable step topics for ”make coffee”,
”serve fruit” and ”serve trash-can” are found to be ”A0034”,
”A0026” and ”A0014” respectively. The detailed steps of
the corresponding execution methods are then obtained from
the task decision table, as shown in Fig. 4(c). The final
composition of the complete service task chain is shown in
Fig. 5.

Fig. 4. Service knowledge query results about ”make coffee”

Fig. 5. Service task chain generated by the ”make coffee” command

In this task, the cups and coffee are on Table 1 in the
living room, the kettle is on the coffee table in the living
room, the fruit is on Table 3 in the living room, and the trash
can is next to Table 3, as can be obtained from Fig. 6(a).
Through spatial location attribution, the robot can quickly
locate service objects based on the more visually obvious ones.
In contrast, the relative location relationships between objects
enable the robot to accurately understand the user’s possible
service needs. The acquired environment information and the
2D map of the environment are combined to generate a map
of the home scene with semantics, as shown in Fig. 6(b).
Fig. 7 shows the execution route of the robot in the home
environment.

Fig. 6. Using scene knowledge to generate semantic maps

We chose three different realistic home scenes, each with 10
experiments similar to the ”make coffee” instruction task. The
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KAFS framework first constructs three scenario knowledge
graphs, and then combines the service knowledge base and
the experimentally given instructions to reason that the final
service task chain has a success rate of 100%, with an average
of five subtasks contained in each command task. According
to the manual evaluation, the service task chain reasoned by
the KAFS framework has some unreasonable task planning in
the current scenario, and the average reasoning accuracy of the
overall experiment is 84%. The final average task success rate
for the 10 commands across the three scenarios was 76% due
to the many interfering factors in the actual robots performing
the tasks.

(a) Put the coffee in the glass (b) Pour in hot water

(c) Take the fruit (d) Take the trash can

Fig. 7. The execution route of the robot

The experimental results show that the service knowledge in
KAFS enables the robot to make task decisions autonomously
based on service instructions and actual scenarios. The scene
knowledge in the KAFS allows the robot to maintain semantic
recognition of spatial relationships between things in complex
and changing unstructured scenes. The experimental success
rate of the robot autonomously completing service tasks under
different service commands and scenarios is very high. This
demonstrates the effectiveness and the superior robustness of
the framework.

VI. CONCLUSION

We presented KAFS, a knowledge acquisition framework
for autonomous decision making in service robots. With this
framework, it is possible to obtain the services knowledge
from the network and the scene knowledge from real envi-
ronments. Our experiments demonstrate that the framework
can autonomously acquire knowledge and construct it into
a form that robots can use to make decisions in service
tasks. The framework is extensible, which means that more
knowledge can be added to cope with other problems in
robotic service tasks. Therefore in future work, we will try
to acquire a wider range of knowledge and experiment in
unfamiliar environments to improve the generalization of the
framework.
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